Inhalt Klimawandel in den Polargebieten 1. Peter Lemke 2. 3. Polargebiete Arktis (& Antarktis) Neumayer Alfred-Wegener-Institut für Polar- und Meeresforschung Bremerhaven Institut für Umweltphysik Universität Bremen IPCC AR4 IPCC AR4 Inhalt Die Polargebiete Permafrost Eisschilde 1. 2. 3. Polargebiete Arktis (& Antarktis) Neumayer Meereis IPCC AR4 Klimasystem Hohe Albedo Latente Wärme Plastisches Material Effektiver Deckel IPCC AR4 Polargebiete Niedere Breiten sind Energie-Kollektoren Hohe Breiten sind Energie-Radiatoren Ausgleich durch Energietransport in Ozean und Atmosphäre IPCC AR4 Globales Klima Energietransport wird durch Temperaturgegensätze Äquator – Pol gesteuert IPCC AR4 Polargebiete Globales Klima Meereis behindert den Wärmeaustausch Meereis ist eine wichtige Süßwasser-Quelle die (Nord-Atlantik, Weddellmeer) und beeinflusst globale ozeanische Tiefenzirkulation IPCC AR4 IPCC AR4 Polargebiete Tiefen- und Bodenwasserbildung Globales Klima Größte Erwärmung in CO2–Klimaszenarien in Polargebieten (Oberflächen-Energiebilanz; Temperatur – Eisalbedo Feedback) IPCC AR4 Polargebiete IPCC AR4 Globales Klima Inhalt Verstärkte Reaktion in Polargebieten GFDL model 12 IPCC AR4 models 1. 2. 3. Erwärmung bei CO2 Verdopplung mit konstanter Albedo (FA) und mit Eis-Albedo Feedback (VA) (Hall, 2004) Polargebiete Arktis (& Antarktis) Neumayer Erwärmung bei CO2 Verdopplung (Jahre 61-80) (Winton, 2006) IPCC AR4 IPCC AR4 Global gemittelte Temperaturen steigen schneller mit der Zeit Die wärmsten 13 Jahre: 1998,2005,2003,2002,2004,2006, 2001,2007,1997,1995,1999,1990,20 00 Meereis-Ausdehung NH Trend: -2.7% pro Dekade Periode 50 Rate 1000.128 0.0 0.074 0.0 26 18 Jahre IPCC AR4 C/Dekade Temperaturen in den Polargebieten SH Trend: nicht signifikant IPCC AR4 Temperatur von Neumayer Trend (letzten 50 Jahre) TArktis = 1,1°C Tglobal = 0,6°C IPCC AR4 A Synthesis of Antarctic Temperatures Linear trends of annual mean surface temperature for the period 1958 and 2002 (Chapmann&Walsh,2005) ? IPCC AR4 Warme Arktis – kalte Antarktis Neumayer Farada y IPCC AR4 IPCC AR4 Atlantic Water (T>2°C) temperature measured by moorings and from summer CTD sections Ocean Temperatures in Fram Strait 1 9 9 7 Time (years ) Depth: 250m Based on monthly means 2 0 IPCC AR4 0 8 Arctic Minimum Sea Ice Extent IPCC AR4 Arctic Minimum Sea Ice Extent Summer Minimum Decline (-7.4% per decade) 2008 1978 2007 Sept 2007 IPCC AR4 Current Arctic Sea Ice Extent IPCC AR4 Airborne EM sea ice thickness sounding 30 November 2008 Formatvorlage des Untertitelmasters durch Klicken bearbeiten EM bird IPCC AR4 IPCC AR4 2004, 2007, 2005, 2003, 2008 2008, 2006, 2006 2009 2008 EM induction sea ice thickness sounding {06162AEB -1572-44B 8-AA58-7E83D 52B A2B E} Zi = dEM – dLaser dE M Ice << t dLas er {C D 0D 59E3-7F75-48C D -8B 6B -D 262C 1D 1EB 79} {C 2D 3AFE7-85A0-48B 7-8490-34E9647EB 008} {C 66EEEFB -2C F0-455B -8486-340E0E634009} {B 5600C 65-C 727-46E9-9A6F-47AA25B 8712D } {556D 417A-2D B 1-485C -898A-2D E1476232E1} Framstrait Central Baltic Beaufort Sea Artic/Transpolar Sea Lincoln Svalbard Sea Laptev drift S Formatvorlage des Untertitelmasters durch Klicken bearbeiten (snow + ice) {35796FC 2-4983-48AE-AAD 6-FF9F54C 7C A06} {661E4FD F-0C 59-4EC A-8449-540904B 8C 5B B } {4F889437-29B 4-4015-A7EC -96FB 9C D 7B 1F7} 2003, 2005, 1991, 2004, 2008 1996, 2005, 1998, 2007 2001, 2004, 2007 Sea IPCC AR4 Ice thickness variability in the Transpolar Drift: 1991, 1996, 1998, 2001, 2004 & 2007 IPCC AR4 Sea Ice Thickness Lincoln Sea 2004 - 2008 Thinner Sea ice in the Lincoln Sea in May 2008 despite 2007 ice dynamics 2007 Sea ice drift pattern 2007 2004 Haas, 2004 {D B 06D 91E-9329-4840-81B C -5A09E3713D AE} Rabenstein, Hendricks,Leinweber, 2007 IPCC AR4 GREENICE (EU) CryoVEx IPCC AR4 Inhalt Simulated Arctic Sea Ice Volume 1990 - 2007 1. 2. 3. Rüdiger Gerdes (NAOSIM) IPCC AR4 Polargebiete Arktis (& Antarktis) Neumayer Neumayer „im Ozonloch“ Neumayer Ozonprofile 2006 IPCC AR4 König-Langlo, AWI IPCC AR4 Zeit-Höhenschnitt von Ozon IPCC AR4 Stratosphärische Ozonabnahme IPCC AR4 König-Langlo, AWI Zunahme der Globalstrahlung? From Dimming to Brightening Decadal Changes in Solar Radiation at Earth´s Surface Martin Wild et al. Science 308 2005 IPCC AR4 König-Langlo, AWI IPCC AR4 LWD Trend at Neumayer Sonnenscheindauer IPCC AR4 König-Langlo, AWI Sunshine Duration & no clouds detected IPCC AR4 König-Langlo, AWI Trends bei Neumayer Temperatur unverändert, Globalstrahlung steigt, Gegenstrahlung sinkt, Sonnenscheindauer steigt dramatisch, Wolken werden weniger, IPCC AR4 König-Langlo, AWI These: Zirkulationsänderung in der Antarktis kompensiert Effekte der globalen IPCC AR4 König-Langlo, AWI Motivation Heavy Precipitation and Strong Wind Events on the Antarctic Plateau: Observations from Kohnen Station, Dronning Maud Land European Project for Ice Coring in Antarctica (EPICA) High precipitation and strong wind events significantly influence accumulation pattern on the Antarctic Plateau. Neumayer G. Birnbaum, J. Freitag, G. König-Langlo Novo Alfred Wegener Institute for Polar and Marine Research, Bremerhaven R. Brauner Deutscher Wetterdienst, Hamburg C. Tijm-Reijmer Institute for Marine and Atmospheric Research, Utrecht University 2nd Antarctic Meteorological Observation, Modeling, and Forecasting Workshop, Rome, Italy, 26-28 June 2007 Kohnen (75°S, 0°E, 2892 m) Strong Wind Events Synoptic classification of visually observed high precipitation events at Kohnen Station during summer campaigns from 2001 to 2006 Synoptic Classification Frequency Category I: Occluding fronts of eastward moving lows reach the plateau. 61% of events Impact on snow surface structure Barchan Dune Category II: Lows or secondary lows which form east of the Greenwich Meridian move to the west (retrograde movement) and frontal clouds influence the plateau. Category III: Large-scale lifting processes due to an upper air low west of Kohnen Station cause snowfall on the plateau. 30% of events 9% of events Birnbaum et al. (2006) Synoptic classification of strong wind events Category I: Lows which move first from the Antarctic Peninsula / northern Weddell Sea southeastwards to a position close to Neumayer and then continue moving to the east or northeast Pattern Conclusions T T Category II: Lows initially situated off the coast east of the Greenwich Meridian which move to the west (retrograde movement) along the shelf ice edge Category III: Lows which move from the Antarctic Peninsula / northern Weddell Sea southeastwards to a position close to Neumayer and become stationary there Category IV: Lows which move first from the Antarctic Peninsula / northern Weddell Sea southeastwards, then turn to southwest, and die close to Halley or the Filchner Ice Shelf Frequency T T T T T 42% of events 14% of events T T T T T T 12% of events 12% of events Period 1998-2006: 10 typical synoptic situations identified Vielen Dank für Ihre Aufmerksamkeit! IPCC AR4 ¾ Typical synoptic mechanisms for the occurrence of high precipitation and strong wind events could be identified. ¾ Unexpected high number of events due to retrograde moving lows ¾ Number of snow dunes formed per year and conserved in the firn could be explained by a combined analysis of atmospheric observations and model data.