Stochastik (BA) Zusammenfassung der Vorlesung Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin 2 0 Allgemeine Orientierung Ziel der Stochastik: Bereitstellung eines mathematischen Modells, mit dem zufällige Phänomene beschrieben und interpretiert werden können. Ein solches Modell ist gegeben durch (Ω, F, P) 1 Kombinatorik Bei 2 (verschachtelten) Experimenten mit m ∈ N und n ∈ N möglichen Ausgängen, lässt sich Ω als m × n Matrix darstellen, deren Einträge die m · n Versuchsausgänge repräsentieren. • Assoziativgesetze: (E ∪ F ) ∪ G = E ∪ (F ∪ G) (E ∩ F ) ∩ G = E ∩ (F ∩ G) • Distributivgesetze: (E ∪ F ) ∩ G = Sn(E ∩ G) ∪ (F ∩ G)Sn also auch: ( i=1 Ei ) ∩ G = i=1 (Ei ∩ G) (E ∩ F ) ∪ G = (E ∪ G) ∩ (F ∪ G) Tn Tn also auch:( i=1 Ei ) ∪ G = i=1 (Ei ∪ G) • DeMorgansche Regeln: Tn Sn c (Si=1 Ei ) = Ti=1 Eic c n n ( i=1 Ei ) = i=1 Eic Wahrscheinlichkeitsaxiome: Die Anforderungen, die an ein Wahrscheinlichkeitsmaß P gestellt werden Verallgemeinerung: betrachten wir r ∈ N Experi- lassen sich in 3 Axiomen zusammenfassen: mente, wobei der i-te, 1 ≤ i ≤ r Versuch nQ i Realir sierungen erlaubt, so ergeben sich insgesamt j=1 nj • 0 ≤ P(E) ≤ 1, ∀E ⊆ Ω Versuchsausgänge. • P(Ω) = 1 Permutationen: Die Möglichkeiten, n verschiedene Objekte anzuordnen sind n! := n · (n − 1) · . . . 2 · 1 Kombinationen: Die Möglichkeiten, eine relementige Teilmenge aus einer Grund n-elementigen n! menge zu erzeugen sind nr := (n−r)!·r! • Für jede Folge E1 , E2 , · · · ⊆ Ω gilt: P Verwendung findet der soeben definierte Binomialkoeffizient unter anderem im Binomischen Lehrsatz: n X n k n−k (x + y) = x y , ∀n ∈ N0 r n k=0 Anzahl der ganzzahligen Lösungen von Gleichungen: n−1 • Es gibt verschiedene Vektoren r−1 (x1 , x2 , . . . xr ) mit 0 < xi ∈ N, welche x1 + x2 + · · · + xr = n erfüllen. n+r−1 • Es gibt verschiedene Vektoren r−1 (x1 , x2 , . . . xr ) mit 0 ≤ xi ∈ N, welche x1 + x2 + · · · + xr = n erfüllen. • Es gibt n+r−1 Möglichkeiten, eine ungeordner te Stichprobe der Länge r aus einer Menge vom Umfang n zu bilden, wenn ‘mit Zurücklegen’ und ohne Berücksichtigung der Reihenfolge gezogen wird. 2 Wahrscheinlichkeitsaxiome Rechenregeln für Mengen: Für Ereignisse E, F, G und Ei , i = 1, . . . n gelten: ∞ [ paarweise ! Ei = ∞ X disjunkter P(Ei ) i=1 i=1 Diese Eigenschaft wird auch σ-Additivität genannt. Proposition: Es gelten folgende Eigenschaften: i) P(∅) = 0 ii) Für jede Folge paarweise disjunkter E1 , E2 , . . . , En ⊆ Ω gilt: ! n n [ X P Ei = P(Ei ) i=1 i=1 iii) Für jedes Ereignis E gilt: P(E c ) = 1 − P(E) iv) Für alle E, F gilt: E ⊂ F → P(E) ≤ P(F ) v) Für alle Ereignisse E, F gilt: P(E∪F ) = P(E)+ P(F ) − P(E ∩ F ) vi) Für Ereignisse E1 , E2 , . . . , En gilt: P(E1 ∪· · ·∪En ) = n X i=1 X i1 <i2 <i3 P(Ei )− X P(Ei1 ∩Ei2 )+ i1 <i2 P(Ei1 ∩Ei2 ∩Ei3 )−. . . (−1)n+1 P(E1 ∩· · ·∩En ) 3. BEDINGTE WAHRSCHEINLICHKEIT UND UNABHÄNGIGKEIT Laplace-Experimente: Auf einem endlichen Grundraum Ω = {1, . . . N } nehmen wir alle Elementarereignisse als gleichwahrscheinlich an, also gilt wegen σ-Additivität: 1 , N 3 Hüte aus, die nicht die eigenen sind. Es ergeN ben sich im ersten Schritt und im zweiten k 1 1 + 3! − . . . (−1)N +1 N1 ! ) Schritt (N − k)! 1 − (1 − 2! Möglichkeiten. Damit ist |F | P(F ) = |Ω| N 1 1 N +1 1 Dann gilt für ein Ereignis E ⊂ Ω: k · (N − k)! 1 − (1 − 2! + 3! − . . . (−1) N! ) = N! X |E| P(E) = P({i}) = 1 1 1 1 |Ω| = 1 − (1 − + − . . . (−1)N +1 ) i∈E k! 2! 3! N! 1 Hier bedeutet |E| die Mächtigkeit von E. ≈ e−1 k! Beispiel Hut-Problem: Die N Hüte von N Persobei großen N für k ∈ N. Diese Zahlen approximieren nen werden gemischt und jeder zieht zufällig einen. die Poissonverteilung zum Parameter λ = 1, die wir Wie groß ist die Wahrscheinlichkeit, dass später kennenlernen werden. a) keiner der Besucher seinen eigenen Hut erhält? b) genau k Besucher ihre eigenen Hüte erhalten? P({i}) = 1 ≤ i ≤ N. L: a) Ω = {(i1 , . . . , iN ) : 1 ≤ ij ≤ N, ij 6= ik ,fürj 6= k} Ereigniss Ej : Besucher Nr. j erhält Hut Nr. ij = j (seinen eigenen) werde dann beschrieben durch Ej = {(i1 , . . . , iN ) ∈ Ω : ij = j}1 ≤ j ≤ N berechnet wird c ) = 1 − P(E1 ∩ · · · ∩ EN ) mithilfe P(E1c ∩ · · · ∩ EN der Formel aus Prop. vi). Für n ≤ N seien gegeben 1 ≤ j1 < . . . jn ≤ N Dann ist Ej1 ∩ · · · ∩ Ejn = {(i1 , . . . , iN ) ∈ Ω : ij1 = j1 , . . . , ijn = jn } mit |E ∩···∩E | P(Ej1 ∩ · · · ∩ Ejn ) = j1 |Ω| jn = (NN−n)! ! Mit Prop. vi) folgt dann, P( N [ Ei ) = N · i=1 (N − 1)! N! (N − 2)! N! (N − 3)! + |{(j1 , j2 , j3 ) : 1 ≤ j1 < j2 < j3 ≤ N }| · N! N +1 1 − · · · + (−1) N! N N (N − 2)! (N − 3)! =1− · + · 2 N! 3 N! 1 − · · · + (−1)N +1 N! 1 1 1 = 1 − (1 − + − . . . (−1)N +1 ) 2! 3! N! ≈ e−1 − |{(j1 , j2 ) : 1 ≤ j1 < j2 ≤ N }| · für N groß. b) Ereignis F: Genau k Personen erhalten ihre eigenen Hüte In Schritt 1 wählen wir k Personen aus, die ihre eigenen Hüte bekommen und in Schritt 2 wählen wir für die restlichen N − k Personen 3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Für Ereignisse E, F gilt: P(E) = P(E|F ) · P(F ) + P(E|F c ) · P(F c ) Proposition: Seien S E1 , . . . , En paarweise disjunkte n Ereignisse mit Ω = i=1 Ei . Sei E ein weiteres Ereignis. Es gilt Folgendes: i) P(E) = P( n [ (E ∩ Ei )) = n X i=1 = n X P(E ∪ Ei ) i=1 P(E|Ei ) · P(Ei ) i=1 ii) aus i) folgt für 1 ≤ j ≤ n: P(E|Ej ) · P(Ej ) P(Ej |E) = Pn i=1 P(E|Ei ) · P(Ei ) Die Ereignisse E und F heißen unabhängig, falls gilt P(E|F ) = P(E). Dies ist äquivalent zur folgenden Definition. Definition (Unabhängigkeit) Die Ereignisse E und F heißen unabhängig, falls gilt P(E ∩ F ) = P(E) · P(F ). Propositon: Sind die Ereignisse E und F unabhängig, so sind es auch E und F c . Beispiel (zweifacher fairer Münzwurf:) Sind die folgenden Ereignisse unabhängig: 4 • E : Augensumme ist 7 • F : der erste Wurf ergibt 4 • G : der zweite Wurf ergibt 3 L: E = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, F = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}, G = {(1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3)} Weil E ∩ F = E ∩ G = F ∩ G = {(4, 3)} und P(E) = P(F ) = P(G) = 16 sind die drei Ereignisse (paarweise) unabhängig. E ist jedoch nicht unabhängig von F ∩ G, denn P(E|F ∩ G) = 1. Definition: Seien E1 , . . . , En bzw. (Ei )i∈N Ereignisse. i) E1 , . . . , En sind unabhängig, wenn für jedes r ≤ n, 1 ≤ i1 < · · · < ir ≤ n gilt: P(Ei1 ∩· · ·∩Eir ) = P(Ei1 ) · · · P(Eir ) = r Y P(Eij ) j=1 ii) (Ei )i∈N heißen unabhängig, falls für jedes endliche S ⊂ N gilt: \ Y P( Ei ) = P(Ei ) i∈S i∈S