Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 Übungen zur Grundvorlesung Physikalische Chemie Inhalt des Skriptes Die Reihenfolge der Themen im Skript und in den Übungen ist nicht durchgehend identisch. 1 Physikalisch-chemische Größen Einheitenumrechnung Fehlerbehaftete Größen 2 Mathematik Allgemeines Differentialrechnung an Funktionen mehrerer Veränderlicher 3 Ideale und reale Gase 4 Thermodynamik Thermochemie Phasengleichgewichte Begriffliche Grundlagen der Thermodynamik (Wärme, Entropie, Reversibilität) Bemerkungen zum Begriff "partielle molare Größe" 5 Elektrochemie Elektrische Leitfähigkeit Galvanische Elemente 6 Reaktionskinetik Empfohlene Literatur P.W.Atkins, Kurzlehrbuch Physikalische Chemie, 3. Auflage, Wiley-VCH 2001, für den Studiengang Nanostrukturwissenschaften auch P.W.Atkins, Physikalische Chemie (Voll-Lehrbuch) Alle Lehrbücher der Physikalischen Chemie enthalten eine Vielzahl durchgerechneter Beispiele und Aufgaben mit oder ohne Lösungen, die für jeden Grad des Kenntnisstandes und des Ehrgeizes lohnende Objekte darstellen. 1 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 1 Physikalisch-chemische Größen Einheitenumrechnung In der Physikalischen Chemie ist es häufig notwendig, eine Größe von einer Einheit in eine andere umzurechnen, z.B. eine Länge von Meter in Nanometer, einen Druck von Bar in Atmosphären, eine Energie von Kalorien in Joule usw. TIP: Wichtig ist, dass Sie (sofern Sie keine große Erfahrung mit solchen Umrechnungen haben) nicht nach Gefühl, sondern nach einem Rechenschema vorgehen, das Sie wie auf Schienen zum richtigen Ergebnis führt. Beispiel der Anwendung eines Rechenschemas auf die Geschwindigkeit 180 km/h mit 1 km = 1000 m und 1 h = 3600 s: 180 km/h = 180 * 1000 m / (3600 s) = 50 m/s Übungsaufgaben zum Thema Einheitenumrechnung 1.1 Geben Sie Definitionsgleichungen und übliche Einheiten für die folgenden physikalischen Größen an: Dichte, Geschwindigkeit, Beschleunigung, Kraft, Impuls, Druck, Energie, Volumenarbeit, elektrische Spannung, elektrischer Widerstand, elektrische Ladung, elektrische Arbeit, elektrische Leistung, elektrische Feldstärke. HINWEIS: Die Definitionsgleichungen müssen alle diese Größen auf die Basisgrößen des SISystems, nämlich auf Masse (Einheit Kilogramm), Länge (Einheit Meter), Zeit (Einheit Sekunde), elektrischen Strom (Einheit Ampere) zurückführen. 1.2 Drücken Sie die Gaskonstante R = 0.08314 bar . Liter / (mol . K) unter Verwendung der Druckeinheit atm statt bar aus. Es ist 1 atm = 1.01325 bar. 1.3 Wieviel Liter Benzin pro 100 km braucht eine Auto, das nach US-amerikanischer Gepflogenheit mit der Verbrauchsangabe 25 miles/gallon charakterisiert wird? Es ist 1 mile = 1.61 km, 1 gallon = 3.785 Liter. 1.4 Die Berechnung der Volumenarbeit, die ein Gas bei einem Expansionsvorgang leistet, führe zum Ergebnis W = - 4.7 bar . Liter / mol. Rechnen Sie diese Größe in die üblichere vol Einheit kJ / mol um. Es ist 1 bar = 105 N / m2, 1 N m = 1 J, 1 kJ = 1000 J, 1 m3 = 1000 Liter. 2 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 1.5 Welchen Strom muss man durch einen Widerstand von 100 schicken, um eine Wärmeleistung von 24 kJ/Minute zu erhalten? (1 J = 1 VAs.) Welche Spannung ist dazu notwendig? 1.6 In vielen elektrochemischen Formeln, z.B. in der Nernstschen Gleichung, tritt ein Term der Gestalt RT/(zF) auf, wobei R die Gaskonstante, T die absolute Temperatur, F die Faraday-Konstante und z die Anzahl der pro Elementarschritt ausgetauschten Elektronen ist. Schätzen Sie den Wert dieses Terms für Zimmertemperatur und z = 1 ab. Zum diesem Zweck dürfen Sie R = 10 J/(mol K), T = 300 K und F = 105 C/mol setzen. Zur Umrechnung der Einheiten J (Joule), W (Watt), V (Volt), A (Ampere), C (Coulomb) brauchen Sie ferner die Identitäten 1 J = 1 Ws (Wattsekunde), 1 W = 1 VA (VoltAmpere) und 1 C = 1 As (Amperesekunde). Aufgaben wie 1.4, 1.5 und 1.6 sollten Sie auch ohne Taschenrechner bewältigen, das Abschätzen von Größenordnungen sogar ohne Papier und Bleistift! Fehlerbehaftete Größen Eine physikalisch-chemische Größe ist vollständig durch ihr Vorzeichen, ihren Zahlenwert, ihre Einheit und ihre Fehlerschranken gekennzeichnet, die die unvermeidliche Unsicherheit der gemessenen oder berechneten Größe quantifizieren. Jemand misst mit dem Zollstock den Durchmesser d eines kreisrunden Tisches zu 2 m. Unter Verwendung der Formel U = d und eines Taschenrechners rechnet er dann den Umfang U des Tisches zu 6.283185307 m aus. Das sind alle die Ziffern, die im Display des Taschenrechners erscheinen. Was halten Sie davon? (Die letzte vom Taschenrechner ausgegebene Ziffer 7 steht für 7 nm, das ist weniger als der einhunderttausendste Teil eines Millimeters!) Besser geht man folgendermaßen vor: Die mit einem Zollstock ermittelte Messgröße d ist mit einer vorsichtig geschätzten Unsicherheit von 2 cm behaftet, das sind 1%. Da U proportional zu d ist, gilt dieselbe relative Unsicherheit von 1% auch für U. Der "wahre" Wert von U liegt damit irgendwo zwischen etwa 6.220353454 und 6.346017160 m, könnte z.B. 6.315953215 m betragen (falls er überhaupt so präzise festliegt). Man sieht, dass eigentlich nur die erste Ziffer (also 6) des Umfangs durch die Messung sicher festgestellt wurde. Die zweite Ziffer (die erste hinter dem Dezimalpunkt) ist schon unsicher und kann 2 oder 3 betragen. Die dritte Ziffer kann zwischen 0 und 9 jeden Wert annehmen, ist also völlig unsicher und darf nicht als gesichertes Messergebnis angegeben werden. Entsprechendes gilt natürlich für alle Ziffern, die noch weiter rechts stehen. Man schreibt das Ergebnis zweckmäßigerweise U = (6.3 0.1) m. TIP: Runden Sie Unsicherheiten immer vorsichtig nach größeren Werten auf, denn sie sind ihrerseits häufig nicht genau bekannt. 3 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 HINWEIS: Wenn bei einer fehlerbehafteten Größe keine Fehlerschranken angegeben sind, z.B. bei obigem Umfang U = 6.3 m, muss vom Leser unterstellt werden dürfen, dass der wahre Wert zwischen 6.25 m und 6.35 m liegt. Durch Weglassen der Fehlerschranken stellen Sie also unter Umständen unbeabsichtigte Behauptungen über die Genauigkeit Ihrer Messungen auf, durch die entweder experimentell nicht gerechtfertigte Genauigkeit beansprucht oder experimentell gerechtfertigte Genauigkeit verschenkt wird. In den Übungen wird die sogenannte Worst-Case-Analyse als Rechenschema auch für etwas kompliziertere Fälle (Fehlerfortpflanzung bei der linearen Regressionsrechnung) erläutert. Dabei spielt wie überall in der Fehlerrechnung der Begriff der Anzahl der signifikanten Stellen eine wichtige Rolle. (Informieren Sie sich in einem Lehrbuch der Fehlerrechnung über diesen Begriff!) Für die Zwecke des Grundpraktikums Physikalische Chemie reicht die Worst-CaseAnalyse als Methode der Fehlerrechnung aus. Übungsaufgabe zum Thema Worst-Case-Analyse 1.7 Aus der Spannung E (im elektrochemischen Gleichgewicht) eines galvanischen Elements und aus der Temperaturabhängigkeit E/T dieser Spannung kann man mit Hilfe der Formeln G = -FE, S = F . (E/T) und H = G + TS thermodynamische Größen bestimmen, die die im galvanischen Element ablaufende chemische Reaktion charakterisieren. (Beachten Sie die Hinweise zu Aufgabe 1.4! Es sei = 1. Die physikalisch-chemischen Bedeutungen der Größen , G, S und H sind für die vorliegende Aufgabe belanglos.) Berechnen Sie G, S und H (nochmals: dazu gehören Vorzeichen, Zahlenwert, Einheit, Fehlerschranken) auf der Grundlage der beiden folgenden, experimentell ermittelten Datenpaare: (1001) mV bei (200.1) °C und (1051) mV bei (300.1) °C. Geben Sie neben den absoluten auch die relativen Fehlerschranken von G, S und H an (in Prozent der jeweiligen Größe). Was fällt Ihnen auf? 4 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 2 Mathematik Allgemeines Zum Verständnis der Grundvorlesung und zur erfolgreichen Teilnahme am Praktikum brauchen Sie die folgenden rechnerischen und mathematischen Kenntnisse: A Potenz- und Logarithmenrechnung, Differentialrechnung und Integralrechnung im Umfang von "normalen" Schulkenntnissen (Grundkurse Mathematik bis zum Abitur). Darüber hinaus Differentialrechnung an Funktionen mehrerer unabhängiger Veränderlicher; dieser Stoff wird in Vorlesung und Übung vermittelt (s. entsprechender Abschnitt im vorliegenden Skript). Sie brauchen sowohl Einsicht in den naturwissenschaftlichen Sinn und Zweck dieser mathematischen Operationen, als auch eine gewisse Fertigkeit in deren "handwerklichen" Durchführung; B die Fähigkeit zum überlegten Umgang mit einem Taschenrechner, aber auch C die Fähigkeit zu überschlägigen Rechnungen (also zur Abschätzung von Größenordnungen) ohne Taschenrechner. Zur "handwerklichen" Durchführung von mathematischen Operationen in schwierigeren Fällen oder an großen Zahlenmengen benutzen Naturwissenschaftler/innen heute Computerprogramme wie z.B. Excel (Tabellenkalkulation) oder Mathematica (Computeralgebra). Da weite Teilgebiete der Naturwissenschaften zunehmend mathematisiert werden, sollten Sie auf längere Sicht erwägen, sich mit solchen Computerprogrammen vertraut zu machen. TIP: Wenn Sie mit den folgenden Aufgaben zur Potenz-, Logarithmen-, Differential- und Integralrechnung Schwierigkeiten haben, müssen Sie sofort anfangen, Ihre mathematischen Defizite zu beheben! (Eine Möglichkeit dazu wäre, Ihre Schulbücher nochmals durchzuarbeiten.) Beispiele für Aufgaben zur Potenz- und Logarithmenrechnung 2.1 Skizzieren Sie den Verlauf der Funktionen y = 1/x und y = x1/2 und kennzeichnen Sie eventuelle Asymptoten. 2.2 Skizzieren Sie den Verlauf der Funktionen y = ex und y = ln x und kennzeichnen Sie eventuell vorhandene Schnittpunkte mit den Achsen sowie eventuelle Asymptoten. 2.3 Vereinfachen Sie die Ausdrücke 27 -2/3 und e -ln 3. 5 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 2.4 Leiten Sie eine Formel zur Berechnung des natürlichen Logarithmus einer Zahl her, wenn der dekadische Logarithmus dieser Zahl gegeben ist. 2.5 a, b und q seien positive, sonst beliebige Zahlen. Dann kann der logarithmische Ausdruck Log (a . bq) umgeformt werden in □ Log a . (q + Log b) □ Log a . Log (bq) □ Log a + Log (b . q) □ Log a + q . Log b □ Log (a + q . b) □ a + b . Log q 2.6 Berechnen Sie den pH-Wert von 3 . 10-3 molarer Salzsäure. (Vernachlässigen Sie den Unterschied zwischen Konzentration und Aktivität der Wasserstoffionen.) 2.7 Um wieviel ändert sich der pH-Wert bei einer Zunahme der Wasserstoffionen-Konzentration um den Faktor 50? (Vernachlässigen Sie den Unterschied zwischen Konzentration und Aktivität der Wasserstoffionen.) 2.8 Auf welchen Bruchteil ist der Luftdruck auf dem Mont Blanc (4807 m) im Vergleich zum Luftdruck in Meereshöhe abgesunken? Verwenden Sie die sogenannte barometrische Höhenformel und rechnen Sie mit konstanter Temperatur von 0 °C. Die mittlere Molmasse von Luft ist etwa 29 g/mol. Beispiele für Aufgaben zur Differentialrechnung 2.9 Wie lautet die lineare (oder erste) Näherung für die Funktion y(x) in der Umgebung von x=0, wenn y(x) gegeben ist durch a 1/(1+x) b 1/(1-x) c ln(1+x) d eax (mit konstantem a>0) e e-ax (mit konstantem a>0). Skizzieren Sie jeweils die Funktion und ihre Näherungsfunktion (in den Fällen d und e mit a=1). HINWEIS: Unter der linearen Näherung für die Funktion y(x) in der Umgebung von x=x0 versteht man die Tangente an das Bild der Funktion an dieser Stelle. Bei der Herleitung manch einer wichtigen physikalisch-chemischen Formel geht eine solche lineare Näherung ein (was zur Folge hat, dass diese Formel exakt z.B. nur für kleine Konzentrationen gilt). 6 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 2.10 Bestimmen Sie die Koordinaten des Wendepunktes der Funktion e-1/x . 2.11 Bestimmen Sie die Koordinaten des Wendepunkts der Funktion k(T)=A e- E/(RT), wobei A, E und R konstante Größen sind. Beispiele für Aufgaben zur Integralrechnung 2.12 Geben Sie die Stammfunktionen zu den Funktionen 1/x, x, x2 und ex an. 2.13 Berechnen Sie die folgenden bestimmten Integrale (für konstantes C): 2.14 Mit zunehmender Wassertiefe x nimmt die Intensität I des Sonnenlichts gemäß der Formel dI = - k I dx ab. Die Intensitätsänderung dI ist also bei gegebener Tiefe der Änderung dx der Tiefe proportional, sofern die Änderung der Tiefe sehr klein ist. Für Meerwasser hat k ungefähr den Wert 0.80 m-1. In welcher Tiefe ist die Lichtintensität auf ein Zehntel bzw. ein Hundertstel des unmittelbar unter der Oberfläche gemessenen Wertes abgesunken? 2.15 Wenn mit v das Volumen eines Gases und mit dv die Änderung des Volumens bezeichnet wird, ist die reversible isotherme Volumenarbeit proportional zu dv/v, sofern die Änderung dv sehr klein ist. Der Proportionalitätsfaktor ist -RT. (Das Minuszeichen rührt daher, dass im Einklang mit der thermodynamischen Vorzeichenkonvention eine Expansionsarbeit, bei der ja das Volumen zunimmt, negativ herauskommen muss, da das Gas Arbeit an seiner Umgebung leistet.) Berechnen Sie die Volumenarbeit bei einer reversiblen isothermen Expansion eines Gases auf das 10fache Volumen. Differentialrechnung an Funktionen mehrerer Veränderlicher In der Thermodynamik muss häufig Differentialrechnung an Größen durchgeführt werden, die von mehreren unabhängigen Variablen abhängen. Ein einfaches Beispiel für eine solche Größe ist der Druck in der idealen Gasgleichung, der vom Volumen, von der Temperatur und von der Stoffmenge abhängt. (Die Stoffmenge halten wir allerdings in den folgenden Beispielen zunächst konstant.) Der mathematisch -"handwerkliche" Aspekt der Differentialrechnung an Funktionen mehrerer Veränderlicher ist ganz einfach: Um eine solche Funktion nach einer ihrer unabhängigen 7 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 Variablen abzuleiten, behandeln wir die anderen unabhängigen Variabeln als Konstanten und wenden die Rechenregeln der Differentialrechnung entsprechend an. Beispiel: Die erste Ableitung von p = nRT/V nach T ist nR/V = p/T und wird als partieller Diffe2 rentialquotient (p/T) bezeichnet. Die erste Ableitung von p = nRT/V nach V ist -nRT/V = -p/V und wird als partieller Differentialquotient (p/V) bezeichnet. In der Thermodynamik ist es üblich, die Variable(n), nach der (denen) nicht abgeleitet wird, hinter der Klammer anzugeben, also (p/T)V bzw. (p/V)T oder auch (p/T)n,V bzw. (p/V)n,T. Um eine anschauliche Vorstellung von der Bedeutung der partiellen Differentialquotienten zu gewinnen, sollten Sie sich in die nachfolgenden Abbildungen vertiefen. Eine willkürliche Funktion z(x,y) ist als gewölbte Fläche (grün, blau) in einem räumlichen Koordinatensystem dargestellt. Durch einen willkürlichen Punkt P dieser Fläche legen wir zwei vertikale Ebenen (rot), die parallel zu den Koordinatenebenen xz und yz verlaufen. Die Ebenen schneiden sich in einer natürlich vertikalen Geraden durch P (Abb. links oben). Man erkennt, dass es hier anders als bei Funktionen einer Veränderlicher i.a. einen (die Null enthaltenden) Bereich von Steigungen im Punkt P gibt, je nachdem in welcher Richtung die entsprechende Tangente angelegt wird. 8 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 Um die lokalen Steigungsverhältnisse in P vollständig zu beschreiben, genügt es aber, die Steigungen der Tangenten anzugeben, die in jeweils einer der beiden roten Ebenen verlaufen (Abb. vorige Seite links unten und rechts oben). Denn diese beiden Tangenten definieren die Tangentialebene in P (Abb. vorige Seite rechts unten). Die Steigungen der Tangenten sind gerade die partiellen Differentialquotienten (z/x)y bzw. (z/y)x. Der Begriff des vollständigen (oder totalen) Differentials spielt in der Thermodynamik eine große Rolle. Anhand der vorstehenden Abbildung kann man einsehen, wie sich der Anstieg beim Fortschreiten auf einer Ebene in beliebiger Richtung additiv aus den Anstiegen beim Fortschreiten jeweils in zwei senkrecht aufeinanderstehenden Richtungen (z.B. "nördlich" und "östlich") zusammensetzt. Diese Beiträge zum Anstieg sind das Produkt aus der jeweiligen "Entfernung" (gemessen in der Horizontalen, wie auf einer Wanderkarte) und der jeweiligen Steigung. Die Ebene kann die Tangentialebene der vorigen Abbildung oder, in einer hinreichend kleinen Umgebung des Ausgangspunktes, auch die Funktionsfläche selbst sein. Hat die den Anstieg beschreibende Differentialform nicht diese Eigenschaft, kann sie nicht durch vollständige Differentiation einer Funktion (in der Thermodynamik "Zustandsfunktion") entstanden sein; das Integral der Differentialform wird dann wegabhängig. Mit Hilfe des Schwarz'schen Satzes kann man leicht die beiden Typen von Differentialformen unterscheiden. Übungsaufgaben zur Differentialrechnung an Funktionen mehrerer Veränderlicher 2.16 Fassen Sie die ideale Gasgleichung p = nRT/V als Funktion p(V,T) auf und skizzieren Sie diese Funktion in einem dreidimensionalen Koordinatensystem oder (etwas einfacher) als Höhenliniendiagramm. Welche physikalische Bedeutung haben die partiellen Differentialquotienten (p/T)V und (p/V)T ? Welche physikalische Bedeutung hat das vollständige Differential dp der Funktion p(V,T)? Welcher physikalischen Frage entspricht es, wenn man dieses vollständige Differential gleich Null setzt? 2.17 Zeigen Sie durch Anwendung des Schwarz'schen Satzes, dass die Innere Energie eine Zustandsfunktion ist, die Volumenarbeit aber nicht. 9 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 3 Ideale und reale Gase Übungsaufgaben zur Idealen und zur van-der-Waals'schen Gasgleichung HINWEISE: Die Ideale Gasgleichung liefert eine erste, recht gute Näherung für das "wahre" Verhalten eines Gases, die van-der-Waals-Gleichung liefert eine zweite, meist noch bessere Näherung. Jedoch folgt das reale Gas auch der van-der-Waals-Gleichung nicht exakt. Die beste Annäherung an das "wahre" Verhalten, wie es durch sorgfältige Messungen festgestellt wird, liefern vielparametrige Interpolationsformeln. Die van-der-Waals-Konstanten für reale Gase finden Sie in einer Tabelle Ihres Lehrbuchs. Die Berechnung des Volumens mit der van-der-Waals-Gleichung führt auf eine Gleichung dritten Grades, die algebraisch nur außerordentlich mühevoll zu lösen ist. Eine für normale Genauigkeitsansprüche akzeptable Lösung erhält man auf grafischem Weg. Eleganter und schneller sind solche Aufgaben mit Computeralgebraprogrammen wie z.B. Mathematica zu lösen. 3.1 Ein Autoreifen wird an einem heißen Sommertag (35 °C) auf die vorgeschriebenen 2.2 bar aufgepumpt. Wie groß ist der Druck in demselben Reifen bei einem plötzlichen Wintereinbruch (-10 °C)? (Volumenänderungen des Reifens dürfen Sie vernachlässigen.) 3.2 Welche Stoffmenge und welche Masse Stickstoff ist in einer Druckgasflasche von 50 l Inhalt enthalten, wenn das Gas den Druck 200 bar und die Temperatur 300 K hat? (Hinweise: Unter den genannten Bedingungen verhält sich Stickstoff weitgehend ideal. Stoffmengen werden in der Chemie in mol gemessen.) 3.3 Ein Ein-Liter-Kolben enthält Helium von 2 bar Druck und ein Vier-Liter-Kolben enthält Argon von 0.5 bar Druck. Jetzt verbindet man die beiden Kolben mit einem Rohr, dessen Volumen vernachlässigbar klein gegenüber den Volumina der beiden Kolben sei. Die Temperatur ist im System überall und zu jeder Zeit konstant. Welcher Druck herrscht nach Einstellen des Gleichgewichts im System? 10 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 3.4 Füllt man einen Behälter der Größe 400 ml bei 30 °C und 1060 hPa mit dem getrockneten Gas, das eine Grünalgenkultur entwickelt, so wiegt er 54.162 g. Mit reinem Argon bei 0 °C und 1013 hPa gefüllt, wiegt er 54.335 g. (Die Molmasse von Argon ist 39.95 g/mol.) Nehmen Sie die Gase als ideal an. Berechnen Sie die Molmasse des unbekannten Gases. 3.5 Die Dichte eines Gases bei 0 °C und verschiedenen Drucken ist 0.71511 g/Liter bei 0.253 bar bzw. 1.45165 g/Liter bei 0.506 bar bzw. 2.92472 g/Liter bei 1.013 bar. Berechnen Sie durch lineare Extrapolation auf verschwindenden Druck die Molmasse dieses Gases. Geben Sie den relativen Fehler in der Molmasse an, die man durch direktes Einsetzen der Drucke und zugehörigen Dichten in die ideale Gasgleichung erhält. 3.6 Welchen Druck muss man anwenden, um Kohlendioxid bei 300 K auf ein Molvolumen von 1 Liter/mol zu komprimieren? Rechnen Sie zum Vergleich mit der idealen Gasgleichung und mit der van-der-Waals-Gleichung. 3.7 Vergleichen Sie das Volumen eines Mols Stickstoff bei 300 K und 200 bar, wenn Sie die Ideale Gasgleichung zur Berechnung heranziehen, mit dem entsprechenden Volumen, das aus der van-der Waals-Gleichung herauskommt. 11 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 4 Thermodynamik Thermochemie Übungsaufgaben zur Thermochemie, i.b. zum Hess'schen Satz 4.1 Gegeben seien die Standard-Bildungsenthalpien von Kohlendioxid zu -393.5 kJ/mol und von Kohlenmonoxid zu -110.5 kJ/mol. Berechnen Sie die Standard-Reaktionsenthalpie für die Reaktion C + CO2 2 CO. Alle Werte bei 25 °C. TIP: Vor der Zahlenrechnung sollten Sie ein sogenanntes Enthalpieschema anfertigen, in dem die direkt oder indirekt gegebenen Größen halbquantitativ eingetragen werden. Reaktionsenthalpien von exothermen bzw. endothermen Reaktionen werden durch nach unten bzw. nach oben weisende Pfeile abgebildet. Das Enthalpieschema würde hier etwa so aussehen: Elemente CO 2 CO CO 2 Blau sind die Bildungsenthalpien von Kohlendioxid bzw. Kohlenmonoxid, rot ist die Reaktionsenthalpie der Reaktion C + CO2 2 CO eingetragen. Ein korrektes Enthalpieschema verhindert vorallem die hier sehr häufigen Vorzeichenfehler! 4.2 Gegeben seien die Standard-Bildungsenthalpien bei 25 °C von NO2 zu +33.2 kJ/mol und von N2O4 zu +9.2 kJ/mol ; ferner die Wärmekapazitäten in der Nähe der Zimmertemperatur von NO2 zu 37.2 J/(mol K) und von N2O4 zu 77.3 J/(mol K). Berechnen Sie die StandardReaktionsenthalpie für die Reaktion 2 NO2 N2O4 bei 100 °C. HINWEISE: Die in der Aufgabe angesprochenen Stickoxide sind im Gegensatz zu CO und CO2 energiereicher als die Elemente, aus denen sie bestehen. Beachten Sie weiter, dass sich eine Standard-Enthalpie nicht unbedingt auf 25 °C bezieht. Vielmehr bedeutet "Standard" hier nur, dass alle Gase den Druck 1 bar haben. Die Wärmekapazitäten dürfen mangels genauerer Angaben als temperaturunabhängig angenommen werden. 12 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 4.3 Die Standard-Bildungsenthalpien bei 25 °C von Saccharose, Milchsäure, Kohlendioxid und Wasser betragen in derselben Reihenfolge -2222 kJ/mol, -694 kJ/mol, -393.5 kJ/mol und -286 kJ/mol. Wieviel mehr Energie kann aus Saccharose bei deren vollständigen aeroben Oxidation im Vergleich zur anaeroben Reaktion zur Milchsäure gewonnen werden? (Die Hydrolyse eines Mols Saccharose ergibt zunächst 2 mol Glucose, daraus entstehen durch Glykolyse 4 mol Milchsäure.) Phasengleichgewichte Übungsaufgaben zu Phasengleichgewichten 4.4 Bekanntlich liegt der Tripelpunkt von Wasser bei 0.01 °C und 6.11 mbar. Beschreiben Sie genau was passiert, wenn man gasförmiges Wasser von -1 °C und zunächst 5 mbar langsam isotherm bis auf 500 bar komprimiert. 4.5 Der Gleichgewichtsdampfdruck über einer bestimmten reinen Flüssigkeit (Einkomponentensystem mit ebener Oberfläche der flüssigen Phase) hängt ab □ nur von der Temperatur □ nur von der Stoffmenge in der flüssigen Phase □ nur vom Volumen des Gasraumes über der Flüssigkeit □ von der Temperatur und vom Volumen des Gasraumes über der Flüssigkeit □ von der Temperatur, vom Volumen des Gasraumes über der Flüssigkeit und von der Stoffmenge in der flüssigen Phase. 4.6 Es liege bei konstanter Temperatur (z.B. 20 °C) eine flüssige Lösung von Zucker in Wasser im thermodynamischen Gleichgewicht mit einem Bodenkörper von festem ungelösten Zucker vor. Die Lösung nennt man dann "gesättigt". In diesem Zustand □ sind die chemischen Potentiale von festem ungelösten Zucker und Wasser gleich □ sind die chemischen Potentiale von gelöstem Zucker und Wasser gleich □ sind die chemischen Potentiale von gelöstem Zucker und festem ungelösten Zucker gleich □ erreicht die Summe der chemischen Potentiale von gelöstem Zucker und Wasser ein Minimum □ erreicht der absolute Betrag der Differenz der chemischen Potentiale von Wasser und gelöstem Zucker ein Maximum. 13 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 4.7 Mit welcher Kraft wird bei 25 °C und 1 bar Außendruck der Deckel eines Einkochglases festgehalten, wenn sich über dem Einkochgut eine reine Wasserdampfatmosphäre mit dem Gleichgewichtsdampfdruck des Wassers befindet? Der Durchmesser des Einkochglases beträgt 10 cm. Die Freien Standard-Bildungsenthalpien (bei 298 K) von flüssigem bzw. gasförmigem Wasser sind laut Tabellen im Lehrbuch von Atkins -237.13 kJ/mol bzw. -228.57 kJ/mol. 4.8 Eine reine Substanz hat bei 1 bar Druck einen Festpunkt bei 5.5 °C, dabei ändert sich ihre Dichte von 0.879 g/ml im flüssigen Zustand auf 0.891 g/ml im festen Zustand. Die Schmelzenthalpie der Verbindung beträgt 10.59 kJ/mol. Bestimmen Sie den Gefrierpunkt der Substanz bei einem Druck von 1000 bar. Begriffliche Grundlagen der Thermodynamik Wärme Der Begriff Wärme wird in der modernen Thermodynamik anders verwendet als im täglichen Leben, leider auch anders als in manchen Teilen der Physik. Wärme in der Thermodynamik ist eine Größe, die nur auftreten kann, wenn das betrachtete System eine Zustandsänderung erleidet. Die Wärme bezeichnet dann eine Methode des Energietransports durch die Systemgrenzen. Nach vollzogener Zustandsänderung mit z.B. Zufuhr von Wärme in das System (Q>0) ist die in Form von Wärme transportierte Energie Teil der Inneren Energie des Systems geworden. Das System hat dann keinerlei Erinnerung daran, ob ihm diese Energie schon vor der Zustandsänderung "gehört" hat, oder ob sie ihm bei der Zustandsänderung in Form von Wärme oder Arbeit zugeführt wurde. (Die mechanische oder elektrische Arbeit ist eine andere Methode des Energietransports durch die Systemgrenzen.) Das bedeutet, dass es in einem "ruhenden" System, dessen thermodynamischer Zustand fest ist, keine Wärme gibt. Der häufig gehörte Begriff "Wärmeinhalt" ist damit nicht sinnvoll. Ebenfalls keine Wärme tritt in einem System auf, das zwar eine Zustandsänderung erleidet, wobei diese aber adiabatisch geführt wird. Dann ist durch Definition Q=0. Übrigens ist auch die häufige Identifizierung von kinetischer Energie mit Wärme thermodynamisch falsch. Kinetische und potentielle Energie der Bestandteile eines Systems stellen zusammengenommen die Innere Energie des Systems dar und haben mit der Wärme, die das System bei einem Prozess mit der Umgebung austauscht, nur indiekt etwas zu tun (vgl. Aufgaben 4.11, 4.12, 4.13). Die Innere Energie charakterisiert (wie alle anderen Zustandsfunktionen) einen bestimmten Zustand eines Systems, wobei es belanglos ist, auf welchem Weg das System in diesen Zustand gelangt ist. Wärme und Arbeit charakterisieren einen bestimmten Prozess zwischen 14 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 zwei Zuständen eines Systems, wobei es von Belang ist, auf welchem Weg dieser Prozess durchgeführt wird (reversibel oder irreversibel). Im Grunde ist dies alles in der korrekten Formulierung des Ersten Hauptsatzes der Thermodynamik für nichtisolierte, geschlossene Systeme enthalten (das sind Systeme, die materiell abgeschlossen, aber offen für Energieaustausch mit ihrer Umgebung in Form von Wärme und Arbeit sind). Es ist nämlich die Änderung der Inneren Energie eines Systems bei einem Prozess gleich der Summe der mit der Umgebung ausgetauschten Wärme und Arbeit: U = Q + W. In der differentiellen Formulierung lautet dies: dU = dQ + dW Beachten Sie, dass zur Unterscheidung von den Zustandsfunktionen wie z.B. U, T, V usw. die Größen Q und W in der integralen Form ohne und in der differentiellen Form mit nach rechts geschwungenem oder quergestrichenem d geschrieben werden. Damit wird betont, dass es sich bei Q und W nicht um die Änderung eines "Wärmeinhalts" bzw. "Arbeitsinhalts" handelt. Entropie Es ist auf der Stufe der Grundvorlesung sicherlich nicht falsch, Entropieänderungen in einem System mit der Zu- oder Abnahme von "Ordnung" in diesem System in Verbindung zu bringen. Bedenken Sie aber bitte, dass der Begriff Entropie in der Mitte des 19. Jahrhunderts bereits voll entwickelt und einsatzfähig war, mehrere Jahrzehnte bevor es gelang, mit Hilfe der statistischen Thermodynamik die "Unordnung" in thermodynamischen Systemen quantitativ zu beschreiben. Nach den klassischen Vorstellungen der Thermodynamik hat die Entropie eher etwas mit dem Wirkungsgrad von Wärmekraftmaschinen, mit der Reversibiltät bzw. Irreversibilität (Spontaneität) von Prozessen und mit der bei reversibler Prozessführung auftretenden Wärme zu tun als mit (Un)Ordnung. Die folgende Zusammenstellung von richtigen Aussagen zur Entropie soll Ihnen beim Verständnis dieses mächtigen und schwierigen Begriffes helfen. A Die Entropie von flüssigem Wasser nimmt ab, wenn es isotherm bei -1 °C zu Eis erstarrt. Denn der Ordnungszustand im Wasser nimmt beim Erstarren zu. Der Prozess ist aber spontan. Deshalb muss nach einer Formulierung des Zweiten Hauptsatzes ("Bei spontanen Prozessen in isolierten Systemen nimmt die Entropie immer zu.") die Entropie des "Universums" bestehend aus dem System und seiner Umgebung zunehmen. (Legen Sie in Gedanken eine isolierende Hülle um das System und eine genügend große Umgebung. Dann ist das Innere dieser Hülle das "Universum" für das System.) Will man das Erstarren isotherm führen, muss die Erstarrungsenergie im Wesentlichen in Form von Wärme an die Umgebung abgeführt werden. Aufgrund dieser Wärme wächst die Entropie in der Umgebung des Systems etwas stärker als 15 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 die Entropie im Inneren des Systems abnimmt, so dass wie erforderlich die Entropie im Universum zunimmt. Aufgabe: Modifizieren Sie diese Aussagen so, dass sie für das reversible Erstarren von Wasser bei 0 °C gelten! (Bleiben Sie dabei im Einklang mit dem Zweiten Hauptsatz in der Formulierung "Bei reversiblen Prozessen in isolierten Systemen ist die Entropie konstant.") B Expandiert man ein ideales Gas isotherm und reversibel auf das doppelte Volumen, erhöht sich die Entropie des Gases, wie man leicht aus den Beziehungen U = Qrev+W rev = 0 und S=Qrev/T ausrechnet, um S = R ln 2 (wieso?). Lässt man das Gas nun von demselben Anfangszustand isotherm und völlig irreversibel (also mit W = 0) auf das doppelte Volumen expandieren, erreicht man dieselben Werte von Druck und Temperatur wie im reversiblen Fall, also denselben Endzustand. Deshalb und weil S eine Zustandsfunktion ist, gilt auch im irreversiblen Fall S = R ln 2. Jetzt ist allerdings S > Q/T (Clausius'sche Ungleichung), denn Q = 0. HINWEIS: Für reversible isotherme Prozesse gilt S = Q/T (1). Die Clausius'sche Beziehung der Form S > Q/T (2) bei irreversible Führung ist eine Ungleichung nicht weil sich bei gleichem Anfangs- und Endzustand die linken Seiten von (1) und (2) unterscheiden würden, sondern weil sich die rechten Seiten unterscheiden. (Im irreversiblen Fall wird weniger Wärme aus der Umgebung aufgenommen oder mehr Wärme an die Umgebung abgegeben als im reversiblen Fall. Die Änderung der Entropie ist in beiden Fällen gleich.) C Gegeben seien für eine Reaktion die Reaktionsenthalpie H, die Freie Reaktionsenthalpie G und die Reaktionsentropie S. Die Reaktion werde isotherm und isobar und zum einen reversibel, zum anderen völlig irreversibel geführt. Dann ist die Reaktionswärme Q bei reversibler Reaktionsführung gleich TS und bei völlig irreversibler Reaktionsführung gleich H. Die Reaktionsnutzarbeit (meist die elektrische Arbeit W el) ist bei reversibler Reaktionsführung gleich G und bei völlig irreversibler Reaktionsführung gleich Null. D Die gelegentlich anzutreffende Formulierung des Zweiten Hauptsatzes "Es ist unmöglich, Wärme vollständig in Arbeit umzuwandeln" ist falsch. Denn z.B. bei der isothermen Expansion eines idealen Gases wird die zugeführte Wärme zu 100 % in Volumenarbeit umgewandelt, selbst im irreversiblen Fall. Die richtige Formulierung lautet: "Es ist unmöglich, in einer periodisch arbeitenden Maschine Wärme vollständig in Arbeit umzuwandeln". Eine periodisch arbeitende Maschine verlangt nach einem "Kreisprozess", der das arbeitende System von einem Zustand auf irgendeinem Weg zurück zu demselben Zustand führt (End- gleich Anfangszustand). Dann gilt für alle Zustandsfunktionen X, z. B. für Temperatur, Volumen, Druck, Innere Energie, Entropie usw. X = 0. Sie sollten verstehen, dass hingegen Wärme und Arbeit je für sich genommen bei einem Kreisprozess nicht Null sein müssen. Das Verhältnis von insgesamt gewonnener Arbeit zu auf- 16 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 gewandter Wärme bei einem Kreisprozess ist der Wirkungsgrad; dieser wird durch den Zweiten Hauptsatz selbst bei reversibler Prozessführung auf Werte kleiner 1 beschränkt. Der Wunsch, den Wirkungsgrad berechnen und optimieren zu können, hat zur Entwicklung des Entropiebegriffs geführt. Reversibilität Läuft in einem System ein bestimmter Prozess reversibel ab, kann man das System in den Zustand vor Ablauf des Prozesses zurückversetzen, ohne dass irgendwelche Änderungen in der ÈÈ Umgebung des Systems zurückbleiben. Betrachten Sie bitte die blauen Punkte in der folgenden Abbildung. Es ist der Betrag der Volumenarbeit, die bei der Expansion eines idealen Gases ge|w W| 5 10 15 20 25 30 35 40 n wonnen wird, gegen die Anzahl der Stufen der Expansion aufgetragen (im n-stufigen Prozess wird hier das Endvolumen durch n gleiche Volumeninkremente erreicht.) Der Betrag der Arbeit nimmt mit zunehmender Zahl der Stufen zu und strebt asymptotisch einem Grenzwert zu. Denken Sie sich die gewonnene Volumenarbeit in Form der potentiellen Energie eines Gewichtes in der Umgebung des Gases "zwischengespeichert". Die roten Punkte stehen für die Volumenarbeit, die bei der Kompression des Gases auf das ursprüngliche Volumen (ausgehend vom Endzustand der Expansion, unter sonst gleichen Bedingungen) aufgebracht werden muss. Diese Arbeit nimmt mit zunehmender Zahl der Stufen ab. Offenbar ist die verbrauchte Kompressionsarbeit bei endlicher Stufenzahl immer größer als die gewonnene Expansionsarbeit. Man kann zwar den ursprünglichen Zustand des Gases wiederherstellen, muss dazu aber der Umgebung zusätzliche (also über die zwischengespeicherte Menge hinausgehende) Energie entnehmen, um die Differenz der Volumenarbeiten aufzubringen. Entscheidend ist, dass diese Differenz desto kleiner wird, in je mehr Stufen die Kompressions- und Expansionsprozesse geführt werden. Werden beide in der Grenze in unendlich vielen, unendlich kleinen Stufen geführt, ist die Differenz Null, die in der Umgebung zwischengespeicherte Energie reicht genau aus, um die gewünschte Kompression zu erreichen, der Prozess ist insgesamt reversibel. 17 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 Überlegungsaufgaben zur Thermodynamik 4.9 Geben Sie einfache Beispiele für hypothetische Prozesse in makroskopischen Systemen (das sind immer Vielteilchensysteme) von der Art, dass sie zwar dem Ersten Hauptsatz gehorchen, nicht aber dem Zweiten Hauptsatz. (Natürlich werden solche Prozesse nicht ablaufen.) 4.10 Erläutern Sie anhand des folgenden pV-Diagramms den Unterschied zwischen der reversiblen und der irreversiblen Führung sowohl der isothermen Expansion als auch der isothermen Kompression eines idealen Gases. Die irreversible Expansion und Kompression soll alternativ in einem Schritt oder in zwei Schritten ablaufen. Zeigen Sie insbesondere, dass die reversible Volumenarbeit gleich einer krummlinig begrenzten Fläche ist, während die irreversible Volumenarbeit diese Fläche mit der sogenannten Rechteckmethode annähert. p 1 2 3 V 4.11 Kann es einen Prozess geben, bei dem sich die Temperatur eines chemisch nicht reagierenden Systems erheblich erhöht, ohne dass dabei dem System Wärme zugeführt wird? Wenn nein, warum nicht? Wenn ja, geben Sie ein Beispiel und begründen Sie die Temperaturerhöhung des Systems. 4.12 Kann es einen Prozess geben, bei dem sich die Temperatur eines chemisch nicht reagierenden Systems nicht verändert, obwohl man dem System beträchtliche Wärme zuführt? Wenn nein, warum nicht? Wenn ja, geben Sie ein Beispiel und begründen Sie die Temperaturkonstanz des Systems. 4.13 Nennen Sie Prozesse, bei denen in geeignete Systeme zugeführte Wärme vorzugsweise in Form von kinetischer bzw. vorzugsweise in Form von potentieller Energie gespeichert wird. 18 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 4.14 Bekanntlich kann ein Prozess im isolierten System spontan ablaufen, wenn dabei die Entropie zunimmt. Beim isothermen Schmelzen von Eis zu flüssigem Wasser nimmt die Entropie des Systems aus festem und flüssigem Wasser zu, unabhängig von der konstanten Temperatur, bei der der Phasenübergang abläuft. Wieso schmilzt dann aber Eis bei konstant -1 °C nicht spontan? 4.15 Bei einer im nichtisolierten, geschlossenen System ablaufenden isothermen Expansion von V1 nach V2 eines Gases kann, je nach Art des Gases und abhängig von den Bedingungen, die Innere Energie des Gases geringfügig zu- oder abnehmen, oder gleichbleiben. a Wie verhält sich in dieser Hinsicht eine ideales Gas? Wie hängen folglich, nach dem Ersten Hauptsatz, die Wärme und die Arbeit bei der isothermen Expansion eines idealen Gases zusammen? b Nehmen Sie an, die Innere Energie eines Gases nimmt bei der betrachteten isothermen Expansion leicht zu. Wie äußert sich dies in der Bilanz von Wärme und Arbeit? Was geschieht, wenn man die entsprechende Expansion von V1 nach V2 im isolierten System vornimmt? c Erklären Sie diese Erscheinungen mit Hilfe der Wechselwirkung der Teilchen in realen Gasen. 4.16 Wie kann man die kinetische Energie in einem System erhöhen, ohne dass man ihm Wärme zuführt? Bemerkungen zum Begriff "partielle molare Größe" Begrifflich verhält sich das partielle Molvolumen zum Molvolumen wie das chemische Potential zur Freien Enthalpie. Das partielle Molvolumen ist das Volumen, das ein Mol eines Stoffes zum Volumen einer Mischung gegebener Zusammensetzung beiträgt. Es ist i.a. nicht gleich dem Molvolumen. Eine hypothetische Substanz X habe die Molmasse 160 g/mol, die Dichte 0.8 g/ml und sei unbegrenzt mit Wasser mischbar. Wir geben 200 ml, also genau 1 mol von X zu 1 Liter entsprechend 1 kg Wasser. Wenn wir ein hinsichtlich der Additivität des Volumens ideales System vor uns hätten, wäre das Volumen der Mischung natürlich 1200 ml. Allgemeiner ausgedrückt würde dann das Volumen der binären Mischung linear vom Molenbruch einer der Komponenten abhängen. Es seien nun (der Deutlichkeit wegen übertrieben große) Volumeneffekte zugelassen. Angenommen, wir messen als Volumen der Mischung von 200 ml X und 1 Liter Wasser V = 1100 ml. Kann man daraus schließen, dass 1 mol von X genau 100 ml zum Volumen der Mischung beiträgt? Dann wäre also 100 ml/mol das partielle Molvolumen von X in einer Mischung der 19 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 Molalität 1 mol X pro 1 kg Wasser. Die Antwort ist nein, denn wir wissen nicht, ob das Wasser zum Mischungsvolumen V = 1100 ml noch das Volumen von 1000 ml beiträgt, welches es als reiner Stoff eingenommen hatte. Letzten Endes beruht diese Unkenntnis darauf, dass nicht nur X, sondern auch das Wasser seinen Zustand durch den Mischvorgang stark verändert. Um das partielle Molvolumen von X unter den angegebenen Bedingungen zu bestimmen, denken wir uns eine sehr große Menge, z.B. 1000.000 Liter entsprechend genau 1000 kg Wasser vermischt mit genau 1000 mol entsprechend 200.000 Liter X. Die resultierende Mischung Y hat das Volumen 1100.000 Liter und dieselbe Konzentration wie die Mischung im vorigen Abschnitt. Nun geben wir zu dieser Mischung ein weiteres Mol entsprechend 200 ml X. Wir erhalten jetzt eine Mischung mit dem Volumen von angenommen 1100.150 Liter. (Beachten Sie, dass in unserem hypothetischen Beispiel die Volumenzunahme bei Zugabe von 1 mol X zu einer großen Menge Y weniger von dem idealen Wert 200 ml abweicht als bei Zugabe von 1 mol X zu reinem Wasser. Das ist qualitativ für ein hinreichend einfaches nichtideales System tatsächlich so zu erwarten.) Aus dieser Messung darf man nun zu Recht schließen, dass 150 ml/mol das partielle Molvolumen von X in einer Mischung der Molalität 1 mol X pro 1 kg Wasser ist, denn Y als “Lösungsmittel“ für das letzte Mol X ändert seinen Zustand und damit auch seinen Volumenbeitrag durch den Mischvorgang praktisch nicht. Natürlich wird man in der Praxis das partielle Molvolumen nicht in whirlpoolgroßen Gefäßen bestimmen. Angenommen, wir besitzen Geräte, die, an Volumina von der Größenordnung 1 Liter, bis auf μl (das sind Kubikmillimeter) genaue Messungen erlauben. Dann können wir messen, dass bei Zugabe von 1 mmol entsprechend 0.2 ml X zu einer Mischung von 1 mol X und 1 kg Wasser das Volumen von (1100.0000.001) ml auf (1100.1500.001) ml ansteigt. Das partielle Molvolumen von X in dieser Mischung errechnet sich dann aus der Formel (V/nX) = (0.1500.002) ml / 1 mmol wieder mit genügender Genauigkeit zu 150 ml/mol. Zu chemischen Reaktionen fähige, hinsichtlich der Additivität der Freien Enthalpie ideale Systeme sind selten. Ein Beispiel ist NaOH + CO2 → NaHCO3. Die nichtflüchtigen Feststoffe NaOH und NaHCO3 bilden miteinander keine Mischkristalle und CO2 ist gasförmig, so dass hier jeder Reaktionsteilnehmer während der ganzen Reaktion als reine Phase vorliegt. Die Freie Enthalpie des Systems hängt dann linear vom Umsatz ab. Da bei nicht zu hoher Temperatur die Freie Standardreaktionsenthalpie dieser Reaktion negativ ist, läuft die Reaktion vollständig bis zum Verbrauch eines der Edukte (oder bei stöchiometrischem Einsatz bis zum Verbrauch beider Edukte) nach rechts ab. In der Regel vermischen sich jedoch Edukte und Produkte einer chemischen Reaktion in (mindestens) einer gemeinsamen Phase. Die dabei auftretende Mischungsentropie ΔSmisch hat zur Folge, dass sich die Freie Enthalpie nichtadditiv verhält und nichtlinear vom Umsatz abhängt, weshalb wir grundsätzlich zur Beschreibung des Beitrags der Stoffe zur Freien Enthal- 20 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 pie des Reaktionsgemischs die zugehörigen partiellen molaren Größen, also die chemischen Potentiale, verwenden müssen. Dass die Freie Enthalpie nichtlinear vom Umsatz abhängen kann, hat in der Erscheinung des chemischen Gleichgewichts eine überaus wichtige Konsequenz. Eine Reaktion läuft dann nicht bis zum völligen Verschwinden mindestens eines der Edukte ab, wenn im Falle starker Nichtlinearität die Freie Enthalpie des Reaktionsgemischs bei einer bestimmten Zusammensetzung durch ein Minimum geht. Dies trifft zu, wenn TΔSmisch nicht viel kleiner als der Betrag der Freien Standardreaktionsenthalpie ist. 21 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 5 Elektrochemie Elektrische Leitfähigkeit Die Leitfähigkeit eines Drahtes, oder einer Elektrolytlösung in einem zylindrischen Gefäß, ist zum einen proportional zur Beweglichkeit der Ladungsträger, die die Leitung des elektrischen Stroms besorgen, zum anderen in idealen Systemen proportional zu deren Konzentration c. Da diese Abhängigkeit von der Ladungsträgerkonzentration c trivial ist, definiert man eine neue Größe, die molare Leitfähigkeit derart, dass in idealen Systemen von der Konzentration nicht mehr abhängt, nämlich = /c. Es stellt sich heraus, dass in realen Systemen doch von der Konzentration abhängt, aber schwächer als und so, dass man nun die hochinteressante Abhängigkeit der Beweglichkeit der Ladungsträger von der Konzentration deutlicher sieht als in . In der nachstehenden Abbildung (blaue Linien) sind schematisch die Verhältnisse dargestellt, wie sie bei einem starken Elektrolyten wie z.B. NaCl in Wasser vorliegen. Die Leitfähigkeit nimmt mit zunehmender Konzentration zu, aber schwächer als proportional; die molare Leitfähigkeit nimmt mit zunehmender Konzentration ab, weil sich die Ladungsträger zunehmend gegenseitig behindern. Die roten Linien würden für ein ideales System gelten. k L c c Der "Trick", in einer neu eingeführten Größe durch Division oder Multiplikation die als trivial empfundene Abhängigkeit von gewissen Einflussgrößen zu eliminieren, um deutlicher den Einfluss von interessanten Größen zu sehen, ist in Physik und Physikalischer Chemie allgegenwärtig. (Bei der Definition von hat man diesen Trick schon zweimal angewandt, denn ist genau genommen eine spezifische Leitfähigkeit, in der ganz analog die triviale Abhängigkeit von der Länge und vom Querschnitt des Leiters eliminiert wurde.) 22 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 Übungsaufgabe zur Elektrischen Leitfähigkeit 5.1 Die molare Leitfähigkeit von 0.1000-molarer KCl-Lösung bei 25 °C ist 129 -1 cm2 mol-1. Der gemessene Widerstand einer mit dieser Lösung gefüllten Messzelle beträgt 28.44 . Füllt man dieselbe Messzelle mit 0.0500-molarer NaOH-Lösung, beträgt ihr Widerstand 31.60 . Berechnen Sie die molare Leitfähigkeit von NaOH. HINWEIS: Diese Aufgabe ist in Anlehnung an Beispiel 24.6, Seite 789 im Lehrbuch "Physikalische Chemie" (2.Aufl.) von Atkins formuliert. Der dort angegebene Lösungsweg ist unnötig umständlich. Überlegen Sie sich, wie man die Aufgabe mit einem einfachen Dreisatz lösen kann. Galvanische Elemente TIP: Unterscheiden Sie immer sorgfältig zwischen prinzipiell nicht messbaren Potentialen einzelner Elektroden einerseits und Spannungen zwischen den beiden Elektroden einer Zelle andererseits. Diese Unterscheidung sollten Sie konsequent durchhalten, obwohl sogar Ihr Lehrbuch (Atkins, Kurzlehrbuch Physikalische Chemie, 3. Auflage, Seite 334 ff: "Das Zellpotenzial") die Begriffe vermischt. Potentiale und Spannungen werden beide in Volt gemessen. Im Folgenden verwenden wir das Symbol für Potentiale und das Symbol E für Spannungen, beide im elektrochemischen Gleichgewicht. Nernst'sche Gleichung Es gibt eigentlich zwei Nernst'sche Gleichungen, die sich deutlich in Form und Inhalt unterscheiden, aber leicht ineinander zu überführen sind. Die erste lautet e = e0 + RT zF ln aox ared und gibt das Potential einer Elektrode in Abhängigkeit von den Aktivitäten des Redoxpaars, welches das Potential der Elektrode bestimmt. Statt der Aktivität eines gelösten Stoffes verwenden wir im Folgenden immer den Quotienten aus der Konzentration des gelösten Stoffes und der Einheit mol/Liter (dieser Quotient ist wie die Aktivität eine einheitenfreie Größe). Nur für sehr verdünnte ("ideale") Lösungen erhält man so zahlenmäßig gute Ergebnisse. 23 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 Es ist leicht zu verstehen, dass der konzentrationsabhängige Term in der ersten Nernst'schen Gleichung zu dem Standardpotential addiert wird. Denn wenn, bei konstanter Aktivität der reduzierten Form, die Konzentration der oxidierten Form erhöht wird (das wäre z.B. im Redoxpaar 2+ 2+ Cu /Cu das Cu -Ion), muss das Potential der Elektrode zunehmen. (Der Logarithmus ist eine monoton wachsende Funktion seines Arguments.) Die zweite Nernst'sche Gleichung lautet E = E0 - RT zF ln Q und gibt die Spannung einer Zelle in Abhängigkeit vom Massenwirkungsquotient Q der Zellreaktion. Der Massenwirkungsquotient Q hat dieselbe Form wie die Gleichgewichtskonstante K der Zellreaktion, enthält aber anders als K nicht die Aktivitäten im chemischen Gleichgewicht, sondern die in der Zelle tatsächlich vorliegenden Aktivitäten. (Gibt man Q den Wert K im chemischen Gleichgewicht, kommt E = 0 heraus, wieso?) Es ist leicht zu verstehen, dass der konzentrationsabhängige Term in der zweiten Nernst'schen Gleichung vom Standardpotential subtrahiert wird. Denn wenn ausgehend vom chemischen Gleichgewicht die Konzentrationen der Edukte der Zellreaktion auf Kosten der Konzentration der Produkte vergrößert werden, wird das Massenwirkungsprodukt Q kleiner (dort stehen die Edukte im Nenner, die Produkte im Zähler), es steigt aber (nach dem Massenwirkungsprinzip) die Zellspannung E ausgehend von Null. Übungsaufgaben zu den Nernst'schen Gleichungen 5.2 Betrachten Sie ein galvanisches Element mit dem Zellschema Zn / Zn2+ (aq, c1) // Zn2+ (aq, c2) / Zn. Die Symbole c1 und c2 geben die Konzentrationen der Zink-Ionen in wässrigen Zinksalzlösungen an, z.B. von ZnSO4. (Mögliche Komplikationen im Zusammenhang mit Diffusionspotentialen an dem Diaphragma // dürfen Sie ignorieren.) Berechnen Sie für c1 = 10-3 mol/Liter und c2 = 10-2 mol/Liter die Gleichgewichtszellspannung dieser Konzentrationszelle bei Zimmertemperatur. 5.3 Die Standardpotentiale für die Reduktion des Ag+-Ions zum elementaren Silber und für die Reduktion des Cd2+-Ions zum elementaren Cadmium sind +0.80 V bzw. -0.40 V. Bauen Sie in Gedanken ein galvanisches Element auf, in dem eine Ag+/Ag-Halbzelle und eine Cd2+/Cd-Halbzelle unter Standardbedingungen gegeneinandergeschaltet sind. a Berechnen Sie die Zellspannung im elektrochemischen Gleichgewicht und nennen Sie die positive Elektrode dieses galvanischen Elements. b In welche Richtung ändert sich die Zellspannung im elektrochemischen Gleichgewicht, wenn man die Konzentration der Cd2+-Ionen erhöht? 24 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 5.4 Zeigen Sie die Gleichwertigkeit der beiden Nernst'schen Gleichungen für das Daniell-Element. Die Zellreaktion ist Cu2+ + Zn Cu + Zn2+ . Hierfür gilt E = Cu - Zn > 0 unter allen praktischen Konzentrationsbedingungen und E0 = 0Cu - 0Zn = 1.1 V. 5.5 Das Potential einer Silberelektrode in einer 0.01-molaren Silbernitratlösung beträgt etwa 0.68 V. Das Potential einer mit Silberchlorid überzogenen Silberelektrode ("Silberchloridelektrode") in einer 0.01-molaren Kaliumchloridlösung beträgt etwa 0.34 V. Schätzen Sie das Löslichkeitsprodukt von Silberchlorid ab. (Alle Werte in Wasser bei 25 °C.) HINWEIS: Die Silberchloridelektrode ist eine Silberelektrode, in der die potentialbestimmende Konzentration der Silberionen vermittels des Löslichkeitsprodukts des schwerlöslichen Silberchlorids von der vorgegebenen Konzentration der Chloridionen abhängt. 5.6 Die im elektrochemischen Gleichgewicht gemessene Zellspannung E eines galvanischen Elements wurde in Abhängigkeit von der Temperatur T im Temperaturbereich von 15 bis 40 °C experimentell bestimmt. An die Messwerte wurde folgendes Polynom angepasst: E = 0.07131 V - 4.99 * 10-4 (T/K -298) - 5.45 * 10-6 (T/K-298)2 (Wie in vielen Büchern üblich, sind zur Vermeidung von Verwechslungen in dieser Aufgabe physikalische Größen mit kursiven Buchstaben und Einheiten mit nichtkursiven Buchstaben bezeichnet.) Die Größe z sei 2, vgl. Aufg. 1.6. Berechnen Sie die Freie Reaktionsenthalpie, die Reaktionsentropie und die Reaktionsenthalpie für die Zellreaktion dieses galvanischen Elements bei den Temperaturen 20 °C und 35 °C. 25 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 6 Reaktionskinetik In der Grundvorlesung und im Grundpraktikum wird überwiegend die sogenannte "Formale Reaktionskinetik" behandelt, die für verschiedene Mechanismen Verknüpfungen zwischen der Reaktionsgeschwindigkeit und dem Umsatz der Reaktionspartner zur Verfügung stellt. Grundlegend wichtige Begriffe zur formalen Beschreibung einer chemischen Reaktion sind die (Gesamt-)Ordnung der Reaktion und die (Teil-)Ordnungen der einzelnen Reaktionspartner. Die Stöchiometrie und die formale Kinetik einer Reaktion haben wenig miteinander zu tun. Es ist ein häufiger Fehler, aus einer Reaktionsgleichung die Ordnung der Reaktion ablesen zu wollen. Die Reaktionsordnung kann im Allgemeinen nur durch experimentelle Aufnahme der Geschwindigkeiten der Reaktion unter verschiedenen Konzentrations- (bzw. Druck-) Bedingungen ermittelt werden (es sei denn man ist sicher, dass es sich um eine Elementarreaktion handelt, was selten der Fall ist). Neben den (differentiellen) Geschwindigkeitsgleichungen von Reaktionen erster und zweiter Ordnung und deren integrierten Formen (das sind die sogenannten Konzentrations-Zeit-Gesetze) sollten Sie die zusammengesetzten Reaktionsmechanismen mit den Namen Gleichgewichtsreaktion, Folgereaktion und Parallelreaktion kennen. Die Folgereaktion A B C macht deutlich, dass der Ordnungsbegriff, so nützlich er sein mag, schon bei relativ einfachen zusammengesetzten Reaktionen versagt. Mit zunehmender Komplexität der Reaktionsmechanismen werden die Konzentrations-Zeit-Gesetze immer unübersichtlicher und können nicht mehr durch analytische Integration ermittelt werden. So führt das in biochemischen Systemen weitverbreitete Phänomen der Autokatalyse (in einer autokatalytischen Reaktion entsteht ein Stoff umso schneller, in je größerer Konzentration er bereits vorliegt) manchmal zu einer periodischen Erhöhung und Abnahme der Konzentration eines Zwischenprodukts ("oszillierende Reaktionen"). Rechnungen zu solchen Reaktionen können nur mit Hilfe eines Computers durchgeführt werden. Gerade auch in der Biologie ist die Temperaturabhängigkeit von chemischen Reaktionen von Bedeutung. Die Arrhenius-Gleichung beschreibt diese Temperaturabhängigkeit in vielen Fällen richtig; aber auch hier ist bei zusammengesetzten Reaktionsmechanismen mit Überraschungen zu rechnen. Z.B. bei Reaktionen mit vorgelagertem Gleichgewicht kann die Geschwindigkeit, mit der ein Produkt entsteht, mit zunehmender Temperatur abnehmen, was formal zu einer negativen Arrhenius'schen Aktivierungsenergie führt. 26 Universität Kassel, FB 18, Makromolekulare Chemie und Molekulare Materialien Rainer Bausch ([email protected]) Übungen zur Grundvorlesung Physikalische Chemie für Studierende im Lehramtstudiengang Chemie und in den Diplomstudiengängen Nanostrukturwissenschaften und Biologie Bearbeitungsstand 11.10.2004 Übungsaufgaben zur Reaktionskinetik 6.1 Welcher Bruchteil der Anfangskonzentration eines gelösten Stoffes, der in einer Reaktion erster Ordnung mit der Geschwindigkeitskonstante k = 1 min-1 abreagiert, ist nach 2 Minuten Reaktionsdauer noch vorhanden? (Die Teilreaktionsordnung von A ist eins.) 6.2 Nach welcher Zeit ist von einem gelösten Stoff A, der in einer Reaktion erster Ordnung mit der Geschwindigkeitskonstante k = 1 min-1 abreagiert, nur noch die Hälfte der Ausgangskonzentration vorhanden? (Die Teilreaktionsordnung von A ist eins.) 6.3 Nach welcher Zeit ist von einem gelösten Stoff B, der in einer Reaktion zweiter Ordnung mit der Geschwindigkeitskonstante k = 1 Liter mol-1 min-1 abreagiert, ausgehend von der Anfangskonzentration cB0 = 0.1 mol/Liter nur noch die Hälfte der Ausgangskonzentration vorhanden? 6.4 Nach genau einer Stunde ist von einem gelösten Stoff, der in einer Reaktion zweiter Ordnung abreagiert, nur noch (94.3 0.1) % seiner Ausgangskonzentration von (0.10 0.01) mol/l vorhanden. Berechnen Sie die Geschwindigkeitskonstante dieser Reaktion. Schätzen Sie den Fehler in der ermittelten Geschwindigkeitskonstanten ab. 6.5 Skizzieren Sie qualitativ die Konzentrationen der Reaktionspartner in Gleichgewichts-, Parallel- und Folgereaktionen für verschiedene Verhältnisse der jeweils beteiligten Geschwindigkeitskonstanten. 6.6 Die Anfangsgeschwindigkeit v0 einer Reaktion hängt auf folgende Weise von der Konzentration c eines Reaktionspartners in der Reaktionslösung ab: c / (10-3 mol/Liter) 2.4 3.7 5.1 5.8 v0 / (10-5 mol/(Liter min)) 1.73 4.11 7.80 10.1 Welcher Ordnung ist die Reaktion bezüglich dieses Reaktionspartners, und welchen Wert hat die Geschwindigkeitskonstante? 6.7 Die Geschwindigkeitskonstante einer Reaktion nehme bei Erhöhung der Temperatur von 20 °C auf 40 °C auf das Doppelte zu. Berechnen Sie die Arrhenius'sche Aktivierungsenergie dieser Reaktion. 6.8 Die Geschwindigkeitskonstante einer komplexen Reaktion nehme bei Erhöhung der Temperatur von 20 °C auf 30 °C um 10 % ab. Berechnen Sie die formal negative Arrhenius'sche Aktivierungsenergie dieser Reaktion. 27