Elemente der Mathematik 7 Niedersachsen Inhaltsverzeichnis Zum

Werbung
Elemente der Mathematik 7 Niedersachsen
Inhaltsverzeichnis
Zum Aufbau des Buches .................................................................................................................
1.
Dreiecke und Vierecke..................................................................................................... 7
Lernfeld: Passgenaue Figuren ...................................................................................................... 8
1.1
Kongruente Figuren ......................................................................................................... 10
Im Blickpunkt: Dynamisches Geometrie-System (DGS) – Mandalas .............................. 13
1.2
Dreieckskonstruktionen - Kongruenzsätze ...................................................................... 15
1.2.1 Konstruktion eines Dreiecks aus drei Seiten – Kongruenzsatz sss................................. 15
1.2.2 Konstruktion aus zwei Seiten und einem Winkel – Kongruenzsatz sws.......................... 18
1.2.3 Konstruktion aus zwei Seiten und einem Winkel – Kongruenzsatz Ssw ......................... 20
1.2.4 Konstruktion aus einer Seite und zwei Winkeln – Kongruenzsatz wsw........................... 22
1.2.5 Vermischte Übungen zu den Kongruenzsätzen .............................................................. 24
1.3
Beweisen – Satz und Kehrsatz ........................................................................................ 27
1.3.1 Anwenden der Kongruenzsätze beim Beweisen ............................................................. 27
1.3.2 Eigenschaften besonderer Vierecke – Beweis ............................................................... 28
1.3.3 Wenn-dann-Formulierung – Kehrsatz eines Satzes ........................................................ 33
1.3.4 Vom Definieren eines Begriffs ......................................................................................... 36
1.4
Konstruktion von Vierecken ............................................................................................. 39
Auf den Punkt gebracht: Präsentieren ............................................................................. 43
Zum Selbstlernen..................................................................... 45
1.5
Kreis und Gerade
1.6
Besondere Punkte und Linien des Dreiecks .................................................................... 47
1.6.1 Die Mittelsenkrechten des Dreiecks – Umkreis ............................................................... 47
1.6.2 Die Winkelhalbierenden des Dreiecks – Inkreis .............................................................. 52
1.6.3 Die Höhen des Dreiecks .................................................................................................. 57
1.6.4 Die Seitenhalbierenden des Dreiecks – Schwerpunkt..................................................... 59
1.6.5 Konstruktion von Dreiecken aus Teildreiecken................................................................ 60
Im Blickpunkt: Eine Eigenschaft der besonderen Linien im Dreieck ............................... 64
1.7
Satz des Thales ............................................................................................................... 65
Im Blickpunkt: Thales von Milet ....................................................................................... 69
1.8
Aufgaben zur Vertiefung .................................................................................................. 70
Bist du fit?.................................................................................................................................... 71
Bleib fit im Umgang mit rationalen Zahlen .................................................................................. 73
2.
Terme und Gleichungen ................................................................................................ 75
Lernfeld: Rechenwege knapp beschreiben................................................................................. 76
2.1
Terme ............................................................................................................................... 78
Im Blickpunkt: Tabellenkalkulation und Terme ................................................................ 83
2.2
Aufbau eines Terms ......................................................................................................... 84
2.3
Termumformungen – Addieren und Subtrahieren ........................................................... 86
Im Blickpunkt: Umgang mit Termen bei einem Computer-Algebra-System .................... 94
2.4
Multiplizieren und Dividieren von Produkten.................................................................... 95
2.5
Lösen von Gleichungen durch Probieren Zum Selbstlernen ................................... 100
2.6
Lösen von Gleichungen durch Umformen ..................................................................... 103
2.6.1 Umformungsregeln für Gleichungen und ihre Anwendung............................................ 103
2.6.2 Lösen von Gleichungen, in denen die Variable mehrfach vorkommt ............................ 108
2.6.3 Sonderfälle bei der Lösungsmenge ............................................................................... 110
2.7
Modellieren – Anwenden von Gleichungen .................................................................. 112
Auf den Punkt gebracht: Umgang mit Texten, Tabellen und Diagrammen ................... 117
2.8
Lösen von Ungleichungen durch Umformen ................................................................. 119
2.9
Aufgaben zur Vertiefung ................................................................................................ 124
Bist du fit?.................................................................................................................................. 125
Bleib fit im Umgang mit Flächeninhalten und Volumina............................................................ 127
3.
Berechnungen an Vielecken und Prismen ................................................................ 131
Lernfeld: Wie groß ist...? ........................................................................................................... 132
3.1
3.2
3.3
3.4
3.5
Flächeninhalt eines Parallelogramms ............................................................................ 134
Flächeninhalt eines Dreiecks ......................................................................................... 137
Zum Selbstlernen.................................. 140
Flächeninhalt eines beliebigen Vielecks
Flächeninhalt eines Trapezes ........................................................................................ 143
Vermischte Übungen...................................................................................................... 145
Im Blickpunkt: Flächeninhalt von krummlinig begrenzten Figuren ................................ 147
3.6
Prismen – Netz und Schrägbild ..................................................................................... 148
3.6.1 Netz und Größe der Oberfläche eines Prismas ............................................................. 151
3.6.2 Schrägbild eines Prismas............................................................................................... 153
3.7
Volumen eines Prismas ................................................................................................. 155
3.8
Aufgaben zur Vertiefung ................................................................................................ 160
Bist du fit?.................................................................................................................................. 161
Bleib fit im Umgang mit Zufallsexperimenten ............................................................................ 163
4.
4.1
4.2
4.3
Mehrstufige Zufallsexperimente ................................................................................. 165
Mehrstufige Zufallsexperimente – Baumdiagramme ..................................................... 166
Pfadregeln...................................................................................................................... 172
Aufgaben zur Vertiefung ................................................................................................ 179
Im Blickpunkt: Klassische Probleme aus der Geschichte der
Wahrscheinlichkeitsrechnung ........................................................................................ 180
Bist du fit?.................................................................................................................................. 182
5.
Lineare Funktionen ...................................................................................................... 183
Lernfeld: Eindeutig gerade ........................................................................................................ 184
5.1
Funktionen als eindeutige Zuordnungen........................................................................ 186
Im Blickpunkt: Graphen zeichnen mit Computer und GTR............................................ 193
5.2
Proportionale Funktionen ............................................................................................... 195
5.2.1 Graph proportionaler Funktionen ................................................................................... 195
5.2.2 Steigung, Steigungsdreieck ........................................................................................... 200
5.3
Lineare Funktionen und ihre Graphen ........................................................................... 204
5.4
Nullstellen linearer Funktionen – Grafisches Lösen linearer Gleichungen Zum
Selbstlernen.................................................................................................................. 212
Auf den Punkt gebracht: Dokumentation von Rechnerergebnissen.............................. 215
5.5
Vermischte Übungen...................................................................................................... 217
5.6
Geraden durch Punkte ................................................................................................... 220
5.6.1 Gerade durch zwei Punkte............................................................................................. 220
5.6.2 Geraden durch Punktwolken.......................................................................................... 223
5.7
Aufgaben zur Vertiefung ................................................................................................ 226
Im Blickpunkt: Energie sparen ....................................................................................... 228
Bist du fit ?................................................................................................................................. 229
Projekt
Seevermessung......................................................................................................................... 230
Funktionen – Messen und Darstellen........................................................................................ 232
Anhang
Lösungen zu Bist du fit? ............................................................................................................ 224
Maßeinheiten und ihre Umrechnungen ..................................................................................... 239
Verzeichnis mathematischer Symbole ...................................................................................... 239
Stichwortverzeichnis.................................................................................................................. 240
Herunterladen