Kapitel M1: Einführung. Phospholipide und Membranen: Mizellen

Werbung
Kapitel M1: Einführung. Phospholipide und Membranen: Mizellen, Bilipidschicht,
Diffusion: 1. Ficksches Gesetz; Permeabilität; Leitwert und Kapazität; Membranwirkung von Drogen
Kapitel M2: Transportproteine: K+/Na+ - ATPase, Ca2+ - ATPasen,
Gradienten-abhängige Transportproteine
Kapitel M3: Ionenkanäle: Struktur, Spannungsabhängigkeit, Selektivität
und Permeabilität; spannungs- und ligandengesteuete Ionenkanäle, gap junctions
Kapitel M4: Physiologische Ionenverteilung: Donnan – Gleichgewicht,
Nernstgleichung an Plasmamembran, Zusammenspiel verschiedener spannungsabhängiger
Leitwerte in Zellmembranen, Goldmanngleichung
Kapitel M5: Elektrische Signalverarbeitung an Zellen:
Ionotrope und metabotrope Rezeptoren. Inhibition, Elektrotonus.
Kapitel M6: Aktionspotential (AP): Entstehung, beteiligte Leitwerte,
AP: Refraktärzeiten, pos. Rückkopplung, Ca2+ - Wirkung auf Leitwerte
(Tetanie, etc), versch. Formen von APs an Muskel und Herz,
APs: modulierende Einflüsse, Kodierung der AP-rate
Kapitel M7: Fortleitung von APs auf nichtmyelinisierten und myelinisierten Nervenfasern.
Summenaktionspotential und seine Messung. Wirkung von APs an Axonterminalen
2. Ströme durch biologische Membranen durch
a) Pumpen ( etablieren Ionenungleichgewichte; Kap. 2.1 )
- ATP – getrieben:
primär aktiver Transport
- Na/K – ATPase
- PM- CaATPase
- Ionengradient – getrieben:
sekundär aktiver Transport
- Aminosäure / Na-Cotransort
- Glucose / Na-Cotransort
b) Poren/Kanäle (Kap. 2.2)
erlauben einen schnellen Fluß von Ionen über die PM
c) gap junctions
Ionenkanäle
Die Permeabilität von Ionenkanälen kann
- von Liganden
- von der Membranspannung um
- oder von beiden abhängen
Daher die Unterteilung in
1) durch Liganden gesteuerte Kanäle
2) spannungsgesteuerte Ionenkanäle,
-
Aktivierung
Deaktivierung
Inaktivierung
Deinaktivierung
Öffnen der Pore
Schließen der Pore
Zytosolische Peptidkette verstopft den Poreausgang
Zytosolische Peptidkette gibt den Poreausgang frei
Ionenkanäle
Die Permeabilität von Ionenkanälen kann
- von Liganden
- von der Membranspannung um
- oder von beiden abhängen
Daher die Unterteilung in
1) durch Liganden gesteuerte Kanäle
2) spannungsgesteuerte Ionenkanäle,
-
Aktivierung
Deaktivierung
Inaktivierung
Deinaktivierung
Öffnen der Pore
Schließen der Pore
Zytosolische Peptidkette verstopft den Poreausgang
Zytosolische Peptidkette gibt den Poreausgang frei
Nikotinischer Acetylcholin - Rezeptor :
Kanalprotein und Rezeptor für ACh
Ionenkanäle
Die Permeabilität von Ionenkanälen kann
- von Liganden
- von der Membranspannung um
- oder von beiden abhängen
Daher die Unterteilung in
1) durch Liganden gesteuerte Kanäle
2) spannungsgesteuerte Ionenkanäle
-
Aktivierung
Deaktivierung
Inaktivierung
Deinaktivierung
Öffnen der Pore
Schließen der Pore
Zytosolische Peptidkette verstopft den Poreausgang
Zytosolische Peptidkette gibt den Poreausgang frei
Molekulare Struktur eines Ionenkanals
1 2 34
1
4
2
3
Spannungssensor: positive Ladungen IN der Membran
geschlossen
offen
geschlossen
nicht aktiviert
nicht inaktiviert
aktiviert
nicht inaktiviert
aktiviert
inaktiviert
0 mV
-80 mV
Prof. Stephan Frings, Zoologisches Institut, Universität Heidelberg
Na+
0 mV
-30 mV
Prof. Stephan Frings, Zoologisches Institut, Universität Heidelberg
0 mV
-30 mV
Prof. Stephan Frings, Zoologisches Institut, Universität Heidelberg
0 mV
-80 mV
Prof. Stephan Frings, Zoologisches Institut, Universität Heidelberg
Zusammenfassung Ionenkanäle
2.1 Ionenkanäle sind Porenproteine
- Permeabilität
moduliert durch:
a) um : Aktivierung/Inaktivierung
b) Agonisten, z.B. ACh oder GABA.
GABA(A) -Rezeptorkanal auch Rezeptor für Benzodiazepine und Barbiturate
c) a) + b), z.B. Ca2+-abh. Kaliumkanal, d.h. spannungsabh. Leitfähigkeit, die
mit steigender [Ca2+]i zunimmt.
- Selektivität:
Viele Kanäle sind überwiegend für eine Sorte von Ionen permeabel:
z. B. für Na+, K+, Ca+, Cl- .
Es gibt aber auch unspezifische Kanäle, z.B. für Kationen.
- Leitwert  einzelner Ionenkanäle:
liegt bei den meisten Kanälen zwischen 1 und 250 pS,
d. h., bei z.B. u = 100 mV : I =  u = 10 pA
(entspricht etwa 10.000 - 100.000Ionen / ms)
2. Ströme durch biologische Membranen durch
a) Pumpen ( etablieren Ionenungleichgewichte; Kap. 2.1 )
- ATP – getrieben:
primär aktiver Transport
- Na/K – ATPase
- PM- CaATPase
- Ionengradient – getrieben:
sekundär aktiver Transport
- Aminosäure / Na-Cotransort
- Glucose / Na-Cotransort
b) Poren/Kanäle (Kap. 2.2)
erlauben einen schnellen Fluß von Ionen über die PM
c) gap junctions
Elektrische Synapsen (bidirektional, modulierbar)
Beisp.: Glia, Retina, Herzvorhofzellen
Gap junctions sind Poren von eine Zelle in eine benachbarte Zelle
Gap junctions sind Poren von eine Zelle in eine benachbarte Zelle
Gap junctions sind Poren von eine Zelle in eine benachbarte Zelle
Gap junctions versus tight junctions
Kapitel M1: Einführung. Phospholipide und Membranen: Mizellen, Bilipidschicht,
Diffusion: 1. Ficksches Gesetz; Permeabilität; Leitwert und Kapazität; Membranwirkung von Drogen
Kapitel M2: Transportproteine: K+/Na+ - ATPase, Ca2+ - ATPasen,
Gradienten-abhängige Transportproteine
Kapitel M3: Ionenkanäle: Struktur, Spannungsabhängigkeit, Selektivität
und Permeabilität; spannungs- und ligandengesteuete Ionenkanäle; gap junctions;
Kapitel M4: Physiologische Ionenverteilung: Donnan – Gleichgewicht,
Nernstgleichung an Plasmamembran, Zusammenspiel verschiedener spannungsabhängiger
Leitwerte in Zellmembranen, Goldmanngleichung
Kapitel M5: Elektrische Signalverarbeitung an Zellen:
Ionotrope und metabotrope Rezeptoren. Inhibition, Elektrotonus.
Kapitel M6: Aktionspotential (AP): Entstehung, beteiligte Leitwerte,
AP: Refraktärzeiten, pos. Rückkopplung, Ca2+ - Wirkung auf Leitwerte
(Tetanie, etc), versch. Formen von APs an Muskel und Herz,
APs: modulierende Einflüsse, Kodierung der AP-rate
Kapitel M7: Fortleitung von APs auf nichtmyelinisierten und myelinisierten Nervenfasern.
Summenaktionspotential und seine Messung. Wirkung von APs an Axonterminalen
Strom durch Ionenkanäle lädt den Membrankondensator um, verändert die Membranspannung
Viele Kaliumkanäle sind unter Normalbedingungen immer etwas geöffnet !!!
Unterschiedliche Verteilung eines Ions über einer
elektrisch polarisierten Membran, z. B. [K+]i >> [K+]a
⇒
Diffusion: K+ nach aussen
⇒
Εlektrisches Feld: K+ nach innen
Im Gleichgewicht gilt :
Fluss nach aussen
(Urs.: Diffusion)
= Fluss nach innen
(Urs.: el. Feld)
In diesem Gleichgewicht liegt über der Membran die Spannung:
uK
[K ] o
RT
=
⋅ln
zF
[K ]i
uK = 25 mV⋅ln
[K ]o
[K ] i
Physiologisches Beispiel:
⇒
uK =
(Nernst)
= −56 mV⋅log
(R: Gaskonstante, T: Temperatur in K,
z: Valenz und F: Faradaykonstante.)
[K ]i
[K ] o
[K+]i = 140 mM
und
[K+]o = 5 mM
-56 mV log (140/5) =
uK heißt Kaliumgleichgewichtsspannung
Kalium - Nernstspannung.
- 83 mV
oder
Bedeutung:
Ist um = uK ,
d.h. ( um- uK ) = 0 , so fließt kein Kaliumstrom IK .
Das heißt: ist um > uK : Strom nach außen
und
ist um < uK : Strom nach innen
Dieselben Überlegungen gelten auch für alle anderen Ionensorten,
(z. B. für Na+) und führen für jede Ionensorte zu einem entsprechenden
Gleichgewichtspotential
Beispiel:
Bei den physiologischen Werten [Na+]i = 10mM und
⇒
[Na+]a = 145 mM
uNa = 56 mV log ( 145 / 10 ) = + 67mV
Bedeutung:
Ist um = uNa , d.h. ( um- uNa ) = 0 ,
so fließt kein Natriumstrom INa
.
Ion
Innen
[mM]
Aussen
[mM]
Na+
5 - 15
145
K+
Ca2+
140
≤ 10-4
5
2,5 - 5
UNernst
[mV]
+ 67
- 83
+ 126
(geb.: 1-2)
Cl-
4
110
- 82
Was für eine Membranspannung ergibt sich bei diesen
Nernstspannungen ???
Das Ohmsches Gesetz ( I = u / R = g u ) wird wegen der unterschiedlichen
Ionen – Konzentrationen an Membranen ersetzt durch:
Strom
=
Leitfähigkeit
⋅
treibende Spannung
IK =
gK
⋅
( u m - uK )
,
INa =
gNa
⋅
( um - uNa )
,
Gesamtstrom: Iges = IK + INa + . . .
etc.
Das Ohmsches Gesetz ( I = u / R = g u ) wird wegen der unterschiedlichen
Ionen – Konzentrationen an Membranen ersetzt durch:
Strom
=
Leitfähigkeit
⋅
treibende Spannung
IK =
gK
⋅
( u m - uK )
,
INa =
gNa
⋅
( um - uNa )
,
Gesamtstrom: Iges = IK + INa + . . .
Im Gleichgewicht ist Iges = 0 , d.h.
g K⋅um −g K⋅u K  g Na⋅um −gNa⋅uNa . . . = 0
⇒ um =
g K⋅u K  gNa⋅u Na  . . .
gtotal
etc.
Die Terme fK = gK / gtotal , fNa = gNa / gtotal , etc. definieren den
relativen oder fraktionalen (daher: f) Kaliumleitwert, den relativen
Na-Leitwert, etc.
Damit erhält man eine sehr einfache Formel für die
Membranspannung :
⇒ u m = f K ⋅u K  f Na ⋅uNa  . . .
Das Membranpotential ist demnach (im Gleichgewicht) ein
“Mischung” aus allen Nernstspannungen und liegt bei der
Nernstspannung derjenigen Ionensorte, für die die Membran am
besten leitet.
Beispiel Ruhemembranpotential :
Der Gesamtleitwert einer Zelle beruhe
zu 90 % auf kaliumpermeablen Kanälen:
fK = gK / gtotal = 0.9
zu 10 % auf natriumpermeablen Kanälen:
fNa = gNa / gtotal = 0.1
Dann ist
um =
fK
uK
+
fNa
uNa
=
0.9
uK
+
0.1
uNa
=
0.9 ( - 90 mV ) +
=
-81 mV
=
-75 mV.
+
und
0.1 ( 60 mV )
6 mV
“ Das Ruhe-Membranpotential besteht also zu 90 % aus uK und zu 10 % aus uNa”
Beispiel Ruhemembranpotential :
Der Gesamtleitwert einer Zelle beruhe
zu 90 % auf kaliumpermeablen Kanälen:
fK = gK / gtotal
zu 10 % auf natriumpermeablen Kanälen:
fNa = gNa / gtotal = 0.9
Dann ist
um =
fK
uK
+
fNa
uNa
=
0.1
uK
+
0.9
uNa
=
0.1 ( - 90 mV ) +
=
-9 mV
=
+45 mV.
+
0.9 ( 60 mV )
54 mV
= 0.1
und
Beispiel Ruhemembranpotential :
Der Gesamtleitwert einer Zelle beruhe
zu 10 % auf kaliumpermeablen Kanälen:
fK = gK / gtotal
zu 10 % auf natriumpermeablen Kanälen:
fNa = gNa / gtotal = 0.1
zu 80 % auf unspez. Kationenkanälen:
fcat = gcat / gtotal = 0.8
Dann ist
= 0.1
und
um =
fK
uK
+
fNa
uNa
+
fcat
ucat
=
0.1
uK
+
0.1
uNa
+
0.8
uNa
=
0.1 ( - 90 mV ) +
+
0.8 ( 0 mV )
=
- 9 mV
=
- 3 mV
+
0.1 ( 60 mV )
6 mV
Das Nerstpotential von unspezifischen Kationenkanälen liegt bei 0 mV !!!
Alternative Formulierung für den Zusammenhang von
Membranspannung und Ionenkonzentrationen (Goldmann-Gleichung) :
um =
RT
F
⋅ln
P K⋅[ K ]o  P Na⋅[ Na ]o P Cl⋅[ Cl ]i . . .
P K⋅[ K ]i  P Na⋅[ Na ]i P Cl⋅[Cl ]i . . .
Da an Neuronen unter Ruhebedingungen PK viel größer ist als PNa , PK
oder PCl
ergibt sich hieraus näherungsweise die Nernstgleichung :
um ≈
d.h. um ~ uK .
[K ] o
RT
⋅ln
F
[ K ]i
Kapitel M1: Einführung. Phospholipide und Membranen: Mizellen, Bilipidschicht,
Diffusion: 1. Ficksches Gesetz; Permeabilität; Leitwert und Kapazität; Membranwirkung von Drogen
Kapitel M2: Transportproteine: K+/Na+ - ATPase, Ca2+ - ATPasen,
Gradienten-abhängige Transportproteine
Kapitel M3: Ionenkanäle: Struktur, Spannungsabhängigkeit, Selektivität
und Permeabilität; spannungs- und ligandengesteuete Ionenkanäle; gap junctions;
Kapitel M4: Physiologische Ionenverteilung: Donnan – Gleichgewicht,
Nernstgleichung an Plasmamembran, Zusammenspiel verschiedener spannungsabhängiger
Leitwerte in Zellmembranen, Goldmanngleichung
Kapitel M5: Elektrische Signalverarbeitung an Zellen:
Ionotrope und metabotrope Rezeptoren. Inhibition, Elektrotonus.
Kapitel M6: Aktionspotential (AP): Entstehung, beteiligte Leitwerte,
AP: Refraktärzeiten, pos. Rückkopplung, Ca2+ - Wirkung auf Leitwerte
(Tetanie, etc), versch. Formen von APs an Muskel und Herz,
APs: modulierende Einflüsse, Kodierung der AP-rate
Kapitel M7: Fortleitung von APs auf nichtmyelinisierten und myelinisierten Nervenfasern.
Summenaktionspotential und seine Messung. Wirkung von APs an Axonterminalen
Signalverarbeitung an Neuronen:
Modulation von um durch äussere Einflüsse
an Sensoren/Rezeptoren oder Synapsen
Generierung von Aktionspotentialen
Erregung = Excitation :
Aktivierung ( = Öffnen )
- von ligandengesteuerten unspezifischen Kationenkanälen ( ucat = 0 ):
⇒ Depolarisation -> 0 mV
Rezeptorpotentiale oder Exzitatorische PostSynaptische Potenitale
- von spannungsgesteuerten Natrium- und Kaliumkanälen:
⇒ Aktionspotential
Hemmung = Inhibition :
Es werden K+ oder Cl- - Kanäle geöffnet, die um stabilisieren und einer Erregung
entgegenwirken (“Kurzschluss”)
Erregung und Hemmung können direkt oder indirekt erfolgen:
Direkt: Aktivierung von Rezeptorkanalproteinen
-> schnell (ca. 1 ms), aber wenig empfindlich
Indirekt: Aktivierung einer „second messenger” - Kette (cAMP, IP3)
-> langsamer als a, aber viel höhere Wirkung
(mehrere Verstärkungsfaktoren)
Ligand, z.B.
Transmitter
Ionenfluß durch
ligandengesteuerte Kanäle
Strom
Änderung der
Membranspannung
Strom
Akt. & Inaktivierung
von Kanälen
Ionenfluß durch
spannungsgesteuerte Kanäle
um = f K ⋅uK  f Na ⋅u Na  . . .
Signalfortleitung an Neuronen:
1. Elektrotonische Ausbreitung von Signalen
2. Fortleitung von Aktionspotentialen
- auf unmyelinisierten Nervenfasern
- auf myelinisierten Nervenfasern
Elektrotonische Ausbreitung (vor allem auf Dendriten) :
Elektrotonische Signalausbreitung :
- Erregung an einem Punkt im Dendritenbaum
- Signalausbreitung über Dendriten in (gedachten) Segmenten
- jedes Segment wird kapazitiv umgeladen ( = depolarisiert )
- in jedem Segment fließt ein Leckstrom über die Membran ab
- die erregende Wirkung, d.h. die Depolarisation ∆u
nimmt daher längs des Dendriten exponentiell ab
- die Strecke,
nach der die anfängliche Depolarisation auf 1/e ( = 37 %)
abgenommen hat, heißt elektrotonische Längskonstante λ :
∆u(λ) = ∆u(0) / e
- mit dem Membranwiderstand Rm und Innenwiderstand Ri kann man λ
berechnen:
 =
 Rm / Ri
Kapitel M1: Einführung. Phospholipide und Membranen: Mizellen, Bilipidschicht,
Diffusion: 1. Ficksches Gesetz; Permeabilität; Leitwert und Kapazität
Kapitel M2: Transportproteine: K+/Na+ - ATPase, Ca2+ - ATPasen,
Gradienten-abhängige Transportproteine
Kapitel M3: Ionenkanäle: Struktur, Spannungsabhängigkeit, Selektivität
und Permeabilität; spannungs- und ligandengesteuete Ionenkanäle; gap junctions;
Kapitel M4: Physiologische Ionenverteilung: Donnan – Gleichgewicht,
Nernstgleichung an Plasmamembran, Zusammenspiel verschiedener spannungsabhängiger
Leitwerte in Zellmembranen, Goldmanngleichung
Kapitel M5: Elektrische Signalverarbeitung an Zellen:
Ionotrope und metabotrope Rezeptoren. Inhibition, Elektrotonus.
Kapitel M6: Aktionspotential (AP): Entstehung, beteiligte Leitwerte,
AP: Refraktärzeiten, pos. Rückkopplung, Ca2+ - Wirkung auf Leitwerte
(Tetanie, etc), versch. Formen von APs an Muskel und Herz,
APs: modulierende Einflüsse, Kodierung der AP-rate
Kapitel M7: Fortleitung von APs auf nichtmyelinisierten und myelinisierten Nervenfasern.
Summenaktionspotential und seine Messung. Wirkung von APs an Axonterminalen
Signalfortleitung an Neuronen:
1. Elektrotonische Ausbreitung von Signalen
2. Fortleitung von Aktionspotentialen
- auf unmyelinisierten Nervenfasern
- auf myelinisierten Nervenfasern
geschlossen
offen
geschlossen
nicht aktiviert
nicht inaktiviert
aktiviert
nicht inaktiviert
aktiviert
inaktiviert
Tintenfische fliehen durch Impulserhaltung, Riesenaxon und Aktionspotential
Wichtige Details/Definitionen zum Aktionspotential:
- Alle Zellen, die APs bilden können, heißen erregbar.
- Alles-oder-Nichts -Regel: Hat um die Aktivierungsschwelle der Na+ - Kanäle überschritten,
dann kann das AP nicht mehr abgebrochen werden.
- Refraktärzeit:
- absolute: Na+ - Kanäle sind inaktiviert
- relative: weitere Leitfähigkeiten erniedrigen die Empflindlichkeit ( ∆u/∆I )
- Erhöhte [Ca2+] stabilisiert die Membran : verschiebt g(u) - Kurven nach rechts
- Erniedrigte [Ca2+] verschiebt g(u) - Kurven nach links: Erregbarkeit steigt.
- Modulierende Mechanismen:
z.B.: Ca2+ - abhängige Kaliumkanäle erniedrigen die Erregbarkeit
Kapitel M1: Einführung. Phospholipide und Membranen: Mizellen, Bilipidschicht,
Diffusion: 1. Ficksches Gesetz; Permeabilität; Leitwert und Kapazität
Kapitel M2: Transportproteine: K+/Na+ - ATPase, Ca2+ - ATPasen,
Gradienten-abhängige Transportproteine
Kapitel M3: Ionenkanäle: Struktur, Spannungsabhängigkeit, Selektivität
und Permeabilität; spannungs- und ligandengesteuete Ionenkanäle; gap junctions;
Kapitel M4: Physiologische Ionenverteilung: Donnan – Gleichgewicht,
Nernstgleichung an Plasmamembran, Zusammenspiel verschiedener spannungsabhängiger
Leitwerte in Zellmembranen, Goldmanngleichung
Kapitel M5: Elektrische Signalverarbeitung an Zellen:
Ionotrope und metabotrope Rezeptoren. Inhibition, Elektrotonus.
Kapitel M6: Aktionspotential (AP): Entstehung, beteiligte Leitwerte,
AP: Refraktärzeiten, pos. Rückkopplung, Ca2+ - Wirkung auf Leitwerte
(Tetanie, etc), versch. Formen von APs an Muskel und Herz,
APs: modulierende Einflüsse, Kodierung der AP-rate
Kapitel M7: Fortleitung von APs auf nichtmyelinisierten und myelinisierten Nervenfasern.
Summenaktionspotential und seine Messung. Wirkung von APs an Axonterminalen
Einige klinische Bezüge I
●
Blocker von Ionenkanälen: Beispiele:
- Nifedipin blockt Ca2+-Kanäle:
- Schlangen- und Skorpiongifte:
Hypertonie, Herzrhythmusstörungen
Ionenkanalblocker: Lähmungen, Krämpfe,
außerdem: Gerinnungsstörungen
●
Fingerhut: Ouabain = Strophantin,
Digitalispräparate
blockt Na/K - Pumpe
●
Na/Ca – Antiport
Behandlung der Herzinsuffizienz
(a) partieller Block der Na/K-Pumpe
(b) Verminderter Na/Ca - Antiport -> positive Inotropie
●
Tollkirsche: Atropin/Scopolamin
Parasympatholytikum: weite Pupille: Netzhautspiegelung,
Herzfrequenzsteigerung
●
gap – junctions
Signalausbreitung Herzvorhöfe,
Auflösungsvermögen der Retina
Einige klinische Bezüge II
●
Lokalanaesthetika
blockiert Natriumkanäle an dünnen Nervenfasern:
z.B. Schmerz leitende C-Fasern
●
nACh – Kanäle
Myasthenia pseudoparalytica gravis (autoimmun)
Muskelrelaxation bei der Narkose,
Nervengifte
●
GABA – Kanäle
moduliert (i.S. einer höheren Leitfähigkeit) durch Alkohol, Barbiturate,
und tranquilizer - > Schlaf- und Narkosemittel
Epilepsie (petit mal) - Behandlung (Clonazepin)
●
extrazelluläre [Ca2+]
zu niedrig: Hyperventilationssyndrom - > erhöhte Erregbarkeit, Tetanie
zu hoch: bei Hyperparathyreodismus:
zu viel Parathormon bei Adenom, Carcinom
●
Saltatorische Leitung, Myelin
Schnelle Reflexe, Parästhesien,
Multiple Sklerose, Schlaffe Lähmungen = Paresen
1.) Wie entsteht das Ruhepotential?
2.) Wie entsteht das Aktionspotential? Durch welche Ionenströme wird es getragen? Welche maximale
Amplitude kann es erreichen?
3.) Nach dem Aktionspotential gibt es (bei den meisten Nervenzellen) eine Hyperpolarisation (Nachpotential)
bzw. eine Refraktärzeit. Erläutern Sie diese Ereignisse!
4.) Mit welcher Messanordnung kann man bei Nervenzellen Ionenströme messen?
5.) Welche Vorteile bietet die Patch-Clamp Technik und auf welchem Prinzip basiert sie?
6.) Wie sind spannungsabhängige Ionenkanäle aufgebaut, wie funktionieren sie?
7.) Nennen Sie die wichtigsten Bauteile einer Nervenzelle! Welche Funktionen haben diese? Worin
unterscheiden sich die beiden Haupttypen von Zellfortsätzen?
8.) Worin unterscheiden sich Gliazellen von Nervenzellen?
9.) Weshalb haben Mitochondrien bei Nervenzellen eine besonders große Bedeutung?
10.) Wie kann man aus der Primärstruktur eines Proteins Rückschlüsse auf seine Membrantopologie
schließen?
11.) Wie entsteht das Membranpotential, wie kann man es messen?
12.) Wie wird in einer Nervenfaser eine kontinuierlicheFortleitung von Impulsen (z.B. Aktionspotential)
bewerkstelligt? Wie wirkt sich der Fasendurchmesser (Axondurchmesser) auf die Leitungsgeschwindigkeit
aus?
13.) Erläutern Sie die Funktionsweise der Natrium-Kalium Pumpe und deren Wirkung!
14.) Erläutern Sie den strukturellen Aufbau (Sek-, Tertiär- und Quartärstruktur) spannungsgesteuerter
Ionenkanäle (Na+-, Ca2+- und K+-Kanäle) !
15.) Was ist ein Selektivitätsfilter und wo findet man ihn (ein Beispiel)?
16.) Wie hängen Membranpotential und Nernstspannungen zusammen ?
Herunterladen