Analysis I – Was man wissen sollte 1. Die natürlichen Zahlen und

Werbung
Analysis I – Was man wissen sollte
1. Die natürlichen Zahlen und vollständige Induktion
Prinzip der vollständigen Induktion, Bernoulli-Ungleichung, Fakultät und Binomialkoeffizienten.
2. Rationale und reelle Zahlen
Körper, binomische Formel, geometrische Summenformel, Angeordnete Körper, Rechnen mit Ungleichungen, beschränkte Mengen, Infimum und Supremum, Vollständigkeitsaxiom, Archimedisches
Prinzip, n-te Wurzel, Vorzeichen und Betrag, Intervalle, Youngsche Ungleichung.
3. Folgen
Beschränkteit und Konvergenz
von Zahlenfolgen, Häufungspunkte, geometrische Folge,
√
√
n
n
m
limn→∞ a = 1, limn→∞ n = 1, Konvergenz monotoner Folgen, Teilfolgen und Satz von
Bolzano-Weierstraß, Cauchy-Kriterium, Limes superior, Limes inferior und bestimmte Divergenz.
4. Unendliche Reihen
Definition der Konvergenz, geometrische Reihe, alternierende Reihen und Leibniz-Kriterium, Absolute Konvergenz von Reihen und Cauchy-Kriterium, Kriterien für die absolute Konvergenz.
5. Funktionen und Stetigkeit
Grenzwerte von Funktionen, Stetigkeit und gleichmäßige Stetigkeit, Zwischenwertsatz, Stetigkeit
der Umkehrfunktion, Annahme von Maximum und Minimum, punktweise und gleichmäßige Konvergenz von Funktionenfolgen, Konvergenz von Potenzreihen, Exponentialfunktion und Logarithmus,
trigonometrische Funktionen.
6. Komplexe Analysis
Komplexe Zahlen, Dreiecksungleichung, inverse Dreiecksungleichung, Polardarstellung, Euklidischer Algorithmus, Partialbruchzerlegung, Potenzreihen, Exponentialfunktion.
7. Integration
Mittelwertsatz, Vertauschung von gleichmäßiger Konvergenz und Integration.
8. Differentiation
Regeln für die Berechnung der Ableitung, Mittelwertsätze.
9. Die Prinzipien der Analysis
Hauptsatz der Differential- und Integralrechnung, gliedweise Differentiation von Potenzreihen und
Ableitung der elementaren Funktionen, partielle Integration, Integration durch Substitution, uneigentliche Integrale und das Integralvergleichskriterium für Reihen, Satz von Taylor, Landausche
Symbole, Taylorreihen.
1
Herunterladen