Anhang F: Beispielklausur In diesem Kapitel wird ein Beispiel für eine Klausur vorgestellt. Dabei sind jeweils die Aufgaben und die Lösungen gegeben. Beachten Sie Diese Beispielklausur erhebt weder in Form, Inhalt noch Umfang einen Anspruch auf Vollständigkeit.- dies betrifft insbesondere reine Wissensfragen, die hier etwas vernachlässigt sind. Grundsätzlich ist der gesamte in der Vorlesung und den Übungen behandelte Stoff möglicher Gegenstand der Prüfung Vorbereitung Arbeiten Sie die gesamten Folien nochmals durch Bearbeiten Sie alle Übungsaufgaben nochmals Arbeiten Sie das Skript von Herrn Geisse durch Bearbeiten Sie dessen Übungsaufgaben Bedenken Sie: In der Klausur sind keine Hilfsmittel zugelassen. Informatik Fehlt in dieser Beispielklausur a) ... Information Eine Nachrichtenquelle sendet Zeichen aus dem Alphabet X = {a,b,c,d,e} mit den Wahrscheinlichkeiten p(a)=1/2, p(b)=p(c)=p(d)=p(e)=1/8 a) b) c) d) e) Wie groß ist der Informationsgehalt der einzelnen Zeichen Wie groß ist der Informationsgehalt der Nachricht „abc“ Wie groß ist der mittlere Informationsgehalt einer Nachricht mit 1000 Zeichen Finden Sie einen möglichst optimalen Code für dieses Alphabet Angenommen die Wahrscheinlichkeiten wären p(b)=1/2, p(a)=p(c)=p(d)=p(e)=1/8 . Wie groß wäre dann die Redundanz Ihres Codes aus Aufgabe d) Hamming a) Codieren Sie die Binärzahl 1000 mit der Hamming-Methode b) Wieviele Bits können als fehlerhaft erkannt werden ? c) Wieviele Bits können korrigiert werden ? Zahlensysteme Stellen Sie die Dezimalzahl 7,25 a) Binär b) Hexadezimal c) Oktal dar Berechnen Sie im Binärsystem (mit Vollständiger Rechnung) a) 1100100 : 101 b) Machen Sie schriftlich die Gegenprobe (auch im Binärsystem) c) 10111 – 1010 (durch Addition des Zweierkomplements) Zahlensysteme Fehlt in dieser Beispielklausur: a) Gleitpunktzahlen b) IEEE 754 c) ... Datenstrukturen Gegeben ist folgende Struktur ... Vorname Vorname Vorname Nachname Nachname Nachname ... a) Definieren Sie Datenstrukturen, mit denen diese Struktur einer zweifach verketteten Liste repräsentiert werden kann. b) Begründen Sie, weshalb diese Datenstruktur als „dynamisch“ bezeichnet wird (im Gegensatz zu statisch) c) Geben Sie jeweils zwei Gründe für die Verwendung dynamischer bzw. statischer Datentypen an. d) Definieren Sie statische Datenstrukturen, mit denen man die oben aufgezeichnete Struktur möglichst vollständig abbilden kann. Algorithmenentwurf Gegeben ist folgender Algorithmus: x=a, y=5; while (x>0) { y = y+1; x = x-1; } a) Formen sie die while Schleife in eine repeat-Schleife um b) Bilden Sie die Funktion dieses Algorithmus‘ ohne Schleifen, mit Hilfe von Sprüngen und Marken nach Algorithmenentwurf Fehlt in dieser Beispielklausur: a) b) c) d) Weitere Umformungen Blockung Umwandlung Rekursion/Iteration ... Berechenbarkeit Beweisen Sie mit Hilfe einer Turing-Maschine, dass f: N N mit: f(x) ist Binärkomplement von x berechenbar ist. a) Geben Sie dabei an: Alphabet Bandinschrift (mit Codierverfahren) Kopfposition Zustände (mit dem Startzustand und den Endzustände) Zustandsübergänge b) Zeichen Sie für eine Zahl das Turingband vor- und nach Ausführung des Turingprogrammes Korrektheit Tausch zweier Variablen a) Entwerfen Sie einen Algorithmus zum Vertauschen der Werte zweier Variablen (vom Typ integer) Vorbedingung: x=a, y=b Nachbedingung: x=b, y=a b) Beweisen Sie die Korrektheit Ihres Algorithmus Gegeben sei folgender Algorithmus: x=3, y=5; while (x>0) { y = y+1; x = x-1; } a) Was macht dieser Algorithmus ? b) Beweisen Sie Ihre Antwort für Frage a) mit Hilfe der Hoare'schen Logik Komplexität Fehlt in dieser Beispielklausur: a) b) c) d) Fragen zu den Konstanten c und n0 Beispiele für O(...) Bestimmung des Aufwandes für iterativen/rekursiven Algorithmus ... Reguläre Ausdrücke gegeben ist folgender regulärer Ausdruck R (in UNIX-Notation): [abc]*d[abc]+ (mit Alphabet = {a,b,c,d} ) a) formulieren Sie den Ausdruck in die „klassische“ Notation für reguläre Ausdrücke um. b) Geben Sie 2 Worte aus L(R) deren Länge jeweils genau 10 Zeichen betragen c) Geben Sie zwei Worte aus * an, die nicht in L(R) sind d) Konstruieren Sie einen indeterministischen endlichen Automaten A mit L(A)=L(R) Konstruieren sie reguläre Ausdrücke (in UNIX-Notation) für a) Hexadezimalzahlen b) Eigennamen bestehend aus optionalen Titeln, Vor- und Nachnamen (eventl. Doppelnamen, keine Beachtung von Umlauten) Beispiele.: Prof. Dr. Peter Kneisel, Sabine Mustermann, Dr. Kloebner, KarlHeinz Müller-Lüdenscheid) c) Lall-Sprache: Bestehend aus l‘s, die durch Vokale miteinander-Verbunden sind Beispiele: lal, lala, lelalilu, lelelalal Endliche Automaten Gegeben ist folgender endlicher Automat A z0 b a z1 z2 b a z3 a) Von welchem Typ ist dieser Automat: Ist dies ein NEA oder ein DEA, begründen Sie Ihre Antwort b) Formen Sie den Automaten in den anderen Typ so um, dass immer noch die gleiche Sprache akzeptiert wird. c) Welches sind die Symbole, die der Automat verarbeitet ? d) Geben Sie die Übergangsfunktion an e) Formulieren Sie einen regulären Ausdruck R mit L(R) = L(A) Grammatiken Fehlt in dieser Beispielklausur Lösung: Information Eine Nachrichtenquelle sendet Zeichen aus dem Alphabet X = {a,b,c,d,e} mit den Wahrscheinlichkeiten p(a)=1/2, p(b)=p(c)=p(d)=p(e)=1/8 a) h(a) = -ld(1/2) = 1bit. h(b)=h(c)=h(d)=h(e)=-ld(1/8)=3bit b) 1bit + 3bit + 3bit = 7 bit c) 1000 x Mittlerer Informationsgehalt: H(x)=p(xi)h(xi) = 1000 x ( 1/2x1 + 1/8x3 + 1/8x3 + 1/8x3 + 1/8x3 )bit = 1000 x 2bit = 2000 bit d) Nach Huffmann: p(de)=1/4, p(bc)=1/4, p(debc)=1/2, p(a)=1/2). p(abcde)=1 also z.B.: a=1, b=000, c=001, d=010, e=011 e) Redundanz = L(x)-H l(x)=1bit , l(b)=l(c)=l(d)=l(e)=3bit (entsprechend der Codierung in d.) L(x) = p(xi)l(xi) = (0,125x1 + 0,5x3 + 0,125x3 + 0,125x3 + 0,125x3)bit = 2,75 bit h(b) = 1bit, h(a)=h(c)=h(d)=h(e)=-ld(1/8)=3bit H(x) = p(xi)h(xi) = (0,5x1 + 0,125x3 + 0,125x3 + 0,125x3 + 0,125x3 )bit = 2 bit Redundanz = L(x)-H = 2,75bit – 2bit = 0.75 bit Hamming a) 100P0PP (Relevant: Bit 3,5,7) 100P0P1 (even Parity: also 1 ergänzen) 100P0P1 (Relevant: Bit 3,6,7) 100P011 (even Parity: also 1 ergänzen) 100P011 (Relevant: Bit 5,6,7) 1001011 (even Parity: also 1 ergänzen) b) Der Hamming-Abstand D ist 3bit, es können D-1 = 2bit Fehler erkannt werden c) Es können (D-1)/2 = 1bit Fehler korrigiert werden. Lösung: Zahlensysteme Dezimalzahl 7,25 a) Vorkommateil: 7 : 2 = 3 Rest: 1 3 : 2 = 1 Rest: 1 1 : 2 = 0 Rest: 1 -> 111 Binärzahl: 111.01 b) 0111,01002 = 7,416 (7 * 160 + 4 * 16-1) c) 111,0102 = 7,28 (7 * 80 + 2 * 8-1) Nachkommateil 2 · 0,25 = 0,5 --> Ziffer: 0 2 · 0,5 = 1 --> Ziffer: 1 ->0,01 Berechnung 1100100 : 101 = 10100 101 --101 101 --000 10100 x 101 10100 00000 10100 ------1100100 10111 – 1010 10111 - 01010 auf gleiche Längenbringen 1 10111 + 10110 Binärkomplement 10101+ 1 = 101100 Lösung: 1101 Überlauf weggelassen Lösung: Datenstrukturen Doppelt verkettete Liste a) Person : record { vorname : array[1..64] of char; nachname: array[1..64] of char; prev : *Person; next : *Person; } b) Man kann aus diesen Strukturen beliebig lange Ketten von Personen bilden c) Pro: Dynamisch: Verwaltung von Objekten, deren Anzahl zur Entwicklungszeit nicht bekannt ist. Speicherverbrauch nur für die Objekte, die tatsächlich zur Laufzeit existieren. Pro Statisch: Einfach in der Realisierung, schnell in der Bearbeitung (Fehlerunanfälliger) d) Person : record { vorname : array[1..64] of char; nachname: array[1..64] of char; } Personeliste: array[1...65534] od Person; Lösung: Algorithmenentwurf Umformung der while-Schleife: a) Als repeat-Schleife: x=a; y=5; if (x>0) { repeat { y = y+1; x = x–1; } until (x<=0) } b) Sprünge und Marken x=a; y=5; 1: if (x<=0) goto 2 y = y+1; x = x–1; goto 1; 2: ... do { y = y+1; x = x-1; } while (x<=0} x=a; y=5; 1: if (x>0) { y = y+1; x = x–1; goto 1 } 2: ... Lösung: Berechenbarkeit Definiere eine Turing-Maschine, die beliebige binäre Ziffernfolgen bitweise invertiert. Die Turing-Maschine: Alphabet : {_,0,1}, Bandinschrift: Zahl, codiert als Binärzahl, alles andere „_“ Kopfposition: links neben der Binärzahl Zustände: {q0, q1,q2}, Startzustand. q0, Endzustände:{q2} Zustandsübergänge: A Q A Q {r, l} _,q0 _,q0,r 0,q0 1,q1,r 1,q0 0,q1,r 0,q1 1,q1,r 1,q1 0,q1,r _,q1 _,q2,r Das Turing-Band vor und nach Abarbeitung des Turing-Programmes für die Zahl: 44 1 0 1 1 0 0 0 1 0 0 1 1 Lösung: Korrektheit a) und b) z : integer { x=a,y=b } z=y; {x=a,y=b,z=b} y=x; {x=a,y=a,z=b} x=z; {x=b,y=a,z=b x=b,y=a} q.e.d Beweis durch Anwendung der Hoare‘schen Logik: a) Der Algorithmus liefert für y den Wert 8 Nachbedingung Q: (y=8) b) x=3, y=5; {x=3, y=5} { INV: y=8-x x0 } while (x>0) { { INV x>0 (y+1)-1=8-x x0 x>0 } y = y+1; { y-1=8-x x0 x>0 y=9-((x-1)+1) (x-1)+1>0 } x = x-1; { y=9-(x+1) x+1>0 y=8-x x0 INV} } { INV x0 y=8-x x=0 y=8 = Q } q.e.d. Lösung: Reguläre Ausdrücke gegeben ist folgender regulärer Ausdruck R (in UNIX-Notation): [abc]*d[abc]+ (mit Alphabet = {a,b,c,d} ) a) b) c) d) (a|b|c)*d(a|b|c)(a|b|c)* abcabcdabc abddab. abcabcaabbccd NEA: z.b. z0 a,b,c, z1 d z3 a,b,c z4 Konstruieren sie reguläre Ausdrücke (in UNIX-Notation) für a) [1-9A-F][0-9A-F]* b) (Prof\.)?(Dr\.)?([A-Z][a-z]*(\-[A-Z][a-z])?)? ([A-Z][a-z]*(\-[A-Z][a-z])?) c)VOKAL = [AEIOU] l(<VOKAL>l)*<vokal>? Lösung: Endliche Automaten Gegeben ist folgender endlicher Automat A b z0 a z1 b z2 z3 a a) Dies ist ein indeterministischer endlicher Automat, da es einen -Übergang gibt. b) NEA DEA, z.b.: z0 b a z2 a z3 a b z2 c) a,b d) = { (z0, a, z1), (z1, b, z0), (z1, , z1), (z2, a, z3), (z3, b, z2) } e) a(ba)*a(ba)*