Aus dem Zentrum für Humangenetik und Genetische Beratung der Universität Bremen Vergleichende Tumorgenetik: Der Hund (Canis familiaris) als Modelltier für die humane Tumorgenese Dissertation Zur Erlangung des Grades eines Doktors der Naturwissenschaften -Dr. rer. nat. – Dem Promotionsausschuss Dr. rer. nat im Fachbereich Biologie / Chemie der Universität Bremen vorgelegt von Susanne Winkler 1. Gutachter: Prof. Dr. J. Bullerdiek 2. Gutachter: Prof. Dr. I. Nolte I Hiermit erkläre ich, Susanne Winkler, geboren am 21.09.1973, dass für das Verfassen der vorliegenden Dissertation „Vergleichende Tumorgenetik: Der Hund (Canis familiaris) als Modelltier für die humane Tumorgenese“ folgende drei Aussagen zutreffen: 1. Ich habe die Arbeit ohne unerlaubte fremde Hilfe angefertigt. 2. Ich habe keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt 3. Ich habe die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht. Bremen, 2007 Susanne Winkler II Not failure, but low aim, is crime. J. R. Lowell III Inhaltsverzeichnis ABKÜRZUNGSVERZEICHNIS.................................................................................. VII 1. EINLEITUNG ........................................................................................................ 1 2. MATERIAL UND METHODEN.............................................................................. 7 2.1. Primärzellkultur von Adhäsionskulturen.................................................................... 7 2.2. Primärzellkultur von Suspensionskulturen ................................................................. 7 2.2.1. Zellkultur von Knochenmarkaspiraten ............................................................................... 7 2.2.2. Zellkultur von Lymphozyten .............................................................................................. 7 2.3. Kultivierung von Zelllinien ........................................................................................... 8 2.4. Kryokonservierung von Zellkulturen .......................................................................... 8 2.4.1. Einfrieren lebender Zellen .................................................................................................. 8 2.4.2. Auftauen gefrorener Zellen................................................................................................. 8 2.5. Zytogenetische Methoden .............................................................................................. 9 2.5.1. Chromosomen-Präparation von Adhäsionskulturen........................................................... 9 2.5.2. Chromosomenpräparation von Suspensionskulturen.......................................................... 9 2.5.3. GTG-Färbung ..................................................................................................................... 9 2.5.4. Karyotypanalyse ............................................................................................................... 10 2.6. Molekular-zytogenetische Methoden.......................................................................... 10 2.6.1. DNA-Isolierung aus caninem Vollblut............................................................................. 10 2.6.2. Fluoreszenz-in-situ-Hybridisierung (FISH)...................................................................... 11 2.6.2.1. Markierung der Sonden DNA durch Nick-Translation .................................................... 11 2.6.2.2. Herstellung von ultraschall-behandelter Hunde DNA (sdDNA) ...................................... 11 2.6.2.3. Hybridisierung .................................................................................................................. 11 2.6.2.4. Auswertung....................................................................................................................... 12 2.6.3. Erzeugung Adeno-assoziierter Viren................................................................................ 12 2.6.4. 2.7. Proliferationsassays mit Adeno-assoziierten Viren und CT 1258 .................................... 12 Erstellen der Gewebebank........................................................................................... 13 2.7.1. Entnahme von Gewebeproben.......................................................................................... 13 2.7.2. Lagerung der Gewebeproben............................................................................................ 14 2.7.3. Katalogisieren der Gewebeproben.................................................................................... 14 2.8. Molekulargenetische Methoden .................................................................................. 14 2.8.1. RNA-Isolierung aus Gewebe............................................................................................ 14 2.8.2. RNA-Isolierung aus der Zell-Linie CT 1258.................................................................... 15 2.8.3. DNase Verdau................................................................................................................... 15 2.8.4. cDNA-Synthese ................................................................................................................ 15 IV Inhaltsverzeichnis 2.8.5. Amplifikation von DNA-Fragmenten durch Polymerase-Kettenreaktion (PCR)............. 16 2.8.6. Gelelektrophoretische Auftrennung der PCR-Fragmente................................................. 16 2.8.7. Real-Time PCR (Quantitativ) ........................................................................................... 17 3. ERGEBNISSE..................................................................................................... 18 3.1. Zytogenetische Ergebnisse........................................................................................... 18 3.1.1. Cytogenetic investigations in four canine lymphomas ..................................................... 18 3.1.2. Establishment of a cell line derived from a canine prostate carcinoma with a highly rearranged karyotype ........................................................................................................ 18 3.1.3. Polysomy 13 in a canine prostate carcinoma underlining its significance in the development of prostate cancer ........................................................................................ 19 3.2. Molekular-zytogenetische Ergebnisse ........................................................................ 19 3.2.1. Molecular characterization and mapping of the canine KRAB zinc finger gene ZNF331 ..... 20 3.2.2. The protein kinase B, gamma (AKT3) gene maps to canine chromosome 7 .................... 21 3.2.3. Molecular characterization and mapping of the canine cyclin D1 (CCND1) gene .... 21 3.2.4. The canine NRAS gene maps to CFA 17 .......................................................................... 22 3.2.5. The canine KRAS2 gene maps to chromosome 22 .......................................................... 22 3.2.6. Cloning and characterization of the canine receptor for advanced glycation end products .... 23 3.3. Erstellen der Gewebebank........................................................................................... 23 3.4. Molekulargenetische Ergebnisse................................................................................. 24 3.4.1. Absence of ras-gene hot-spot mutations in canine fibrosarcomas and melanomas.......... 24 3.4.2. RAS gene hot-spot mutations in canine neoplasias.......................................................... 25 3.4.3. Expression pattern of the HMGB1 gene in sarcomas of the dog. ..................................... 25 3.4.4. The canine HMGA1. ......................................................................................................... 26 3.4.5. "Best friends" sharing the HMGA1 gene: comparison of the human and canine HMGA1 to orthologous other species............................................................................... 27 3.4.6. HMGA2 Expression in a Canine Model of Prostate Cancer ............................................. 28 3.4.7. Inhibitory effect of antisense HMGA AAV-mediated delivery suppresses cell proliferation in canine carcinoma cell line ....................................................................... 28 4. DISKUSSION...................................................................................................... 30 5. ZUSAMMENFASSUNG ...................................................................................... 40 6. SUMMARY.......................................................................................................... 42 7. LITERATUR ........................................................................................................ 44 V Inhaltsverzeichnis 8. DANKSAGUNG .................................................................................................. 61 9. PUBLIKATIONSÜBERSICHT............................................................................. 63 VI Abkürzungsverzeichnis Abkürzungsverzeichnis µ Abb. AGE AK AKT3 ALL AML AP2 AS as bp, kb °C CCND1 cDNA CDS CFA CML Da dNTP dH2O DMSO DNA / DNase ds EDTA ER EST et al. FAB-Klassifikation FISH FKS g GAPDH GCGTG HCl HMG HMGA1/HMGA2 HSA ISCN k KCl kDa KM KRAS2 LB LHCGR ceptor Gen Mikro- (10-6) Abbildung Advanced glycation endproducts Antikörper Protein Kinase B, gamma Gen akute lymphatische Leukämie akute myeloische Leukämie Poly(A)-Adapter-Primer Aminosäure antisense Basenpaare, kilobasenpaare Grad Celsius Cyclin D1 Gen copy DNA coding Sequence Canis Familiaris chronische myeloische Leukämie Dalton desoxynukleosid-5’-triphosphat bidestilliertes Wasser Dimethylsulfoxid Desoxiribonukleinsäure / Desoxiribonuklease doppelsträngig Ethylendiamintetraacetat estrogen receptor expressed sequence tag, cDNA Fragment et altera French-American-British-Klassifikation Fluoreszenz in situ Hybridisierung fetales Kälberserum Erdbeschleunigung Glyceraldehyd-3-phosphat dehydrogenase Guanin- bzw. Cytosin G-Bänderung mit Trypsin und Giemsa Salzsäure High mobility Group High mobility Group A1/A2 Gen Homo sapiens An International System for Human Cytogenetic Nomenclature kilo (103) Kaliumchlorid Kilo Dalton Knochenmark v-Ki-ras2 Kirsten rat sarcoma viral Onkogene homolog Luria-Bertani luteinizing hormone/choriogonadotropin reVII Abkürzungsverzeichnis LTR Lsg m M MAP min MgCl2 M-MLV mRNA NCBI NFDM NRAS ORF OT PBS PCR rAAV RAGE RNA rpm RT sdDNA ssDNA sec SSC T4 TAE Taq Polymerase TE U UTR UV V vg Vol ZNF331 Long Terminal Repeat Lösung milli (10-3) Molar Mitogen activated protein Minute Magnesiumchlorid Moloney murine leukemia virus messenger-RNA National Center for Biotechnology Information non fat dried milk Neuroblastoma RAS viral (v-ras) Oncogene homolog open reading frame Objektträger phosphate buffered saline polymerase chain reaction rekombinante Adeno-assoziierte Viren receptor for advanced glycation end products Ribonukleinsäure rounds per minute Raumtemperatur sonicated Dog-DNA salmon-sperm-DNA Sekunde sodium-saline Citrat Bakteriophage T4 Tris-Acetat-EDTA-Puffer Thermus aquaticus DNA Polymerase Tris-EDTA Unit Untranslatierte Region Ultraviolett Volt virus genome titer Volumen Zinc finger protein 331 Gen VIII 1. Einleitung 1. Einleitung Für die Erforschung der genetischen Grundlagen von Krebserkrankungen werden schon seit geraumer Zeit Tiermodelle verwendet. Allerdings wurde dabei bisher zum großen Teil auf Nagetiermodelle zurückgegriffen, bei denen die Tumoren unter Suppression des Immunsystems induziert oder transplantiert wurden. Erst in den letzten Jahren ist der Hund als Modelltier in den Mittelpunkt des Interesses gerückt. Hund und Mensch teilen den gleichen Lebensraum, haben eine ähnliche Ernährung und sind somit in der Regel den gleichen Lebensbedingungen ausgesetzt. Umwelteinflüsse, die unter Umständen kanzerogen wirken können, betreffen daher beide Spezies in ähnlicher Weise (Vail and MacEwen, 2000). Im Falle einer Erkrankung steht dem Tier bzw. seinem Halter die moderne Tiermedizin auf hohem Niveau zur Verfügung, bei der die Behandlung und der Krankheitsverlauf von spezialisierten Tierärzten zumeist lückenlos dokumentiert werden (Ostrander et al., 2000). Die Bereitschaft der Tierhalter, an Studien teilzunehmen und dem Tier die bestmögliche Behandlung zukommen zu lassen, ist in den meisten Fällen sehr hoch. Verschiedene Untersuchungen haben gezeigt, dass der Hund etwa doppelt so häufig an Krebs erkrankt wie der Mensch, wobei einige Krebsarten eine höhere Inzidenz aufweisen als andere (Withrow and MacEwen, 1989; Nolte and Nolte, 2000; Vail and MacEwen, 2000; Withrow and MacEwen, 2001). Die überwiegende Zahl der Tumoren des Hundes entsteht spontan, d.h. die Tumoren müssen – im Gegensatz zu den häufig verwendeten Nagetiermodellen – nicht künstlich induziert oder transplantiert werden (Mayr et al., 1991a; Bartnitzke et al., 1992a; Bartnitzke et al., 1992b; Mayr et al., 1992b; Mayr et al., 1993; Nolte et al., 1993; Hahn et al., 1994; Reimann et al., 1996b; Reimann et al., 1999b; Thomas et al., 2003; Meyer et al., 2004a; Murua Escobar et al., 2004a). Sie zeigen in vielen Fällen eine ähnliche Biologie und Histopathologie wie Tumorerkrankungen beim Menschen, bedingt durch die kürzere Lebensspanne des Hundes entwickeln sie sich jedoch in weitaus kürzerer Zeit. Für die Forschung ist dieser Umstand insofern von Vorteil, als er die Beobachtung der Tumorentwicklung und der Wirksamkeit der gewählten Therapie vereinfacht (Withrow and MacEwen, 1989; MacEwen, 1990; Hahn et al., 1994). Man geht davon aus, dass eine randomisierte klinische Studie für ein neues Medikament am Hundemodell in ca. 1 – 3 Jahren abgeschlossen sein kann, während eine vergleichbare Studie am Menschen etwa 5 – 15 Jahre in Anspruch nimmt (Hansen and Khanna, 2004). Dabei erlauben die Anatomie und die Physiologie des Hundes eine größere Übertragbarkeit der gewonnenen Erkenntnisse 1 1. Einleitung auf den Menschen als dies zwischen Nagern und Menschen der Fall ist (Kirkness et al., 2003). Die Anatomie von Hunden zeigt gegenüber der Anatomie von Nagetieren deutliche Vorteile im Hinblick auf die Evaluierung verschiedener therapeutischer Methoden und deren Übertragbarkeit auf den Menschen. Diese Methoden beinhalten z. B. Operationstechniken, Chemotherapie, Bestrahlung, Hyperthermie aber auch Gentherapie. So dienten z.B. Hunde mit Osteosarkomen als Modell für die Entwicklung neuer Operationstechniken, die heute in der Versorgung kindlicher und adulter Knochentumoren eingesetzt werden (Withrow et al., 1993; Hansen and Khanna, 2004). Das canine Osteosarkom zeigt viele Gemeinsamkeiten mit dem menschlichen kindlichen Osteosarkom bezüglich z.B. der Histologie des Primärtumors, Mikrometastasierung und Ansprechen auf Chemotherapeutika wie Cisplatin und Anthracycline. Andere canine Tumorerkrankungen, die große Ähnlichkeiten bezüglich der Tumorbiologie zu ihrem menschlichen Pendant aufweisen sind z.B. das canine Non-HodgkinLymphom (NHL), welches ein gutes Modell für das humane NHL und andere spontan auftretende Neoplasien des lymphatischen Systems darstellt, sowie das canine Prostatakarzinom (Hansen and Khanna, 2004). Hunde sind neben dem Menschen die einzigen Säugetiere, bei denen das Prostatakarzinom spontan auftritt. In beiden Spezies handelt es sich um eine invasive Erkrankung mit einer Neigung zur Metastasierung in Knochen oder Lunge durch das Blut oder das lymphatische System. Dabei sind vorrangig ältere Individuen betroffen, mit einem durchschnittlichen Erkrankungsalter von 10 Jahren bei Hunden und 71 Jahren beim Menschen (MacEwen, 1990; Switonski et al., 1996; Boutemmine et al., 2002; Bertz et al., 2004). Die Verwendung des Hundemodells erlaubt Biopsien von betroffenem und nicht betroffenem Gewebe sowie die wiederholte Untersuchung von Körperflüssigkeiten wie Serum, Blut und Urin. Dabei werden Studien, die letztlich auch dem behandelten Tier zu Gute kommen, besser von der Öffentlichkeit akzeptiert als Studien an eigens gezüchteten Labortieren (Hansen and Khanna, 2004). Die gesammelten Proben von betroffenen Tieren ermöglichen schließlich eine Vielzahl verschiedener Studien wie z.B. Untersuchungen zur Molekulargenetik und Molekularbiologie der Erkrankungen. Sowohl die Tumoren des Hundes als auch des Menschen weisen verschiedene chromosomale Aberrationen auf, die in die Tumorgenese involviert sind. Im Menschen sind eine Vielzahl verschiedener numerischer Aberrationen, wie Tri- und Monosomien (Anastasi et al., 1992; Bullerdiek et al., 1993; Banerjee et al., 1997; Mitel2 1. Einleitung man et al., 1997; Czepulkowski et al., 2002), aber auch chromosomale Rearrangierungen (Collins et al., 1987; Ashar et al., 1995; Petit et al., 1996; Dal Cin et al., 1998; Tallini and Dal Cin, 1999; Ligon and Morton, 2000; Lemke et al., 2001) bekannt. Der im Vergleich zum Menschen äußerst komplexe Karyotyp des Hundes macht zytogenetische Untersuchungen an caninen Tumoren ungleich schwerer. Der Hund besitzt 76 akrozentrische Autosomen, die sich in der Größe nur gering unterscheiden, sowie metazentrische X- und Y-Chromosomen. Bedingt durch diesen komplexen Karyotyp kam es erst spät zur Erstellung einer einheitlichen Nomenklatur für canine Chromosomen (Selden et al., 1975; Manolache et al., 1976; Stone et al., 1991; Graphodatsky et al., 1995; Reimann et al., 1996a; Breen et al., 1999a). Im Vergleich zu der Situation beim Menschen, sind Berichte über chromosomale Veränderungen im Hund immer noch rar. Dennoch fielen verschiedene, numerische und strukturelle, chromosomale Aberrationen auf, die als Ursache für verschiedene Krankheitsbilder beim Menschen schon seit geraumer Zeit bekannt sind. Darunter befinden sich Mono- oder Trisomien der X-Chromosomen, zentrische Fusionen und reziproke Translokationen, wobei letztere jedoch einen sehr geringen Anteil darstellen (Switonski et al., 2004). In caninen Neoplasien finden sich überwiegend Trisomien, welche als dritte Kopie eines Chromosoms oder als Isochromosomen auftreten können (Bartnitzke et al., 1992b; Nolte et al., 1993; Mayr et al., 1994; Reimann et al., 1996b; Reimann et al., 1998), aber auch verschiedene strukturelle Veränderungen wie Translokationen (Mayr et al., 1990a; Hahn et al., 1994) derivative Chromosomen (Reimann et al., 1999b) oder zentrische Fusionen (Mayr et al., 1991b; Horsting et al., 1999) wurden häufiger beobachtet. Monosomien caniner Chromosomen werden hier eher selten beschrieben (Mayr et al., 1991a). In einer Studie, in der 270 canine Tumoren verschiedenen histologischen Ursprungs untersucht wurden, konnten in 23% der Fälle klonale zytogenetische Veränderungen sowohl in benignen, als auch in malignen Tumoren gefunden werden. Beide Gruppen zeigten einer höhere Inzidenz für klonale Veränderungen bei den mesenchymalen Tumoren, wie Sarkome und Lipome, als bei den epithelialen Tumoren. Diese Erkenntnis ist vergleichbar zu den Verhältnissen beim Menschen (Reimann et al., 1999a). Durch die Verwendung von Painting-Sonden (reciprocal Zoo-FISH) konnte gezeigt werden, dass die caninen Chromosomen in weiten Abschnitten Homologien zu den Chromosomen des Menschen aufweisen, so dass verschiedene Abschnitte der cani3 1. Einleitung nen Chromosomen bestimmten Regionen der menschlichen Chromosomen zugeordnet werden konnten (Breen et al., 1999b; Yang et al., 1999). Ähnlich wie beim Menschen ist auch für den Hund zwischenzeitlich die Genomsequenz bekannt (McPherson et al., 2001b; Venter et al., 2001; Lindblad-Toh et al., 2005). Den Nachweis einzelner Gene, die Homologien zwischen beiden Spezies aufweisen liefert die sog. Fluoreszenz in situ Hybridisierung (FISH). Im Gegensatz zu den PaintingSonden, welche relativ große Bereiche (bis zu 2000 kb) überspannen können, werden für das Mapping bestimmter Gene relativ kleine, genspezifische Sonden (100 – 300 kb) verwendet. Im Jahr 2001 waren bereits etwa 1246 Gene (McPherson et al., 2001a) und im März 2006 bereits etwa 11000 Gene im menschlichen Genom lokalisiert (NCBI, 2006). Mit Hilfe des sog. physikalischen Mappings war es bis 2004 gelungen, ca. 70 verschiedene (krankheitsrelevanter) Gene im Genom des Hundes zu lokalisieren (Switonski et al., 2004), darunter zum Beispiel das hypocretin (orexin) receptor 2 Gene (Hcrtr2), welches im Zusammenhang mit caniner Narkolepsie steht, auf dem Chromosom 12 des Hundes (Lin et al., 1999), das canine Her2 /neu (ERBB2) auf Chromosom 1q13.1 des Hundes (Murua Escobar et al., 2001) sowie die caninen High mobility Group Proteine HMGA1 und HMGB1 auf den Chromosomen 23 bzw. 25 des Hundes (Becker et al., 2003; Murua Escobar et al., 2003). Viele dieser Gene wie z.B. die Mitglieder der HMG-Proteinfamilie sind evolutionär hochkonserviert. So weist z.B. das canine HMGB1 für das vollständige Gen eine Sequenzhomologie von 90,8% zum Menschen auf. Betrachtet man nur die codierenden Sequenzen, so ist diese Homologie noch höher und beträgt 95,4 %. Das daraus resultierende Protein ist zu 100% identisch zu seinem menschlichen Gegenstück (Murua Escobar et al., 2003). Die HMGB1 Proteine spielen eine wichtige Rolle bei der Organisation der Chromatinstruktur (Wolffe, 1994). Mit ihren DNA-Bindungsdomänen, den sog. HMG-Boxen binden sie mit hoher Affinität sequenzunspezifisch an die kleine Furche doppelsträngiger DNA, was zu einer Aufbiegung in Richtung der großen Furche führt. Diese partielle Biegung der DNA beeinflusst die Bindung von Transkriptionsfaktoren, indem deren Bindungsaffinität herauf- oder herabgesetzt wird (Bustin and Reeves, 1996). Schwerpunkt der vorliegenden Arbeit waren die Untersuchungen caniner HMGA Proteine. Die evolutionär ebenfalls hochkonservierten HMGA Proteine werden von zwei verschiedenen Genen, die als HMGA1 und HMGA2 bezeichnet werden, codiert. Dabei verfügt HMGA1 über zwei Splicevarianten, die wiederum als HMGA1a und 4 1. Einleitung HMGA1b bezeichnet werden. Alle drei Proteine stellen wichtige architektonische Transkriptionsfaktoren dar. Die HMGA Proteine verfügen über drei DNA-bindende Domänen, die sog. AT-Hooks, mit denen sie an AT-reiche Sequenzen in der kleinen Furche der DNA-Doppelhelix binden und bedeutende Funktionen in der GenRegulation und Chromatin-Organisation übernehmen: Es wird angenommen, dass HMGA Proteine in chromosomale Rearrangierungen in verschiedenen Tumoren involviert sind und die Bildung von Multi-Protein-Komplexen, den sog. Enhanceosomen in Promoterregionen fördern und dadurch das Expressionsmuster einer Vielzahl von Genen, sowohl in positiver, als auch in negativer Weise beeinflussen (Friedmann et al., 1993; Schoenmakers et al., 1995; Reeves, 2000; Reeves et al., 2001). Für den Menschen ist eine Vielzahl maligner Neoplasien bekannt, deren Entstehung mit der Überexpression von HMG-Genen assoziiert zu sein scheint (Chiappetta et al., 1995; Fedele et al., 1996; Rogalla et al., 1997; Xiang et al., 1997; Tallini and Dal Cin, 1999; Abe et al., 2000; Fedele et al., 2001; Flohr et al., 2001; Brezniceanu et al., 2003; Czyz et al., 2004; Miyazawa et al., 2004; Takaha et al., 2004; Ishiguro et al., 2005; Sarhadi et al., 2006). Die Überexpression von HMGA Proteinen ist charakteristisch für eine Vielzahl maligner Tumoren, was auf eine Verbindung zwischen einem hohen Titer des Proteins und der neoplastischen Veränderung hinweist (Tamimi et al., 1993; Chiappetta et al., 1995; Fedele et al., 1996; Bandiera et al., 1998; Chiappetta et al., 1998; Abe et al., 1999; Abe et al., 2000; Czyz et al., 2004). Insbesondere in menschlichen Prostatakarzinomen ist die Überexpression von HMGA Proteinen mit dem Auftreten eines hochmalignen Phänotyps assoziiert, daher wird die HMGAExpression in (Prostata-)Tumoren als molekularer Marker diskutiert (Tamimi et al., 1993; Scala et al., 2000; Takaha et al., 2002). Diese Vermutung wird durch die Befunde von Scala et al. unterstützt, die im Jahr 2000 nachweisen konnten, dass eine Antisense Therapie mit Hilfe adenoviraler Vektoren in Nacktmäusen mit induzierten HMGA2 positiven Tumoren zu einer deutlichen Verkleinerung der Tumoren führte, ohne dabei die gesunden Zellen zu beeinflussen. Die vorliegende Arbeit gliedert sich im Wesentlichen in fünf Abschnitte: Zunächst wurden verschiedene canine Neoplasien zytogenetisch untersucht und auf das Vorhandensein wiederkehrender chromosomaler Aberrationen, wie sie vom Menschen bereits bekannt sind, untersucht. Anschließend erfolgte die molekular-zytogenetische Lokalisation verschiedener tumorrelevanter Gene im caninen Genom (FISH5 1. Einleitung Mapping). Für die weitere molekulargenetische Untersuchung einzelner tumorrelevanter Gene wurde zunächst eine Gewebebank für canine Tumoren und Normalgewebe aufgebaut. Verschiedene Proben aus dieser Gewebebank, sowie Zellen aus einer im Rahmen der vorliegenden Arbeit neu etablierten, spontan immortalisierten Zell-Linie wurden anschließend auf die Expression von HMGA Proteinen untersucht. Zusätzlich wurde die Zell-Linie für die Entwicklung von Modellen zur Gentherapie mit Hilfe von Adeno-assoziierten Viren verwendet. 6 Material und Methoden 2. Material und Methoden 2.1. Primärzellkultur von Adhäsionskulturen Gewebeproben verschiedener Tumoren zur zytogenetischen Untersuchung wurden entweder in der Tierärztlichen Hochschule Hannover oder an der Medizinischen Hochschule Hannover entnommen und in 13 ml-Röhrchen mit Hanks-Lösung (200 IU/ml Penicillin, 200µg/ml Streptomycin) an das Zentrum für Humangenetik geschickt. Jede Probe wurde mit Hilfe einer Pinzette und einer Pinzettenschere zerkleinert und mit 4 ml 0,35% Collagenase (200 U/ml, Serva) versetzt. Die Suspension mit den vereinzelten Tumorzellen wurde in ein bis drei 50 ml-Zellkulturflaschen mit jeweils 5 ml Medium 199 (Earle’s Salze, 20% fötales Kälberserum, 2% Antibiotika) bei 37°C, 5% CO2 und 95%iger Luftfeuchte inkubiert. Nach 24 Stunden wurde die Anheftung der Zellen im Phasenkontrastmikroskop (Zeiss) kontrolliert. Bei angewachsenen Zellen wurde zweimal pro Woche ein Mediumwechsel durchgeführt. Die Subkultivierung dicht gewachsener Zellschichten erfolgte durch Inkubation mit 1 ml Trypsin/EDTA Lösung (Biochrom) bei 37°C und Verteilen der Zellen auf zwei bis drei neue mit Medium 199 gefüllte 50 ml-Zellkulturflaschen. Das Zellwachstum wurde im Phasenkontrastmikroskop überprüft, bei hohem Mitoseindex wurden von verschieden Passagen der Kultur Chromosomen präpariert. 2.2. Primärzellkultur von Suspensionskulturen 2.2.1. Zellkultur von Knochenmarkaspiraten Knochenmarkaspirate wurden in der Tierärztlichen Hochschule Hannover entnommen, mit 1 ml Heparin (Roche) versetzt und an das Zentrum für Humangenetik geschickt. Jeweils ca. 1 ml des Aspirates wurden semisteril in 50 ml-Zellkulturflaschen gegeben, die zuvor mit je 10 ml Chromosomenmedium A (Biochrom), RPMI 1640(Gibco), und McCoy-Medium (Biochrom) versehen worden waren. Die Zellkulturflaschen wurden für 48 Stunden im Wärmeschrank bei 37°C inkubiert. Nach 48 Stunden wurden Metaphase-Chromosomen präpariert. 2.2.2. Zellkultur von Lymphozyten Für die Durchführung der FISH-Untersuchungen wurden Präparate aus caninen Lymphozyten hergestellt. Hierzu wurde in der Tierärztlichen Hochschule Hannover von 7 Material und Methoden gesunden Hunden 10 ml venöses Blut in 1 ml Heparin (Roche) aufgenommen und zugeschickt. Jeweils 1 ml dieses Vollblutes wurden für 4 Tage in 10 ml Chromosomenmedium B (Biochrom) bei 37°C semisteril kultiviert und anschließend MetaphaseChromosomen präpariert. 2.3. Kultivierung von Zelllinien Für die Erzeugung Adeno-Assoziierter Viren für die Gentherapie mit Hilfe des AAVHelper-Free Sytems (Stratagene) wurden die Zelllinien „AAV-293“ und „HT 1080“ nach Herstellerangaben im „Instruction Manual“ kultiviert. 2.4. Kryokonservierung von Zellkulturen 2.4.1. Einfrieren lebender Zellen Von den Primärzellkulturen sowie von den Zelllinien erfolgte in verschiedenen Passagen eine Kryokonservierung. Hierzu wurden Zellen in dicht gewachsenen Monolayern trypsiniert, in ca. 2 ml eiskaltem Medium-DMSO-Gemisch (10% DMSO, Janssen) aufgenommen, in ein Kryo-Röhrchen überführt und auf Eis gelagert. Das schrittweise Einfrieren der Zellen erfolgte durch ein Einfriergerät für biologisches Material. Das Gerät verfügt über eine programmierbare Einheit und einen daran gekoppelten CTEMessfühler, welcher die aktuelle Temperatur misst. Das Programm (0,7°C/min bis – 12°C und 1°C/min bis –120°C) wurde gestartet, nach Ablauf wurden die KryoRöhrchen in flüssigem Stickstoff gelagert. 2.4.2. Auftauen gefrorener Zellen Das Auftauen gefrorener Zellen erfolgte durch Entnahme des Röhrchens aus dem Stickstoff und Inkubation bei 37°C im Wasserbad. Die aufgetaute Zellsuspension wurde mit 8 ml Medium gewaschen und in eine mit Medium gefüllte Kulturflasche überführt. Die Kultivierung erfolgte unter den in Kapitel 2.1. genannten Bedingungen. Nach 24 Stunden wurde ein Mediumwechsel durchgeführt. 8 Material und Methoden 2.5. Zytogenetische Methoden 2.5.1. Chromosomen-Präparation von Adhäsionskulturen In dicht bewachsene Kulturflaschen mit einem hohen Mitose-Index wurden 60 µl Colcemid (0,1µg/ml, Biochrom) gegeben und weitere 90 bis 120 min inkubiert. Das Medium/Colcemid-Gemisch wurde abgesogen, die Zellen mit ca. 5 ml PBS gewaschen und trypsiniert. Die abgelösten Zellen mit den darin enthaltenen Metaphasen wurden anschließend mit 5 ml, hypotoner Medium 199-Lösung (1:6, Medium 199:Aqua bidest) für 25 min bei RT auf dem Schüttler inkubiert. Die so freigelegten Zellkerne wurden mit einem 3:1 Methanol/Eisessig-Gemisch fixiert und anschließend über Nacht bei -20°C gelagert. Diese Suspension wurde auf 4°C gekühlte, in dH2O gewässerte Objektträger getropft. Die so entstandenen Präparate mit MetaphaseChromosomen wurden für mindestens sechs Tage bei 37°C getrocknet. 2.5.2. Chromosomenpräparation von Suspensionskulturen Nach Ablauf der jeweiligen Kultivierungszeiten wurden in die Suspensionskulturen jeweils 100 µl Colcemid (0,1µg/ml, Biochrom) gegeben und für weitere zwei Stunden bei 37°C inkubiert. Die hypotone Behandlung erfolgte mit 37°C warmer 1/15 M KCl für 15 (Knochenmark) bzw. 20 min (Lymphozyten). Nach der Fixierung mit Methanol/Eisessig erfolgte die Lagerung über Nacht bei –20°C. Am nächsten Tag erfolgte die in Kapitel 2.5.1 beschriebene Herstellung der Chromsomen-Präparate. 2.5.3. GTG-Färbung Zur Erstellung von Karyogrammen wurde an den auf die Objektträger aufgebrachten und getrockneten Metaphase-Chromosomen eine GTG-Banding (modifiziert nach Seabright, 1971) durchgeführt. Hierzu wurden 15 mg Trypsin-Trockensubstanz (Difco) in 50 ml auf 37°C vorgewärmten Sörensen-Puffer (pH 6,8) für mind. 6 min gelöst. In diese Lösung wurden die Präparate für 6 sec eingetaucht, anschließend in einer 2%igen Giemsa-Lösung (Merck) für 10 min gefärbt. Nach dreimaligem Spülen in dH20 wurden die Präparate luftgetrocknet. Für eine dauerhafte Lagerung wurden die Präparate mit Entellan (Merck) eingedeckt. Für den Einsatz der Präparate in der FISH wurde die GTG-Banding weiter modifiziert. Um ein zu starkes Angreifen der Metaphase-Chromosomen zu verhindern, wurden 9 Material und Methoden die chromosomalen Proteine lediglich mit 1,2 mg Trypsin-Trockensubstanz in Sörensen-Puffer für nur 6 sec verdaut und anschließend für 7 min in einer 1%igen GiemsaLösung gefärbt. Für die Karyotypanalyse geeignete Metaphase-Chromosomen wurden aufgenommen (siehe Kapitel 2.5.4), die Objektträger mit einer 70%igen EthanolLösung für 15 min bei RT auf dem Schüttler entfärbt und anschließend luftgetrocknet. 2.5.4. Karyotypanalyse Es wurden Karyotypanalysen für canine Tumoren und Knochenmarksaspirate durchgeführt, indem geeignete GTG-gefärbte Metaphase-Chromosomen an einem Durchlichtmikroskop mit Hilfe einer digitalen Aufsatz-Kamera (Neuberger) und der PSISoftware (Perceptive Scientific Instruments) „MacKType, Version 5.5.1“ aufgenommen wurden. Die Karyogramme wurden am Computer nach der Nomenklatur von Reimann et al. (1996a) erstellt. Für jedes Chromosomen-Mapping wurden zehn gut gespreitete Metaphasen wie oben aufgenommen und bearbeitet. Gegebenenfalls wurden von den Chromosomen dieser Metaphasen ebenfalls Karyogramme nach der oben genannten Nomenklatur erstellt. 2.6. Molekular-zytogenetische Methoden 2.6.1. DNA-Isolierung aus caninem Vollblut Aus ca. 10 ml Vollblut wurde gesamt genomische Hunde DNA isoliert. Die Isolierung erfolgte mit Hilfe des DNA-Isolation Kits der Firma Puregene wie folgt: Lyse der Erythrozyten durch Zugabe des dreifachen Volumen RBC-Lysis Solution und Inkubation für 10 min bei +4°C. Zentrifugation für 10 min bei 2000 xg und 4°C, Resuspendieren der Lymphozyten, Zugabe der Cell lysis Solution und Inkubation über Nacht bei 4°C. Am nächsten Tag erfolgte die Zugabe der Protein Precipitation-Solution und erneute Zentrifugation für 10 min bei 2000 xg sowie die Fällung der DNA durch Zugabe von Isopropanol (Roth) zum Überstand und erneute Zentrifugation für 10 min bei 2000xg. Das DNA-Pellet wurde mit Ethanol (Riedel del Haen) gewaschen anschließend getrocknet und in 50 µl DNA Hydration Solution aufgenommen. 10 Material und Methoden 2.6.2. Fluoreszenz-in-situ-Hybridisierung (FISH) FISH Experimente wurden zum chromosomalen Mapping verschiedener, PCR gescreenter BAC-Klone durchgeführt. Als Präparate dienten dabei Objektträger mit fixierten Metaphase-Chromosomen caniner Lymphozyten (siehe Kapitel 2.5.2) 2.6.2.1. Markierung der Sonden DNA durch Nick-Translation Die Sonden bestanden aus der isolierten DNA verschiedener BAC-Klone, die zu menschlichen Genen homologe Sequenzen enthielten. In diese DNA wurden mittels Nick-Translation Digoxigenin markierte Nukleotide (DIG-11-UTPs) eingefügt. Das Labelling wurde nach dem Protokoll des Herstellers „Dig-Nick-Translation-Mix for in situ probes“ (Roche Diagnostics) durchgeführt. Die Lösung wurde mit 19 µl TE-Puffer verdünnt und bis zur Verwendung bei +4°C gelagert. 2.6.2.2. Herstellung von ultraschall-behandelter Hunde DNA (sdDNA) Die in Kapitel 2.6.1 isolierte DNA wurde 3 mal für 45 sec mit Ultraschall behandelt. Die Länge der so entstandenen DNA-Fragmente wurde mit Hilfe einer Gelelektrophorese überprüft, erfahrungsgemäß liefern Fragmentlängen von ca. 100 –300 bp die besten Ergebnisse. 2.6.2.3. Hybridisierung Die vorbereiteten Präparate wurden bei Bedarf mit Pepsin-Lösung (Merck) verdaut, in 2xSSC gewaschen, in einer –20°C kalten, aufsteigenden Ethanolreihe (70%, 80%, 90%, 100%) dehydriert und anschließend getrocknet. Die Präparate wurden zur Denaturierung der Chromosomen in einer 70°C heißen 70% Formamid/ 2xSSC-Lösung inkubiert, anschließend in eiskaltem 2 x SSC gewaschen, abermals entwässert und getrocknet. Für den Hybridisierungsmix wurden pro OT 8µl markierte Sonden-DNA mit 4 µl ssDNA (Sigma), 1µg sd-DNA, 25µl Formamid (Fluka), 10 µl Dextransulfat (Oncor), 2,5µl 20 x SSC und 2,5 µl SSPE vermischt, denaturiert und prähybridisiert. Die Hybridisierung erfolgte über Nacht bei 37°C. Für die Posthybridisierung wurden die Präparate in 42°C warmer 50% Formamid/ 2 x SSC-Lösung für 15 min, 42°C warmen 2 x SSC-Lösung für 8 und in 1 x PBS gewaschen. Die Präinkubation erfolgte mit jeweils 100 µl 5% NFDM/ 4 x SSC für 10 min bei 37°C. Zur Färbung der SondenDNA wurden die OTs mit 100 µl Anti-Dig-Lösung für 20 min inkubiert, nicht gebundene Anti-Dig-Lösung wurde durch dreimaliges Spülen mit 1 x PBS wieder abgewa11 Material und Methoden schen. Die Präparate wurden getrocknet und durch Auftragen von Antifade-Solution gegengefärbt. Die Auswertung erfolgte an Mikroskop und Computer. 2.6.2.4. Auswertung Die Auswertung der FISH-Versuche erfolgte an den zuvor ausgesuchten Metaphasen (siehe Kapitel 2.5.3) an einem UV- Durchlichtmikroskop mit Hilfe einer digitalen Aufsatz-Kamera (Neuberger) und der PSI-Software (Perceptive Scientific Instruments) „MacProbe, Version 4.0“. 2.6.3. Erzeugung Adeno-assoziierter Viren Zur Erzeugung von Adeno-assoziierten Viren, welche das gewünschte Gen als Insert tragen, wurden die kultivierten AAV-293 Zellen mit den drei Plasmiden pHelper, pAAV RC und pAAV MCS nach Anleitung im „AAV Helper-Free System instruction manual“ (Stratagene) transfiziert. Es wurden verschiedenartige Viren erzeugt, indem das gewünschte Gen in sense (Lac Z) oder antisense Richtung (HMGA1 und HMGA2) in das pAAV MCS Plasmid kloniert wurde. Zusätzlich wurden Viren ohne Insert erzeugt, welche in späteren Untersuchungen als Negativkontrollen dienen sollten. Eine Negativkontrolle für die Virusproduktion wurde durchgeführt, indem mindestens eines der drei Plasmide durch Puffer ersetzt wurde. Die Virusernte wurde nach 72 Stunden ebenfalls nach dem „AAV Helper-Free System instruction manual“ (Stratagene) durchgeführt. Der so gewonnene primäre Virusstock wurde zunächst bei 37°C einem DNAse I (Sigma) Verdau unterzogen und anschließend nach Herstellerangaben im „ViraKit AAV-Instruction Booklet for Purification Kit (Virapur)“ aufgereinigt. Abschließend wurde der Virustiter mit Hilfe einer universellen Real-Time PCR für Adeno-assoziierte Viren bestimmt. 2.6.4. Proliferationsassays mit Adeno-assoziierten Viren und CT 1258 Der Effekt von Adeno-assoziierten Viren, welche HMGA1 und HMGA2 in Antisense Orientierung tragen, auf HMGA überexprimierende Zellen wurde mit Hilfe der spontan immortalisierten Zell-Linie CT1258 überprüft. Hierzu wurden CT1258 Zellen in einer Dichte von 2.500 Zellen in 96-well Platten mit 100 µl 20% Medium 199 ausgesät und über Nacht bei 37°C, 5% CO2 und 95%iger Luftfeuchte inkubiert. Das Medium wurde 12 Material und Methoden abgesogen und durch 50µl L-199 Medium (Earle’s Salze, 2% fötales Kälberserum, 2% Antibiotika) ersetzt. Die Zellen wurden in unterschiedliche Gruppen geteilt: 1. Zugabe von 50 vg/Zelle rAAV as-HMGA (25/25 vg/Zelle rAAV-asHMGA1a/rAAVasHMGA2), 2. Zugabe von 50 vg/Zelle rAAV-LacZ und 3. keine Zugabe von Viren. Die Gruppen 2 und 3 dienten als Kontrollen. Um Kreuzkontaminationen zu vermeiden, wurden alle Experimente auf separaten Platten durchgeführt. Während der folgenden 90 min. Inkubation bei 37°C wurden die Platten alle 30 min. vorsichtig geschwenkt, anschließend wurden jeweils 50 µl H-199 Medium (Earle’s Salze, 18% fötales Kälberserum, 2% Antibiotika) in die Wells gegeben. Nach einer Inkubationszeit von 60 Stunden bei 37°C, 5% CO2 und 95%iger Luftfeuchte, erfolgte die Zugabe von BrdU in die Wells und eine weitere Inkubation von 12 Stunden unter gleichen Bedingungen. Die weitere Behandlung des Assays erfolgte nach Herstellerangaben der „General Assay Procedure, Cell Proliferation ELISA BrdU (colorimetric)“(Roche). Die Messung der Absorption wurde im Multidetection Microplate Reader „Synergy“ (Biotek) bei einer Wellenlänge von 370 nm durchgeführt. 2.7. Erstellen der Gewebebank 2.7.1. Entnahme von Gewebeproben Die canine Gewebebank soll als Grundlage weitgehender molekularbiologischer Untersuchungen dienen. Die Gewebesammlung wurde in Kooperation mit der Klinik für kleine Haustiere der Tierärztlichen Hochschule Hannover entwickelt und aufgebaut. Die Entnahme von Gewebeproben erfolgte während der chirurgischen Versorgung der Tiere oder direkt nach deren Euthanasie unter sterilen OP-Bedingungen. Gewebeproben von Tumoren und Normalgeweben wurden mit sterilen Instrumenten zerkleinert um mehrere Proben in geeigneter Größe herzustellen. Diese wurden in sterile Kryogefäße mit Schraubgewinde gegeben und mit der Angabe der hausinternen Kliniknummer des jeweiligen Patienten und des Inhalts des Röhrchens beschriftet. Die Gefäße wurden dicht verschlossen und schnellstmöglich in flüssigen Stickstoff überführt um das Gewebe Schock zu gefrieren. Von allen Geweben wurde eine Probe zur histopathologischen Untersuchung in Formalin eingelegt. Zusätzlich zu den Gewebeproben wurden den jeweiligen Hunden routinemäßig verschiedene Blut- (EDTAVollblut, Heparin-Plasma, EDTA-Plasma, Serum) und Urinproben entnommen und nach analoger Beschriftung ebenfalls tiefgefroren. 13 Material und Methoden 2.7.2. Lagerung der Gewebeproben Die weitere Lagerung der schockgefrorenen Gewebeproben erfolgte bei –80°C. Die Kryogefäße wurden dazu aus dem flüssigen Stickstoff entnommen und schnellstmöglich in Polypropylenboxen mit 10 x 10 Raster überführt, welche wiederum in Metallracks einsortiert und in einem –80°C Gefrierschrank gelagert wurden. Das 10 x 10 Raster und die Nummerierung der Boxen ermöglichte die Zuordnung einer bestimmten Probe zu einem bestimmten Lagerort, um die Wiederauffindbarkeit der Proben zu gewährleisten. 2.7.3. Katalogisieren der Gewebeproben Es wurde eine Datenbank unter Verwendung des Programms Microsoft Access programmiert. In diese Datenbank wurden die Patientendaten des jeweiligen Tieres, also Namen des Besitzers und die hausinterne Kliniknummer, Angaben über Rasse, Alter und Geschlecht des Tieres sowie über Art der Erkrankung und den histopathologischen Befund eingegeben. Zusätzlich erfolgte eine Verknüpfung dieser Daten mit den Daten über die Art und den Lagerort der dem Hund zugehörigen Proben. 2.8. Molekulargenetische Methoden 2.8.1. RNA-Isolierung aus Gewebe Zur Lyse der Zellen wurden ca. 500 mg Gewebe mit 3,75 ml Trizol LS (Gibco BRL) versetzt. Das Gewebe wurde mit einem Skalpell möglichst fein zerkleinert, der Ansatz in ein steriles Sarstedt-Röhrchen überführt und 5 min bei RT inkubiert. Zur Fällung der Proteine wurden 750 µl Chloroform (Fluka) zugegeben, alles für 15 sec. gut gemischt und der Ansatz für 2-3 min bei RT inkubiert. Die Suspension wurde für 15 min bei 4500 xg und 4°C zentrifugiert, der wässrige, RNA-haltige Überstand in ein neues Röhrchen überführt und mit 1 Vol. 70% Ethanol vermischt. Dieser Ansatz wurde vollständig auf eine RNeasy midi Säule (Qiagen, Hilden) aufgetragen. Die weiteren Schritte erfolgten nach Herstellerangaben im „RNeasy midi/maxi Protocol for the Isolation of total RNA from animal tissue“ (Qiagen, Hilden). Nach der Aufreinigung wurde die enthaltene RNA-Menge im Photometer bei 260 nm quantifiziert. 14 Material und Methoden 2.8.2. RNA-Isolierung aus der Zell-Linie CT 1258 Zur Vorbereitung wurde der Zellrasen jeder Flasche mit 5 ml PBS gewaschen und durch Zugabe von 500µl Trypsin/EDTA-Lösung (Biochrom) vom Boden abgelöst. Es folgte eine Zentrifugation für 5 min bei 400 xg und 4°C. Der Überstand wurde verworfen und das Pellet durch Zugabe von 1 ml PBS, Resuspendieren und erneute Zentrifugation für 5 min bei 4500 xg und 4°C gewaschen. Das Zellpellet wurde in 350 µl RLT-Puffer (Qiagen, Hilden) aufgenommen, mit Hilfe des QIAshredder (Qiagen, Hilden) homogenisiert und mit 1 Vol. 70% Ethanol versetzt. Das Lysat wurde vollständig auf eine RNeasy mini Säule gegeben und die RNA nach Herstellerangaben im „RNeasy mini Protocol for the Isolation of total RNA from animal cells“ (Qiagen, Hilden) isoliert. Nach der Aufreinigung wurde die enthaltene RNA-Menge im Photometer bei 260 nm quantifiziert. 2.8.3. DNase Verdau Um eine Kontamination der isolierten RNA mit DNA auszuschließen, wurde vor der Verwendung der RNA für die cDNA-Synthese (siehe Kapitel 2.8.4) ein DNase I – Verdau durchgeführt. Jeweils 5 µg der isolierten RNA (siehe Kapitel 2.8.1 und 2.8.2) wurden auf ein Reaktionsvolumen von 87,5 µl gebracht, und mit 10µl RDD-Puffer (Qiagen, Hilden) und 2,5 µl DNase I stock solution (Qiagen, Hilden) für 10 min bei RT inkubiert. Anschließend wurde der Ansatz mit Hilfe des „RNeasy miniprotocol for Cleanup“ (Qiagen, Hilden) nach Angabe des Herstellers aufgereinigt. Der DNase I Verdau sowie der RNeasy mini clean-up wurden wiederholt und die enthaltene RNAMenge im Photometer bei 260 nm quantifiziert. 2.8.4. cDNA-Synthese Die cDNA-Erststrangsynthese wurde mit Hilfe von 200 U M-MLV reverser Transkriptase (Invitrogen) nach Herstellerangaben durchgeführt. Im Einzelnen: Mischen von 250 ng der DNase I verdauten RNA in einem Volumen von 10µl mit 1 µl AP2 Primer AAGGATCCGTCGACATC(17)T (50µM) und 1 µl dNTP-Mix (10mM) und Inkubation für 5 min bei 65°C. Zugabe von 4 µl 5 x 1st Strand Buffer, 2 µl DTT (0,1M) 1µl RNase Out und 1 µl M-MLV Reverser Transkriptase (200U/µl) und Inkubation für 50 min bei 37°C. Abbruch der enzymatischen Reaktion durch Inkubation bei 70°C für 15 min. 15 Material und Methoden 2.8.5. Amplifikation von DNA-Fragmenten durch PolymeraseKettenreaktion (PCR) Zur Etablierung der HMGA2-spezifischen PCR wurden zunächst die ersten bzw. letzten 25 Basen der gewählten Sequenzen als upper bzw. lower Primer eingesetzt. Als Basis für das Reaktionsschema dienten das „Basic PCR Protokoll“ der Firma Invitrogen und das Protokoll „Taq DNA Polymerase and Q-Solution“ der Firma Qiagen. Als Template diente die zuvor hergestellte cDNA. Als Template für die positiv-Kontrolle diente HMGA1- bzw. HMGA2-Plasmid-DNA. Der Reaktionsansatz wurde wie folgt pipettiert: Aqua bidest 12,75 µl 10 x PCR-Puffer 2,50 µl dNTP-Mix je 10 mM 0,50 µl MgCl2 50 mM 0,75 µl Q-Solution 5,00 µl Upper Primer 10 mM 1,25 µl Lower Primer 10 mM 1,25 µl cDNA (70 ng/µl) 0,50 µl Taq DNA Polmerase 5U/µl 0,50 µl Gesamtvolumen 25,0 µl Die Amplifikation erfolgte nach einer initialen Denaturierung für 5 min bei 95°C in 35 Zyklen (Denaturierung für 45 sec. 94°C, Annealing für 45 sec. bei 61°C, Elongation für 45 sec. bei 72°C). Sie endete mit einer finalen Elongation für 10 min bei 72°C. 2.8.6. Gelelektrophoretische Auftrennung der PCR-Fragmente Für die gelelektrophoretische Auftrennung von DNA-Fragmenten wurden 1,5% Agarosegele (Promega) mit 1 x TAE-Puffer gekocht. Für die Detektion der DNA wurden in das noch flüssige Gel 1,5 µl Ethidumbromid-Lösung (Oncor) pro 100 ml Gel pipettiert. DNA-Marker und –Proben wurden jeweils mit 6xGelbeladungspuffer im Verhältnis 5:1 vermischt, in die Geltaschen pipettiert und für 1 h bei 120 Volt in 1xTAE-Puffer aufgetrennt. Der Nachweis der aufgetrennten DNA erfolgte im UV-Durchlicht bei 254 nm und wurde mit dem Programm ArgusX1 fotografiert. 16 Material und Methoden 2.8.7. Real-Time PCR (Quantitativ) Für die HMGA2-spezifische Real-Time PCR wurde zunächst wieder eine cDNASynthese durchgeführt (siehe Kapitel 2.8.4), allerdings wurde statt des AP2-Primers der genspezifische Reverse-Primer eingesetzt. Zusätzlich wurden eine cDNASynthese an einem synthetischen Oligonukleotid, dem sog. Standard, mit definierter Menge an Transkripten pro 10µl unter den gleichen Bedingungen durchgeführt. Die eigentliche Real-Time PCR erfolgte im Taq-Man nach folgendem Schema: Aqua bidest 7,25 µl 2x TaqMan Universal PCR Master Mix 12,50 µl Upper Primer (10 µM) 1,50 µl Lower Primer (10 µM) 1,50 µl Sonde (20µM) 0,25 µl cDNA (12,5ng/µl) 2,00 µl Gesamtvolumen 25,0 µl Die Amplifikation erfolgte nach einer initialen Denaturierung für 10 min bei 95°C in 50 Zyklen (Denaturierung für 15 sec. 95°C, Annealing für 60 sec. bei 60°C). 17 Ergebnisse 3. Ergebnisse 3.1. Zytogenetische Ergebnisse Ein Teilaspekt der vorliegenden Arbeit war die zytogenetische Untersuchung verschiedener caniner Neoplasien. Der Hund zeigt einen komplexen Karyotyp mit 76 akrozentrischen Chromosomen, die in ihrer Länge nur wenig variieren und zwei metazentrischen Geschlechtschromosomen, X und Y. 3.1.1. Cytogenetic investigations in four canine lymphomas I. Winkler S et al., Anticancer Res. 2005 Aus 30 verschiedenen Knochenmarkaspiraten konnten erfolgreich Chromosomen präpariert werden. Die zytogenetische Analyse von durchschnittlich 10 Metaphasen pro Fall zeigte in vier Fällen klonale Aberrationen. Der erste Patient, ein fünfjähriger männlicher Münsterländer (KM15) zeigte ein derivatives Chromosom 13. Während der zweite Patient, ein sechsjähriger männlicher Münsterländer eine klonale Trisomie 8 aufwies. Der dritte Patient, ein vierjähriger männlicher Deutscher Schäferhund zeigte wiederum eine klonale Trisomie 13 mit zusätzlichen Trisomien der Chromosomen 20, 30 und 37 sowie einer nicht klonalen Tetrasomie 9. Während der vierte Patient, ein vierjähriger, weiblicher Berner Sennenhund eine einfache Trisomie 2 zeigte. Ein Vergleich dieser Ergebnisse mit humanen hämatopoetischen Erkrankungen zeigt bemerkenswerte Übereinstimmungen zwischen beiden Spezies. Berücksichtigt man die von Yang et al. gefundenen Homologien zwischen menschlichen und caninen Chromosomen, scheinen in beiden Spezies vergleichbare Regionen von den chromosomalen Aberrationen betroffen zu sein. Nicht nur das canine Non-Hodgkin-Lymphom, sondern insbesondere auch das canine Prostatakarzinom zeige große Ähnlichkeiten bezüglich der Tumorbiologie zu ihrem jeweiligen menschlichen Pendant, daher wurden im folgenden insbesondere canine Prostata-Karzinome zytogenetisch untersucht. 3.1.2. Establishment of a cell line derived from a canine prostate carcinoma with a highly rearranged karyotype II. Winkler S et al., J Hered. 2005 Canine Prostatakarzinome zeigen viele Übereinstimmungen zu ihrem menschlichen Gegenstück, wie zum Beispiel durchschnittliches Erkrankungsalter und Metastasie18 Ergebnisse rungsverhalten. Zytogenetische Untersuchungen an humanen Prostatakarzinomen zeigten eine Reihe von chromosomalen Aberrationen. Zur Überprüfung, ob sich auch in caninen Tumoren vergleichbare zytogenetische Aberrationen finden lassen, wurde ein Prostatatumor eines 10-jährigen Briards zytogenetisch untersucht. Die Kultivierung von Zellen des Tumors mit der Nummer CT 1258 resultierte in gut wachsenden Zellen mit einer hohen Mitoserate. Zum Zeitpunkt der Publikation befanden sich die Zellen in der 55. Passage der Zellkultur, was auf eine spontane Immortalisierung der Zellen hinweist. Die zytogenetische Untersuchung der Zellen ergab einen annähernd tetraploiden Karyotyp mit vielen zentrischen Fusionen und den daraus resultierenden zweiarmigen Markerchromosomen. Die Chromosomenanzahl reichte von 81 bis 131. Der stark rearrangierte Karyotyp machte eine genaue Identifikation aller Chromosomen unmöglich, jedoch konnten zentrische Fusionen der Chromosomen vier und fünf in ca. der Hälfte aller untersuchten Metaphasen und zentrische Fusionen der Chromosomen eins und fünf sowie ein Markerchromosom, bestehend aus Material der Chromosomen eins und zwei in allen untersuchten Metaphasen gezeigt werden. 3.1.3. Polysomy 13 in a canine prostate carcinoma underlining its significance in the development of prostate cancer III. Winkler S et al., Cancer Genet Cytogenet. 2006 Zur weiteren Überprüfung ob sich in caninen Prostatakarzinomen ähnliche Chromosomenaberrationen wie in menschlichen Tumoren der Prostata zeigen, wurde ein Tumoraspirat eines caninen Prostatakarzinoms zytogenetisch untersucht. Die Zellkultur dieses Tumoraspirates resultierte in gut wachsenden Zellen mit einer mittleren Mitoserate. Die zytogenetische Untersuchung der Zellen ergab das Vorhandensein eines Fusionschromosoms 13 in unterschiedlichen Anzahlen zusätzlich zu einem normalen caninen Chromosom 13, woraus eine Polysomie resultiert. Die Chromosomenanzahl reichte von 72 bis 78, wobei die Mehrzahl der Metaphasen 78 Chromosomen zeigte. Keine der Metaphasen hatte mehr als 78 Chromosomen. Fusionen der Chromosomen 13 wurden in allen Metaphasen beobachtet, dabei traten die Fusionschromosomen in unterschiedlicher Anzahl auf. 3.2. Molekular-zytogenetische Ergebnisse Das Auftreten bestimmter, wiederkehrender chromosomaler Veränderungen in caninen Tumoren lässt vermuten, dass wichtige, Tumor-assoziierte Gene in diese Aberra19 Ergebnisse tionen involviert sind. Daher bestand ein weiterer Teilaspekt der vorliegenden Arbeit aus der Lokalisation verschiedener Tumor-relevanter Gene im caninen Genom. Aufgrund des bereits erwähnten komplexen caninen Karyotyps gibt es nur wenige Arbeiten, die sich mit dem FISH-Mapping also der direkten Lokalisation von Genen auf dem Genom des Hundes befassen. Mit Hilfe der von Reimann et al. (1996) erstellten Nomenklatur, welche die eindeutige Zuordnung von caninen Chromosomenpaaren ermöglicht, war es in der vorliegenden Arbeit möglich, mit Hilfe des FISH-Mappings verschiedene canine Gene im Karyotyp des Hundes zu lokalisieren. 3.2.1. Molecular characterization and mapping of the canine KRAB zinc finger gene ZNF331 IV. Meiboom M et al., Anim Genet. 2004 Das KRAB Zinkfinger-Gen ZNF331 ist in humanen Schilddrüsenadenomen häufig in chromosomale Aberrationen involviert, daher wurde es als Kandidatengen für die Entwicklung dieser Tumoren beschrieben. Für die Charakterisierung des ZNF331 Gens des Hundes wurde eine canine cDNA Library mit Primern für das humane ZNF 331 Homolog gescreent. Eine 5’ Race PCR mit spezifischen Primern an der cDNA führte zu einem vollständigen cDNA Klon. Aus den ermittelten Daten wurde die mRNA Sequenz für das canine ZNF 331 erstellt. Demnach besteht das Gen, inklusive ORF, aus 2148 bp und zeigt in der kodierenden Sequenz eine Homologie von 85,3% zwischen Hund und Mensch. Northern Blot Analysen an mRNA verschiedener caniner Gewebeproben zeigten eine nur schwache Expression des Gens. Anhand der gewonnenen Sequenzinformationen wurde eine Primerpaar generiert, mit dem ein 300 bp großes Fragment aus der Spacerregion des ZNF331 Gens amplifiziert und durch Sequenzanalyse verifiziert wurde. Mit diesem Fragment wurde ein caniner BAC/PAC Filter auf positive Klone gescreent. Der verifizierte Klon wurde in die FISH eingesetzt. Das FISH-Mapping zeigte eine Lokalisation des caninen ZNF331 auf CFA1q33. Ein weiterer Ansatzpunkt für die Untersuchung der Tumorenstehung sind (Cyclin abhängige) Kinasen, die eine wichtige Rolle in der Regulation des Zellzyklus spielen. Daher wurden im Folgenden sowohl die intrazelluläre Proteinkinase AKT3 als auch das regulatorisch wirksame Cyclin D1 (CCND1) im Genom des Hundes lokalisiert. 20 Ergebnisse 3.2.2. The protein kinase B, gamma (AKT3) gene maps to canine chromosome 7 V. Murua Escobar H et al., Anim Genet. 2004 Die Proteinkinase B, gamma (AKT3) ist eine intrazelluläre Proteinkinase, die unter anderem die Überlebensdauer der Zelle reguliert. Sie reguliert die Funktion vieler zellulärer Prozesse, zu denen sowohl die Apoptose, aber auch die Proliferation gehören (Masure et al., 1999; Nicholson and Anderson, 2002). Für die Herstellung einer FISHSonde für das canine AKT3 Gen wurde der entsprechende Bereich gesamt genomischer DNA eines zweijährigen golden Retrievers mittels PCR amplifiziert. Dazu wurden Primer verwendet, die einen Teil des Exon 13 umfassen und welche zu 80,3 % identisch mit menschlicher AKT3 mRNA sind. Aus dieser PCR resultierte eine PCR Fragment von 303 bp, welches durch Sequenzanalyse verifiziert wurde. Mit Hilfe dieser Primer wurde eine canine BAC Library auf positive Klone gescreent. Das mit den verifizierten Klonen durchgeführte FISH-Mapping ergab ein Lokalisation des caninen AKT3 Gens auf CFA 7. 3.2.3. Molecular characterization and mapping of the canine cyclin D1 (CCND1) gene VI. Meyer B et al., Anim Genet. 2004 Die Deregulierung der Cyclin D1 Synthese erlaubt das fortschreiten des Zellzyklus in der Abwesenheit von Wachstumsfaktoren und könnte somit zur Entstehung von Tumoren beitragen. Zur Charakterisierung des caninen Cyclin D1-Gens und des dazugehörigen Proteins wurde cDNA aus einem caninen Osteosarkom mit Primern, spezifisch für den humanen ORF des CCND1-Gens, gescreent. Das resultierende PCRProdukt wurde anschließend kloniert und sequenziert und der vollständige ORF mit Hilfe von zwei zusätzlichen Primern amplifiziert. Die Sequenzanalyse ergab ein 1246 bp langes cDNA Fragment, welches für den caninen ORF eine 90,4% Sequenz Übereinstimmung zu seinem menschlichen Homolog zeigte. Das daraus resultierende canine Protein besteht aus 295 Aminosäuren und zeigt eine Ähnlichkeit von 93,3% zwischen beiden Spezies. Anhand der menschlichen Sequenzdaten wurde ein weiteres Primerpaar hergestellt, mit dem eine canine BAC Library auf positive Klone gescreent wurde. Der hieraus resultierende positive Klon wurde in die FISH eingesetzt. Das FISH-Mapping ergab eine Lokalisation des caninen CCND1-Gens auf CFA 17. 21 Ergebnisse Des Weiteren spielen auch die RAS Gene eine wichtige Rolle in der menschlichen Tumorentwicklung Die Bindung von Wachstumsfaktoren aktiviert die RAS Proteine und initiiert so die Zellteilung. Mutationen in den RAS Genen führen zur andauernden Aktivierung von Signalwegen, welche die Zellteilung anregen und schließlich zur unkontrollierten Zellteilung führen (Park, 1995). Im Rahmen der vorliegenden Arbeit wurden zwei Mitglieder der RAS Proteinfamilie, NRAS und KRAS, im caninen Genom lokalisiert. 3.2.4. The canine NRAS gene maps to CFA 17 VII. Richter A et al., Anim Genet. 2004 Für die Lokalisation des caninen NRAS-Gens wurden anhand der caninen mRNA Sequenz Datenbank PCR-Primer hergestellt. Die PCR wurde an caninem Blut etabliert, das resultierende PCR-Fragment wurde durch Sequenzanalyse verifiziert. Mit den gleichen Primern wurde die canine BAC Library auf positive Klone gescreent. Der verifizierte, positive Klon wurde für das FISH-Mapping verwendet, welches eine Lokalisation des caninen NRAS auf CFA 17 ergab. 3.2.5. The canine KRAS2 gene maps to chromosome 22 VIII. Winkler S et al., Anim Genet. 2004 Um das KRAS Homolog im caninen Genom zu lokalisieren, wurde zunächst an caniner gesamt genomischer DNA ein Primerpaar generiert, dass einen Teil des Exons 2 umfasst. Das daraus resultierende PCR-Produkt wurde zur Verifizierung kloniert und sequenziert. Das etablierte Primerpaar wurde verwendet um die canine BAC Library auf positive Klone zu screenen. Der verifizierte Klon wurde in die FISH eingesetzt, welche eine Lokalisation von KRAS2 auf dem caninen Chromosom 22 ergab. Der Schwerpunkt der vorliegenden Arbeit lag auf den Untersuchungen der caninen HMG-Proteine. Ein Rezeptor für HMGB1, ein Mitglied der HMG-Proteinfamilie ist RAGE (receptor for advanced glycation end products) ein Transmembranrezeptor aus der Immunglobulinfamilie, an den extrazelluläres HMGB1 als Ligand binden kann. Diese Bindung führt zur Aktivierung verschiedener Signalkaskaden, welche wiederum Einfluss auf das Wachstum und die Beweglichkeit von Zellen nehmen. Im Rahmen der Charakterisierung des caninen RAGE wurde das Gen im Genom des Hundes lokalisiert. 22 Ergebnisse 3.2.6. Cloning and characterization of the canine receptor for advanced glycation end products IX. Murua Escobar H et al., Gene. 2006 Zur Charakterisierung des caninen RAGE-Gens und des dazugehörigen Proteins wurde cDNA aus caninem Lungengewebe mit Primern, spezifisch für die humane cDNA des RAGE-Gens, gescreent. Das resultierende PCR-Produkt wurde anschließend kloniert und sequenziert. Das vollständige Gen wurde mit Hilfe zweier weiterer Primerpaare amplifiziert und umfasst 2835 bp. Die vollständige canine RAGE cDNA besteht aus 11 Exons die insgesamt 1384 Basenpaare umfassen. Die Exongröße schwankt zwischen 27 und 254 bp. Alles in allem besteht die cDNA aus einem 5’ UTR von 18 bp, einem cds von 1215 bp, und einem 3’ UTR von 151 bp. Die Sequenzhomologie zwischen Hund und Mensch beträgt insgesamt 80,9% und variiert für die verschiedenen Exons zwischen 73,9% (Exon 11) und 86,7% (Exon 2). Das abgeleitete canine Protein weist für die extrazelluläre Domäne eine Übereinstimmung von 78,2%, für die Transmembran Domäne eine Übereinstimmung von 78,9% und für die cytosolische Domäne eine Übereinstimmung von 72,7% mit dem menschlichen Protein auf, was einer Homologie von insgesamt 77,6% zwischen beiden Spezies entspricht. Die Expression des caninen RAGE-Gens wurde in verschiedenen Geweben mittels Northern Blot und Hybridisierung mit einer 32 P markierten RAGE cDNA Sonde unter- sucht. Bis auf das Lungengewebe zeigte keine der untersuchten Gewebeproben die spezifische Bande von 1,4 kb. Diese Ergebnisse decken sich mit denen für die RAGE-Expression in humanen Geweben. Für die Lokalisation des Gens im caninen Genom wurde eine genomische DNA Sonde hergestellt und für das Screening des caninen RPCI 81 BAC/PAC Filters eingesetzt. Der verifizierte positive Klon wurde in die FISH eingesetzt. Das FISH-Mapping ergab die Lokalisation des caninen RAGE auf CFA 12. 3.3. Erstellen der Gewebebank Molekulargenetische Untersuchungen z.B. zur Genexpression erfordern adäquate Gewebeproben. Aus diesem Grund wurde im Rahmen der vorliegenden Arbeit damit begonnen, eine Gewebebank für canine und feline Tumoren und Normalgewebe zu erstellen. Dazu wurden 8408 Proben von Hunden und Katzen verschiedener Rassenzugehörigkeiten genommen und katalogisiert. Dabei entfallen 4286 Proben auf Tumo23 Ergebnisse ren und 4122 auf Normalgewebe. Zusätzlich wurden zu den meisten Tumorgeweben auch verschiedene Blutproben genommen, eingefroren und katalogisiert, so dass die gesamte Gewebebank aus über 10.000 Proben bestand. Der Ausbau der Gewebebank erfolgte über den Rahmen der vorliegenden Arbeit hinaus. Die Gewebebank umfasste im Frühjahr 2007 21.100 Proben, der überwiegende Anteil (67,9%) besteht dabei aus Tumorproben. Die Proben aus dieser Gewebebank stellten die Grundlage dar, für eine Vielzahl molekulargenetischer Untersuchungen. Daher werden die Ergebnisse dieser Untersuchungen im Kapitel 3.4. dargestellt. 3.4. Molekulargenetische Ergebnisse Das Ziel, den Hund als Modell für die Krebsentstehung beim Menschen zu nutzen, um sowohl die Diagnose als auch die Therapie in beiden Spezies zu verbessern und damit die Lebenserwartung zu erhöhen, kann nur durch ein Verständnis der molekularen Grundlagen und Wirkweise der untersuchten Gene erreicht werden. In der vorliegenden Arbeit wurden daher verschiedene tumorrelevante Gene molekulargenetisch untersucht. 3.4.1. Absence of ras-gene hot-spot mutations in canine fibrosarcomas and melanomas. X. Murua Escobar H et al., Anticancer Res. 2004 Für die Untersuchung auf hot-spot Mutationen in RAS Genen wurden 13 canine Fibrosarkome, 11 canine Melanome und 2 feline Fibrosarkome aus der caninen Gewebebank verwendet. Unter den untersuchten Rassen befanden sich Mischlinge sowie reinrassige Tiere wie Irish Terrier, Fox Terrier, Schnauzer, Kuvasz, Briard, Deutscher Schäferhund, Rottweiler, Beagle und Pudel. Die DNA wurde isoliert und mit spezifischen Primern für die Exons 1 und 2 von KRAS und NRAS amplifiziert und sequenziert. Vier der sechsundzwanzig untersuchten Gewebeproben zeigten NukleotidVeränderungen in den caninen Exons. Keine dieser Veränderungen lag in den RAS hot-spot Codons 12, 13 und 61. Ein canines Fibrosarkom zeigte drei Veränderungen: KRAS Exon 1 Codon 23 (CTA → TTA, keine Aminosäureveränderung), Exon 2, Codon 53 (TTG → TAG, Leu → Stopp codon) und NRAS Exon 1, Codon 10, GGA → GAA, Gly → Glu). Zwei andere Fibrosarkome (Kuvasz und Pudel) zeigen jeweils einen Nukleotidaustausch in KRAS, Exon 2, welche die Codons 48 (GGA → GAA, Gly 24 Ergebnisse → Glu) und 70 (CAG → CTG, Gln → Leu) betreffen. In einer Probe eines Melanoms aus einem Mischling wurde ein Nukleotidaustausch in NRAS Exon 1 Codon 22 (CAG → CTG, Gln → Leu) gefunden. Die Untersuchung des NRAS Exon 2 zeigte keine Nukleotid-Veränderungen innerhalb der caninen Sequenzen. 3.4.2. RAS gene hot-spot mutations in canine neoplasias. XI. Richter A et al., J Hered. 2005 Für den Vergleich mit bereits vorliegenden Daten aus anderen Studien wurden 13 canine Fibrosarkome und 11 canine Melanome aus der caninen Gewebebank auf Punktmutationen in den Ras-Gen Hot-Spot Mutationen untersucht. Dieser Vergleich ergab, dass K-Ras und N-Ras Mutationen in den Hot-Spot Loci offenbar nur sehr selten in caninen Fibrosarkomen und Melanomen vorkommen. Von den insgesamt untersuchten 31 caninen Fibrosarkomen und 17 caninen Melanomen waren nur zwei Melanomproben von einer Mutation im Exon 61 des N-Ras Gens betroffen. Für das K-Ras Gen wurden keinerlei Mutationen in den Hot-Spot Codons der untersuchten Proben gefunden. Um einen aussagekräftigen Vergleich der Daten dieser caninen Tumorentitäten mit den vorliegenden Forschungsergebnissen von z. B. Menschen und Mäusen vornehmen zu können bedarf es jedoch der Untersuchung größerer Anzahlen an caninen Tumorproben. 3.4.3. Expression pattern of the HMGB1 gene in sarcomas of the dog. XII. Meyer B et al., Anticancer Res. 2004 Für die Expressionsanalyse von HMGB1 in caninen Sarkomen wurden 5 Osteosarkome, ein Fibrosarkom und ein Leiomyosarkom aus der caninen Gewebebank verwendet. RNA wurde isoliert und einerseits für die Synthese von cDNA, andererseits für die mRNA Isolierung zum Einsatz in einem Northern Blot verwendet. Der Northern Blot zeigte zwei HMGB1 mRNA Transkripte von 1,4 und 2,4 kb, die vergleichbar zu denen in menschlichen und verschiedenen caninen Geweben sind. Die Intensität der Signale wurde zusammengefasst und mit der Intensität der GAPDH-Bande der gleichen Proben verglichen. Die untersuchten Proben caniner Tumoren zeigten starke Unterschiede in der Stärke der Expression von HMGB1. Die Werte, welche als Quotient zwischen HMGB1 und GAPDH ermittelt wurden, variierten zwischen 0,52 und 25 Ergebnisse 1.31 für Osteosarkome, während das Fibrosarkom und das Leiomyosarkom Werte von 0,52 und 1,31 zeigten. Um diese Ergebnisse zu verifizieren wurde eine semiquantitative Duplex-PCR mit HMGB1 und GAPDH durchgeführt. Die Werte für die caninen Osteosarkom-Proben variierten zwischen 0,72 und 1,28, während das Fibrosarkom und das Leiomyosarkom Werte von 0,73 bzw. 0,42 aufwiesen. Die statistische Analyse zeigte einen signifikanten Zusammenhang zwischen dem HMGB1 Expressionslevel, welcher mittels Northern Blot ermittelt wurde und dem Level aus der etablierten RT-PCR. 3.4.4. The canine HMGA1. XIII. Murua Escobar H et al., Gene. 2004 Für die Charakterisierung des caninen HMGA1 wurde Hodengewebe von verschiedenen Hunderassen aus der caninen Gewebebank verwendet. Darunter befanden sich u. a. Bullterrier, Dackel, Dobermann, Münsterländer und Yorkshire Terrier. Aus der gewonnenen RNA wurde mit Hilfe der 3’ Race PCR cDNA synthetisiert. Anhand der humanen cDNA-Sequenz wurden Primer hergestellt, mit deren Hilfe das canine HMGA1 synthetisiert und sequenziert wurde. Das vollständige canine HMGA1 umfasst sechs Exons und codiert für zwei Spleißvarianten, HMGA1a mit 1836 Basenpaaren und HMGA1b mit 1803 Basenpaaren, welche den humanen Transkripten entsprechen. Diese Spleißvarianten zeigen die bekannte 33 bp Deletion in HMGA1b, welche zwischen verschiedenen Spezies, wie Mensch, Maus, Hamster und Ratte stark konserviert ist. Die Homologie für beide Spleißvarianten zu ihren menschlichen Gegenstücken liegt bei 80,6%. Dabei zeigen der 5’UTR, CDS und 3’ UTR unterschiedliche Homologien von 95,6%, 95,1% und 74,7%. Die abgeleiteten Proteinsequenzen ergeben für HMGA1a ein 107 Aminosäuren großes Protein mit einem geschätzten Gewicht von 11674,97 Da, während HMGA1b 96 Aminosäuren und Gewicht von geschätzten 10677,85 Da aufweist. Die Homologie zwischen caninen und humanen Proteinen beträgt 100%, inklusive der drei „AT-Hooks“ und der carboxyterminalen Domäne. Der Vergleich der Spleißvarianten zwischen den verschiedenen Rassen ergab nur einen einzigen Aminosäureaustausch der ersten Base des Codons 64 in der Gewebeprobe eines Dackels (A → G, Thr → Ala). Dieser Austausch fehlt im korrespondierenden HMGA1a-Transkript des zweiten Allels des gleichen Tieres, was auf einen Heterozygotie schließen lässt. Für die Expressionsanalyse des caninen HMGA1 wurden canines Herz- Lungen-, Milz- Nieren- und Muskelgewebe aus der caninen und felinen Gewebebank verwendet. Die RNA wurde isoliert und die Expres26 Ergebnisse sion mittels Northern Blot überprüft. Bis auf die gesamt RNA des Nierengewebes zeigten alle Proben ein schwaches Signal, welches einer Größe von ca. 1,8 kb entspricht. Dies lässt auf eine geringe Expression des Gens in diesen Geweben schließen. 3.4.5. "Best friends" sharing the HMGA1 gene: comparison of the human and canine HMGA1 to orthologous other species. XIV: Murua Escobar H et al., J Hered. 2005 Die Charakterisierung der caninen HMGA-Gene ermöglicht neue Strategien für experimentelle und therapeutische Ansätze. Daher wurden unter Verwendung von Proben aus der neu etablierten Gewebebank die caninen HMGA1a und HMGA1b Transkripte charakterisiert, die Proteine hergeleitet und ihr Potenzial als Ziel für therapeutische Ansätze eingeschätzt. Der Sequenzvergleich ergab eine 100% Homologie zwischen dem caninen und dem menschlichen Protein, trotzdem unterscheidet sich die Anzahl der gefundenen cDNAs: Für den Menschen sind sieben verschiedene cDNATranskripte bekannt, von denen die Splicevarianten 1 und 2 am häufigsten vorkommen. Die charakterisierten caninen Varianten zeigen die gleiche Zusammensetzung wie diese. Canine Entsprechungen zu den menschlichen Varianten der Splicevarianten 3 bis 7 konnten mittels PCR nicht nachgewiesen werden. Der Vergleich der humanen cDNA mit den bekannten Transkripten anderer Spezies zeigte, dass der Hund die einzige Spezies ist, die im Bezug auf Exon-Struktur und Verteilung Übereinstimmungen zu den häufig gefundenen Transkripten des Menschen zeigt. Die Homologie der CDS des caninen HMGA1 zu der anderer Spezies variiert zwischen 72% (Huhn) und 95,7% (Pferd, Schwein). Der Homologie-Vergleich der abgeleiteten Proteine liegt zwischen 67,7% (Huhn) und 100% (Mensch). Die Proteine aller Spezies zeigten einen hohen Konservierungsgrad in ihrer funktionellen DNA-bindenden Domäne, den sog. AT-Hooks. Alle untersuchten Spezies haben gemeinsam, dass die CDS aus vier Exons besteht. Die beschriebenen Proteine aller untersuchten Spezies bestehen aus 107 bzw. 96 Aminosäuren für HMGA1a und HMGA1b. Alle Spezies zeigen die für das HMGA1b Protein typische Deletion von 33 bp, die in dem Fehlen von 11 Aminosäuren in der Splicevariante resultiert. Der Schwerpunkt der vorliegenden Arbeit lag auf der molekulargenetischen Untersuchung der HMGA2 Expression in caninen Prostata-Geweben. Hierfür wurden im Folgenden wiederum Proben aus der caninen Gewebebank verwendet 27 Ergebnisse 3.4.6. HMGA2 Expression in a Canine Model of Prostate Cancer XV. Winkler S et al., (zur Publikation angenommen) Zur Bestimmung der tatsächlichen Transkriptmengen in caninen Prostata-Geweben wurden quantitative Real Time PCR Untersuchungen durchgeführt. Diese ergaben deutlich unterschiedliche Mengen an HMGA2 Transkripten in den untersuchten gesamt-RNAs in Abhängigkeit vom jeweiligen Patho-Histologischen Befund. So zeigten die untersuchten Normalgewebe, Hyperplasien und Zysten deutlich geringere Mengen an HMGA2 Transkripten als Karzinome. Alle sechs Karzinome zeigten Transkriptmengen über einem Wert von 23086 Transkripten pro 250 ng gesamt RNA. Alle gutartigen Gewebe blieben unter diesem Wert, dabei zeigten die Normalgewebe einen maximalen Wert von 1433 Transkripten pro 250 ng gesamt RNA. Die statistische Analyse zeigte, dass es sich bei den ermittelten Werten nicht um Zufallsergebnisse handelt (p < 0,001), somit kann der HMGA2 mRNA Level zur Unterscheidung zwischen malignen und benignen Geweben verwendet werden. Bei der KarzinomProbe mit dem höchsten gemessenen HMGA2 Transkriptlevel handelt es sich um das korrespondierende Gewebe zu der bereits zuvor etablierten caninen Prostatakarzinom Zell-Linie (Siehe Kapitel 3.1.2). Weiterführende Untersuchungen sollten klären, ob eine antisense Strategie mit Hilfe von adenoviralen Vektoren einen Einfluss auf die Proliferation der im Rahmen der zytogenetischen Untersuchungen neu etablierten, spontan immortalisierten Zell-Linie ausübt. 3.4.7. Inhibitory effect of antisense HMGA AAV-mediated delivery suppresses cell proliferation in canine carcinoma cell line XVI. Soller JT et al., (in Vorbereitung) Für die Herstellung Adeno-assoziierter Viren, welche das gewünschte Gen als Insert tragen, wurde zunächst die codierende Sequenz des caninen HMGA2 charakterisiert. Mit Hilfe dieser Sequenzdaten wurden rekombinante Adeno-assoziierte Viren (rAAV) hergestellt, die HMGA1 und HMGA2 in antisense bzw. LacZ in sense Orientierung enthielten. Zusätzlich hergestellte rAAVs ohne Insert dienten als Negativkontrolle. Der Effekt, den diese Adeno-assoziierten Viren auf die HMGA überexprimierenden Zellen ausüben, wurde mit Hilfe der spontan immortalisierten Zell-Linie CT1258 überprüft. Demnach induzieren Viruspartikel, die HMGA1 und HMGA2 in antisense Orientierung tragen, mit hoher statistischer Signifikanz eine Inhibition der Proliferation von Zellen 28 Ergebnisse des caninen Prostata-Karzinoms in vitro. Im Vergleich dazu wird das Wachstum der Tumorzellen durch Viren, welche LacZ in sense Orientierung tragen (Kontrolle) nicht signifikant beeinflusst. 29 Diskussion 4. Diskussion Bereits gegen Ende das letzten Jahrhunderts war nach Meinung einer steigenden Anzahl von Wissenschaftlern davon auszugehen, dass im kommenden 21sten Jahrhundert der Hund als Modelltier in der Erforschung der Grundlagen genetischer Erkrankungen den gleichen Stellenwert wie die Maus einnehmen oder sie sogar ersetzen könnte (Kuska, 1999). Ca. sieben Jahre später bleibt festzustellen, dass diese Einschätzung richtig war, wie eine Fülle von Publikationen zum Thema bestätigt. Die Menschheit zeigt eine Vielzahl von krankheitsassoziierten Genen, zu denen sich ein Ortholog im caninen Genom wiederfindet und in beiden Spezies haben das Auftreten und der Verlauf der Erkrankung viele Gemeinsamkeiten (Lin et al., 1999; Rawle and Lillicrap, 2004). Ziel der vorliegenden Arbeit war der Vergleich der caninen Tumorgenese mit der Tumorentstehung beim Menschen zunächst auf zytogenetischer, aber auch auf molekularbiologischer Ebene. Auf zytogenetischer Ebene wurden insbesondere Prostatatumoren, aber auch Neoplasien des blutbildenden Systems mit Hilfe der etablierten Routine-Methoden untersucht und auf Ähnlichkeiten zu zytogenetischen Befunden im Menschen überprüft. Im Bereich der molekular-zytogenetischen Methoden konnten mit Hilfe der Fluoreszenz in situ Hybridisierung verschiedene Tumorassoziierte Gene im caninen Genom lokalisiert werden. Für die anschließende molekulargenetische Untersuchung dieser Gene sowie für Expressionsanalysen verschiedener Gene wurde zunächst eine canine Gewebebank für Tumor- und Normalgewebe erstellt. In der vorliegenden Arbeit wurden durch den Einsatz verschiedener molekulargenetischer Methoden die Expression des HMGA2-Proteins in caninen ProstataGeweben und in einer, im Rahmen der eigenen Arbeit neu etablierten, immortalisierten Zell-Linie untersucht. Dieselbe Zell-Linie wurde schließlich verwendet, um ein in vitro Modell zur Gentherapie mit Hilfe von Adeno-assoziierten Viren zu entwickeln. Die zytogenetischen Untersuchungen caniner Prostatatumoren zeigten interessante klonale Veränderungen. So zeigten die Zellen eines caninen Adenokarzinoms der Prostata (CT 1258) einen stark rearrangierten, annähernd tetraploiden Karyotyp mit zahlreichen klonalen Fusionen. Das Auftreten von zweiarmigen Chromosomen ist ein häufiges Ereignis in der Tumorgenese caniner Neoplasien. Es wird angenommen, dass die durch die erhöhte Zellteilung verkürzten Telomerenden ein höheres Potential für Fusionen aufweisen (Harley, 1991). Fusionschromosomen können grundsätzlich in zwei Kategorien unterschieden werden: Isochromosomen, die aus der Verdopplung 30 Diskussion des langen Arms des selben caninen Chromosoms bestehen und TranslokationsChromosomen, die auf der Verschmelzung zweier akrozentrischer Chromosomen im Sinne einer Robertson-Translokation beruhen (Reimann et al., 1994; Slijepcevic, 1998). Der genannte Fall (CT 1258) weist überwiegend Robertson-Translokationen auf, wobei die Translokationspartner dieser Fusionen unterschiedlich sein können. Die als klonal identifizierten Fusionschromosomen bestanden zum einen aus einem großen Markerchromosom bestehend aus Material der Chromosomen 1 und 2 und zum anderen aus einer zentrischen Fusion der Chromosomen 1 und 5 (Winkler et al., 2005a). Diese klonalen Aberrationen konnten in den Zellen der spontan immortalisierten Zell-Linie des caninen Primärtumors in nahezu allen untersuchten Metaphasen nachgewiesen werden. Diese Ergebnisse legen die Vermutung nahe, dass es sich bei diesen Veränderungen um die primären Aberrationen innerhalb der transformierten Zellen handelt. Zytogenetische Veränderungen, die insbesondere die Chromosomen 1 und 5 beinhalten, sind nicht unbekannt. Eine zytogenetische Studie an caninen soliden Tumoren hat gezeigt, dass die caninen Chromosomen 1, 2, 4, 5 und 25 häufig sowohl von numerischen als auch von strukturellen Aberrationen betroffen sind (Reimann et al., 1999a). Hörsting et al. (1999) haben die Theorie aufgestellt, dass das canine Chromosom 1 ein Gen enthalten könnte, dass verantwortlich für die Tumorentwicklung sein könnte. Fusionen, die das canine Chromosom 1 beinhalten, könnten demnach der ausschlaggebende Faktor sein, der zu einem instabilen Karyotyp und zu komplexen Karyotyp-Veränderungen führen könnte. In diesem Fall wäre der stark rearrangierte Karyotyp in CT 1258 also entweder durch die Beteiligung des Chromosoms 1 an der Fusion an sich, oder durch das daraus resultierende vermehrte Vorhandensein von Chromosomenmaterial des Chromosoms 1, woraus eine Trisomie oder auch Polysomie resultiert, zu erklären. Obwohl Robertson-Translokationen zu den häufigsten, meist harmlosen Chromosomenaberrationen beim Menschen gehören (Nielsen and Wohlert, 1991), findet man sie eher selten in humanen Tumoren (Hecht et al., 1988). Es wird angenommen, das Robertson-Translokationen durch Rekombination entstehen, ein Ereignis, das häufig in der Meiose, aber nur selten in der Mitose vorkommt (Hecht et al., 1988). Nichts desto trotz konnte das Auftreten von Robertson-Translokationen vor allem in menschlichen Leukämien nachgewiesen werden, was auf die Beteiligung dieser Chromosomenaberration auch in menschlichen Neoplasien hinweist (Chinnappan et al., 1998; Chinnappan et al., 2001). 31 Diskussion Die zytogenetische Untersuchung eines weiteren Adenokarzinoms der Prostata (CT1266) ergab das Vorhandensein eines Fusionschromosom 13, also die Verschmelzung zweier akrozentrischer Chromosomen 13 des Hundes. Dieses Fusionschromosom trat in unterschiedlichen Anzahlen zusätzlich zu einem normalen Chromosom 13 auf, wodurch das Material dieses Chromosoms innerhalb der einzelnen Zelle überwiegt (Winkler et al., 2006). Trisomien sind sowohl in soliden als auch in hämatopoetischen caninen Neoplasien relativ häufig beschrieben (Mayr et al., 1990b; Mayr et al., 1991a; Bartnitzke et al., 1992b; Mayr et al., 1992a; Mayr et al., 1993; Nolte et al., 1993; Mayr et al., 1995; Reimann et al., 1996b; Nolte et al., 1997; Reimann et al., 1998; Mayr et al., 1999). Das vergleichsweise häufige Auftreten von Trisomien in caninen Tumoren unterstützt die Annahme, dass Trisomien die primäre Veränderung auf dem Weg einer normalen Zellen hin zu einer entarteten Zelle sein können (Bartnitzke et al., 1992b). Möglicherweise verfügen Zellen mit einer Trisomie über einen Selektionsvorteil und charakterisieren somit ein frühes Entwicklungsstadium der Karyotyp-Evolution (Bullerdiek et al., 1993). Dem Auftreten dieses Fusionschromosoms 13 in diesem Fall kommt eine besondere Bedeutung zu, denn insbesondere über den Zugewinn chromosomalen Materials von CFA 13 ist in der Literatur schon mehrfach berichtet worden. Mayr et al. haben bereits 1992 ein Isochromosom 13 in einem Osteoidsarkom sowie in einem Osteoidchondrosarkom beschrieben (Mayr et al., 1992b). In einer großen Studie an caninen Lymphosarkomen, einer häufigen hämatopoetischen Erkrankung des Hundes, wurde in 15 von 61 Fällen eine Trisomie des Chromosoms 13 gezeigt. Aufgrund der Häufigkeit dieser Aberration haben die Autoren versucht, einen Zusammenhang zwischen dem Auftreten der Trisomie 13 und der Dauer der ersten Remission und der Überlebensdauer der erkrankten Tiere herzuleiten. Tatsächlich konnte gezeigt werden, dass bei Tieren, die eine Trisomie 13 als primäre Aberration aufwiesen, die Dauer der ersten Remission und die Überlebensdauer signifikant höher waren, als bei Tieren mit anderen chromosomalen Veränderungen, da diese Tiere besser auf eine verabreichte Chemotherapie ansprachen (Hahn et al., 1994). In neueren Untersuchungen, die mit Hilfe der comparative genomic hybridisation (CGH) durchgeführt worden waren, konnte die Trisomie 13 sogar in 12 der 25 untersuchten caninen Tumorproben gezeigt werden (Thomas et al., 2003). Die im Rahmen der vorliegenden Arbeit durchgeführten zytogenetischen Untersuchungen an verschiedenen Knochenmarkproben von Hunden, die wegen Erkrankungen des blutbildenden Systems in Behandlung waren, zeigten ebenfalls klonale Aber32 Diskussion rationen der Chromosomen 13, die sich zum einen als Trisomie 13, zum anderen als eine partielle Trisomie in einem derivativen Chromosom 13 (Winkler et al., 2005b). Alle Ergebnisse zusammen lassen vermuten, dass CFA 13 zum einen ein oder mehrere wichtige Onkogene enthalten könnte und zum anderen Aberrationen dieses Chromosoms für die Diagnose und die Prognose sowohl im caninen Lymphosarkom, als auch in caninen Prostatakarzinomen herangezogen werden könnten. Interessanterweise haben Yang et al. (1999) gezeigt, dass das canine Chromosom 13 Homologien zum menschlichen Chromosom 8q aufweist (HSA8q – qter). Diese chromosomale Region ist häufig in die Entwicklung verschiedener humaner hämatopoetischer Erkrankungen wie akute Leukämien und Lymphome involviert (Lepretre et al., 2000; Wolman et al., 2002), aber insbesondere auch an der Entstehung und dem Fortschreiten von humanen Mamma- und Prostatakarzinomen beteiligt (Bullerdiek et al., 1993; Mark et al., 1999; Steiner et al., 2002). Wegen der häufigen Rezidivbildung und der generell schlechten Prognose von Prostatatumoren die eine Amplifikation von 8q aufweisen, wurde eine detaillierte Analyse der Gene auf dem langen Arm von Chromosom 8 vorgenommen (van Duin et al., 2005). Dabei wurden 16 Gene, inklusive des c-myc Onkogens in fünf Regionen mit einer mutmaßlichen Bedeutung in der Krebsentstehung eingehend untersucht. Drei dieser Gene zeigten im Vergleich zu normalem Prostata-Gewebe in Prostatakarzinomen eine signifikante Überexpression. Diese Gene, bezeichnet als PDP (8q22.1), PABPCI (8q22.3) und KIAA0196 (8q24.13) werden daher als mögliche Progressions-Marker für humane Prostatakarzinome erwogen (van Duin et al., 2005). Diese Untersuchungen unterstützen die Annahme, dass in beiden Spezies die Amplifikation eines Teils des Genoms, dass beim Menschen auf Chromosom 8 und auf Chromosom 13 des Hundes lokalisiert ist mit der Entstehung und dem Fortschreiten von Tumoren der gleichen Organe assoziiert ist. Es wäre daher interessant, die durch die Arbeit von Van Duin et al. detektierten potentiellen Progressionsmarker im caninen Genom zu lokalisieren. Eine solche Lokalisation von Genen wird z.B. durch das sog. physikalische Mapping mit Hilfe der Fluoreszenz in situ Hybridisierung (FISH-Mapping) ermöglicht. Das wiederholte Auftreten bestimmter chromosomaler Veränderungen in der caninen Tumorgenese lässt vermuten, dass wichtige, tumor-assoziierte Gene in diese Aberrationen involviert sind. Daher wurden im Rahmen der vorliegenden Arbeit ausgewählte, tumor-relevante Gene mit Hilfe des FISH-Mappings im caninen Genom lokalisiert 33 Diskussion (Meiboom et al., 2004; Meyer et al., 2004b; Murua Escobar et al., 2004b; Richter et al., 2004; Winkler et al., 2004; Murua Escobar et al., 2006). Für weitere molekulargenetische Untersuchungen dieser und anderer tumorrelevanter Gene wurde im Rahmen der vorliegenden Arbeit eine Gewebebank für canine Tumoren und Normalgewebe etabliert. Unter Verwendung von Proben aus dieser Gewebebank war es u. a. möglich, verschiedene canine Tumoren auf das Vorhandensein von Punkmutationen in Genen der RAS Proteinfamilie zu überprüfen. Diese Punktmutationen finden sich unter den wichtigsten Veränderungen in der menschlichen Tumorentwicklung (Almoguera et al., 1988; Bos, 1989; Shukla et al., 1989; Arber, 1999; Belly et al., 2001; Spandidos et al., 2002). RAS Proteine spielen eine wichtige Rolle als Signaltransmitter. Die Bindung von Wachstumsfaktoren aktiviert die RAS Proteine und initiiert so die Zellteilung. Es wird angenommen, dass Mutationen in den RAS Genen zur andauernden Aktivierung von Signalwegen führt, welche die Zellteilung anregen, was wiederum zur unkontrollierten Zellteilung führt (Park, 1995). Von den Punktmutationen sind insbesondere die sogenannten hot-spot Loci in den Codons 12, 13, und 61 der Exons 1 bzw. 2 betroffen (Park, 1995). Von den im Rahmen dieser Arbeit auf das Vorhandensein von Punkmutationen in den hot-spot loci der RAS Gene untersuchten 13 caninen Fibrosarkomen und 11 caninen Melanomen zeigte keine Probe Nukleotidveränderungen in den betreffenden Codons (Murua Escobar et al., 2004a; Richter et al., 2005). Diese Ergebnisse lassen annehmen, dass RAS Mutationen in der Pathogenese zumindest der spontanen auftretenden caninen Melanome und Fibrosarkome keine große Rolle spielen. Aufgrund ihres hohen Grades der evolutionären Konservierung und der vergleichsweise hohen Homologie zwischen Mensch und Hund (unveröffentlichte Daten, Murua Escobar et al., 2003; Murua Escobar et al., 2004c; Murua Escobar et al., 2005; Murua Escobar et al., 2006) wurden im Rahmen der vorliegenden Arbeit insbesondere die so genannten High Mobility Group Protein Gene, zu denen unter anderem HMGB1, HMGA1 und HMGA2 gehören, näher untersucht (Meyer et al., 2004a; Murua Escobar et al., 2004c; Murua Escobar et al., 2005; Winkler et al., accepted for publication). Unter Verwendung von Gewebeproben aus der neu etablierten Gewebebank konnten im Rahmen der vorliegenden Arbeit Expressionsanalysen für z.B. das canine HMGB1 in caninen Osteosarkomen durchgeführt werden (Meyer et al., 2004a). Namensgebend für die HMGB-Proteine war nach der 2001 geänderten Nomenklatur ihr funktionelles Motiv in Form von zwei DNA bindenden Domänen, die als A-Box und B-Box 34 Diskussion bezeichnet werden (Landsman and Bustin, 1993; Bustin, 2001). Das menschliche HMGB1-Protein, welches auf Chromosom 13q12 lokalisiert ist, kann zwei unterschiedliche Funktionen in der Zelle übernehmen, weswegen Müller et al. (2001) auch von einem „Doppelleben“ dieses Proteins sprechen. Parallel zu der Fähigkeit, als extrazellulärer Ligand (der häufig auch als Amphoterin bezeichnet wird) an seinen Rezeptor zu binden, übernimmt HMGB1 in seiner Lokalisation im Zellkern eine Rolle als architektonischer Transkriptionsfaktor, indem es mit der DNA interagiert. Zusätzlich ist HMGB1 in der Lage, Tumorzellen gegenüber dem Chemotherapeutikum Cisplatin zu sensitivieren, indem es an Cisplatin-DNA-Addukte bindet und sie vor der Reparatur durch zelleigene Reparaturmechanismen (nucleotide excision repair) schützt (Pil and Lippard, 1992; He et al., 2000). Einer der Rezeptoren für HMGB1 ist RAGE (receptor for advanced glycation end products), ein Transmembranrezeptor aus der Immunglobulinfamilie, an den die so genannten advanced glycation end products (AGEs) (Neeper et al., 1992), aber auch extrazelluläres HMGB1 als Liganden binden können (Hori et al., 1995). RAGE ist an einer großen Zahl pathophysiologischer Prozesse wie z.B. Entzündungen (Hofmann et al., 1999) und Diabetes-bedingten Veränderungen von Blutgefässen beteiligt (Park et al., 1998) und ist auch in die Tumorgenese involviert (Taguchi et al., 2000; Huttunen et al., 2002). Die Bindung spezifischer Liganden an RAGE führt zur Aktivierung verschiedener Signalkaskaden wie z.B. MAP Kinasen und NF-kappa-B, welche wiederum Einfluss auf das Wachstum und die Beweglichkeit von Zellen nehmen (Taguchi et al., 2000). Neben dem vollständigen Rezeptor existieren noch verkürzte und dadurch lösliche Varianten von RAGE, die als sRAGE bezeichnet werden (Schmidt et al., 1994; Schlueter et al., 2003). Versuche zur Hemmung der RAGE-HMGB1-Signalkaskade durch z. B. die Zugabe von RAGE, AntiRAGE-Antikörpern aber auch Anti-HMGB1-Antikörpern ergaben sowohl in vitro, als auch im Tiermodell der Krebsentstehung eine signifikante Unterdrückung des Wachstums, der Beweglichkeit und der lokalen Invasion von Tumorzellen und auch die Metastasierung der Tumoren in die Lungen war deutlich gehemmt (Liotta and Clair, 2000). Die Blockierung der Wechselwirkungen zwischen RAGE und HMGB1 stellen einen interessanten Ansatz für die Entwicklung einer wirkungsvollen Krebstherapie dar, daher wurde in der vorliegenden Arbeit das canine RAGE Gen näher charakterisiert (Murua Escobar et al., 2006). Der Schwerpunkt der vorliegenden Arbeit lag aber auf der Untersuchung der Expression von HMGA2 in caninen Prostata-Geweben. HMGA-Proteine sind weitere Mitglie35 Diskussion der der HMG-Proteinfamilie, denen eine wichtige Rolle in der Entstehung von Tumoren zukommt. HMGA2 Proteine werden normalerweise in embryonalen Geweben verschiedener Säuger-Spezies exprimiert und sind in adulten Geweben nicht mehr detektierbar (Chiappetta et al., 1996; Rogalla et al., 1996). Erst die Entwicklung sensitiverer Nachweismethoden wie z. B. die Real-Time PCR erlaubte den Nachweis auch von geringen Mengen an HMGA2 mRNA in adulten Geweben (Sarhadi et al., 2006; Meyer et al., in press). Im Gegensatz dazu ist die Überexpression von HMGAProteinen in einer Vielzahl humaner Tumoren nachweisbar. In benignen mesenchymalen Tumoren wie z.B. Uterusleiomyomen kann die aberrante Expression von HMGA1 auf chromosomalen Rearrangierungen beruhen die das Chromosom 6 betreffen (Williams et al., 1997; Sornberger et al., 1999). Aber auch in malignen Tumoren kommt es zu einer Expression von HMGA1, die im Vergleich zu nicht neoplastischen adulten Zellen aussergewöhnlich hoch ist. So konnte für HMGA1 eine positive Korrelation zwischen einer erhöhten Expressionsrate des Proteins und einem schlechten Differenzierungsgrad der Tumoren und/oder einem erhöhten Metastasierungspotential in einer Vielzahl humaner maligner Tumoren wie z. B. Schilddrüsenkarzinomen, kolorektalen Karzinomen, Pankreaskarzinomen, Zervixkarzinom, Ovarialkarzinom, Plattenepithelkarzinomen, Magenkarzinom und Prostatakarzinom nachgewiesen werden (Tamimi et al., 1993; Chiappetta et al., 1995; Fedele et al., 1996; Bandiera et al., 1998; Chiappetta et al., 1998; Abe et al., 1999; Abe et al., 2000; Chiappetta et al., 2001; Masciullo et al., 2003; Nam et al., 2003; Rho et al., 2007). Untersuchungen zum onkogenen Potential des HMGA1-Proteins in vivo haben gezeigt, dass eine erhöhte HMGA1 Expression in verschiedenen Zell-Linien zur neoplastischen Transformation der Zellen führt (Wood et al., 2000a; Wood et al., 2000b; Reeves et al., 2001). Eine erhöhte HMGA1 Expression wird daher als diagnostischer Marker für die neoplastische Transformation der Zellen und ihr Metastasierungspotential in malignen Tumoren (Bussemakers et al., 1991; Tamimi et al., 1993; Fedele et al., 1996; Bandiera et al., 1998; Chiappetta et al., 1998) oder auch für die Unterscheidung zwischen follikulären Karzinomen und Adenomen (Czyz et al., 2004) diskutiert. Die (Re)Expression des menschlichen HMGA2 Gens wird ebenfalls sowohl in benignen, als auch in malignen Tumoren gefunden. Dabei ist das menschliche HMGA2 in benignen Tumoren mesenchymalen Ursprungs häufig von chromosomalen Translokationen betroffen, die zu aberranten Transkripten führen. Bei diesen Translokationen kommt es häufig zu Brüchen im verhältnismäßig großen Intron 3 des HMGA236 Diskussion Gens und zur Fusion mit ektopischen Sequenzen (Kazmierczak et al., 1998a). An der Entstehung dieser Fusionsgene können verschiedene bekannte Partner, wie z. B. das LPP-Gen (Petit et al., 1996), ALDH2 (Kazmierczak et al., 1995), RAD51L1 (Schoenmakers et al., 1999) oder COX6C (Kurose et al., 2000) beteiligt sein, sie können aber auch Anteile unbekannter Herkunft enthalten (Schoenmakers et al., 1995; Kazmierczak et al., 1996; Kurose et al., 2001; Mine et al., 2001). Die Fusionen führen in der Regel zum Erhalt der drei DNA-bindenden Domänen von HMGA2 bei gleichzeitigem Verlust seines sauren C-terminalen Endes und des 3’ UTRs. Transgene Mäuse, welche eine 3’ trunkierte Variante von HMGA2 exprimieren, zeigen einen gegenüber dem Wildtyp veränderten Phänotyp mit Riesenwuchs und überwiegend abdominaler Lipomatose (Battista et al., 1999). Auf der Grundlage der vorliegenden Daten wird in der Literatur diskutiert, ob die Trunkierung von HMGA2, seine transkriptionelle Reaktivierung oder die Fusion mit ektopischen Sequenzen das molekulare Schlüsselereignis in der Tumorgenese darstellen (Kazmierczak et al., 1995; Ashar et al., 1996; Kazmierczak et al., 1998b; Battista et al., 1999). Im Vergleich dazu beruht die (Re)Expression in malignen Tumoren nicht auf Chromosomenaberrationen, sondern auf Mechanismen der Genregulation. Die Überexpression von HMGA2 wurde in verschiedenen malignen Tumoren wie nicht-kleinzelligen Lungenkarzinomen, Mammakarzinomen und Plattenepithelkarzinomen der Mundhöhle nachgewiesen, wo sie mit dem Tumorgrading zu korrelieren scheint (Rogalla et al., 1997; Rogalla et al., 1998; Miyazawa et al., 2004; Sarhadi et al., 2006). Die so genannten „atypischen lipomähnlichen Liposarkome“ sind zytogenetisch durch das Vorhandensein von überzähligen Ring- und/oder langen Markerchromsomen charakterisiert, die mehrere Kopien der chromosomalen Region 12q13-15 enthalten. Es wird angenommen, dass diese Amplifikation die genetische Grundlage für die Überexpression von HMGA2 in diesen Tumoren darstellt (Tallini et al., 1997; Pentimalli et al., 2003). In der vorliegenden Arbeit wurde das canine HMGA1 charakterisiert (Murua Escobar et al., 2004c; Murua Escobar et al., 2005). Diese Untersuchungen ergaben eine hohe Homologie der codierenden Sequenz, bzw. eine 100% Homologie des korrespondierenden Proteins zwischen beiden Spezies. Ähnliche Untersuchungen für das canine HMGA2 ergaben ebenfalls eine Homologie von 97% zwischen der caninen und der humanen HMGA2 cDNA. So zeigen die Exons 2, 3 und 4 Homologien von 98,8%, 100% und 97 %. Die Exons 1 und 5 konnten bisher nur partiell charakterisiert werden und zeigen in den bereits ermittelten Bereichen Homologien von 94,3% bzw. 92,3%. 37 Diskussion Daraus resultiert eine Homologie für das canine Protein-Fragment von 98,8% im Vergleich zum humanen HMGA2 Protein (unveröffentlichte Ergebnisse). Auf der Grundlage dieser Sequenzdaten wurden Primer hergestellt um mit Hilfe der quantitativen real-time PCR canine Gewebeproben von fünf Adenokarzinomen – darunter auch Tumormaterial von CT 1258- und einem anaplastischen Karzinom der Prostata auf ihre HMGA2-Expression zu untersuchen und mit den Ergebnissen der ebenfalls untersuchten Proben von 3 Hyperplasien, 3 Zysten und 4 Normalgeweben der Prostata zu vergleichen. Diese Untersuchungen zeigten deutlich eine geringe Expression in caninen Normalgeweben, eine gegenüber diesen Normalgeweben leicht erhöhte Expression von HMGA2 in den gutartigen Veränderungen der Prostata und eine im Vergleich zum Normalgewebe teils starke Erhöhung der Expression in Karzinomen der Prostata. Die statistische Analyse dieser Ergebnisse machte deutlich, dass es sich hierbei nicht um ein Zufallsergebnis handelt (p < 0,001) sondern das der Grad der HMGA2 Expression verwendet werden kann, um benigne und maligne Gewebe voneinander zu unterscheiden (Winkler et al., zur Veröffentlichung angenommen). Auch in caninen Prostata-Tumoren korreliert also die Überexpression von HMGA2 mit dem Malignitätsgrad. Durch die Verwendung eines relativ kurzen HMGA2-spezifischen Abschnitts als Sonde in der quantitativen real-time PCR, lässt sich jedoch nicht rückschließen, ob es sich bei dem über- bzw. re-exprimierten HMGA2 um das vollständige Protein, ein verkürtes Protein oder um ein ähnlich wie in humanen Tumoren beschriebenes Fusions-Protein handelt. Interessant ist dabei, dass die Tumorprobe mit der höchsten HMGA2 Expression zur Etablierung der spontan immortalisierten Zell-Linie CT 1258 führte, welche gegenüber dem UrsprungsTumorgewebe nochmals eine gesteigerte HMGA2 Expression aufweist. HMGA-Proteine spielen also in beiden Spezies eine wichtige Rolle in der Tumorgenese hinsichtlich der neoplastischen Transformation, Progression und Metastasierung. Ein Ansatz der Entwicklung einer wirkungsvollen Krebstherapie stellt der Versuch dar, die Menge an HMGA-Proteinen innerhalb der neoplastischen Zellen herunter zu regulieren. In diesem Zusammenhang war es Scala et al. (2000) z. B. möglich zu zeigen, dass eine HMGA1 Antisense-Strategie unter Verwendung eines adenoviralen Vektors in humanen Schilddrüsen Zell-Linien zum Tod der Zellen in zwei Karzinom Zell-Linien, jedoch nicht in normalen Schilddrüsen-Zellen führte. Die Anwendung desselben Vektors in vivo führte zu einer drastischen Größenreduktion von Tumoren, die zuvor in immunsupprimierten Mäusen induziert worden waren. Aufgrund dieser 38 Diskussion Ergebnisse gehen die Forscher davon aus, dass die Unterdrückung der HMGA1 Expression mit Hilfe dieser Antisense-Strategie eine wirksame Methode in der Behandlung von Tumoren sein kann, in denen allgemein eine erhöhte HMGA1 Expression beobachtet wird. Ähnliche Ansätze wurden für HMGA1-exprimierende PankreasTumoren sowie für HMGA2-exprimierende gut differenzierte Liposarkome bereits beschrieben (Pentimalli et al., 2003; Trapasso et al., 2004). Im Rahmen der vorliegenden Arbeit wurden Andeno-assoziierte Viren erzeugt, die sowohl HMGA1 als auch HMGA2 in antisense Orientierung enthielten. In vitro Experimente in denen Zellen der spontan immortalisierten Zell-Linie CT1258 mit diesen Viren infiziert wurden, zeigten eine statistisch signifikante Abnahme des Zellwachstums und der Viabilität, während Zellen die entweder mit einem Virus der das LacZ-Gen als Insert trug oder mit einem Virus ohne Insert infiziert worden waren, keine statistisch signifikante Reduktion des Zellwachstums zeigten (Soller et al., in Vorbereitung). Es ist also davon auszugehen, dass die Antisense Strategie zur Unterdrückung von HMGA2 auch in Tumoren, die dieses Protein exprimieren, eine wirksame Behandlungsmethode darstellen kann. Dabei sind für diese Therapie nur sehr geringe Nebenwirkungen zu erwarten, da HMGA2 im adulten Organismus normalerweise nicht oder nur in sehr geringem Maß z.B. in der Lunge oder im Myometrium exprimiert wird (Rogalla et al., 1996; Gattas et al., 1999). Für die Entwicklung wirksamer Medikamente und Therapie-Strategien sind jedoch weitere Forschungen erforderlich. Aufgrund der vergleichsweise niedrigen Inzidenz caniner Prostata-Tumoren könnte es von Nutzen sein Xenograft-Modelle, Beispielsweise unter Verwendung von immundefizienten Mäusen zu entwickeln und zu etablieren, hierbei könnte die im Rahmen der vorliegenden Arbeit etablierte Zell-Linie, welche eine stark erhöhte HMGA2 Expression aufweist eine Rolle spielen. Mit Hilfe solcher induzierter Tumoren könnte zunächst im Mausmodell eine Tendenz ermittelt werden, ob die in vitro gewonnen Erkenntnisse zur Regulation der HMGA2 Expression auf die Verhältnisse in vivo übertragbar sind. Therapeutische Ansätze, die unter Verwendung dieses Modells entwickelt würden, kämen nicht nur dem Hund, sondern gegebenenfalls auch dem Menschen zugute. 39 Zusammenfassung 5. Zusammenfassung Schon seit einiger Zeit werden Tiermodelle in der Erforschung der genetischen Grundlagen der Krebsentstehung verwendet. Dabei wird in den letzten Jahren immer häufiger auch der Hund als Tiermodell genutzt. Der Hund scheint als Modelltier besonders geeignet, da Hund und Mensch vergleichbaren Lebens- und Umweltbedingungen ausgesetzt sind. Zusätzlich zeigen die spontan auftretenden Tumoren des Hundes eine ähnliche Biologie und Histopathologie wie Tumoren des Menschen. Kürzere Generationszeiten und die höhere Zahl an Nachkommen erlauben jedoch die Beobachtung größerer Fallzahlen in kürzerer Zeit und auch die Tumorentwicklung und die Wirksamkeit der gewählten Therapie lassen sich so einfacher kontrollieren. Die vorliegende Arbeit befasst sich mit verschiedenen Aspekten der Tumorentstehung im Modelltier Hund und gliederte sich im wesentlichen in fünf Abschnitte: Die zytogenetischen Untersuchungen an caninen Neoplasien, die molekular- zytogenetische Lokalisation verschiedener tumor-assoziierter Gene im caninen Genom, den Aufbau einer Gewebebank, die molekulargenetischen Expressionsanalysen von HMGA-Proteinen in Prostata-Geweben und Zellkultur sowie die Entwicklung von Modellen zur Gentherapie mit Hilfe von Adeno-assoziierten Viren. Die zytogenetischen Untersuchungen an caninen Neoplasien zeigten das Auftreten von klonalen Veränderungen wie Trisomien und zentrische Fusionen von caninen Chromosomen. Letztere werden beim Menschen eher selten beobachtet, während sie in der caninen Tumorgenese ein häufiges Ereignis darstellen. Auffällig ist auch das wiederholte Auftreten von Aberrationen (numerisch und strukturell), die das canine Chromosom 13 betreffen. Das canine Chromosom 13, welches Homologien zum menschlichen Chromosom 8 aufweist, scheint demnach ein oder mehrere wichtige Gene zu enthalten, die mit der Entstehung von Tumoren assoziiert sind. Die Kenntnis von der Lokalisation und dem Aufbau verschiedener tumor-assoziierter Gene ist eine unabdingbare Voraussetzung für ein besseres Verständnis der Wirkweise dieser Gene. Dieses Verständnis ist wiederum die Grundvoraussetzung für die Entwicklung neuer Therapieansätze und Medikamente. Im Rahmen der vorliegenden Arbeit konnten insgesamt sechs ausgewählte, tumor-assoziierte Gene mit Hilfe der Fluoreszenz in situ Hybridisierung im caninen Genom lokalisiert werden. Unter Verwendung von Gewebeproben aus der im Rahmen der Arbeit neu erstellten Gewebebank für Tumoren und Normalgewebe war es möglich, einige dieser Gene auch hin- 40 Zusammenfassung sichtlich ihrer cDNA Struktur, partieller DNA Struktur und Protein Expression zu untersuchen. Ein besonderes Augenmerk galt dabei der Expression von HMGA2 in caninen Prostata-Geweben. Zur Klärung der Frage, ob HMGA-Proteine in caninen Prostatatumoren überexprimiert sind, wurden sechs canine Prostatakarzinome, drei canine Prostatahyperplasien, drei canine Prostatazysten und vier canine Prostata-Normalgewebe, sowie Zellen der im Rahmen der Arbeit neu etablierten Prostatakarzinom Zell-Linie mit Hilfe der real-time PCR auf ihren Gehalt an HMGA2 untersucht. Die durchgeführten Experimente zeigten deutlich einen Zusammenhang zwischen histologischem Befund des Gewebes und HMGA2-Expression. Des Weiteren wurden Adeno-assoziierte Viren erzeugt, die sowohl HMGA1 als auch HMGA2 in antisense Orientierung enthielten. Die Infektion von Zellen der spontan immortalisierten Zell-Linie CT1258 mit diesen Viren führte zu einer statistisch signifikanten Abnahme des Zellwachstums und der Viabilität, während Zellen die entweder mit einem Virus welches das LacZ-Gen als Insert oder mit einem Virus ohne Insert infiziert worden waren, keine statistisch signifikante Reduktion des Zellwachstums zeigten. Diese Antisense Strategie zur Unterdrückung der HMGA2 Expression scheint also ein mögliches Target für die Behandlung sowohl des caninen als auch des humanen Prostatakarzinom, aber auch für andere Tumoren beider Spezies die mit einer Erhöhung der HMGA2-Expression einhergehen darzustellen. Aufgrund der Tatsache das HMGA2 im adulten Organismus nicht oder in nur sehr geringem Maß exprimiert wird, wären für eine solche Therapie nur sehr geringe Nebenwirkungen zu erwarten. 41 Summary 6. Summary Animal models have been used in cancer research for a long time. Due to the similarities of human and canine cancer the dog has gained importance as the animal of choice for therapeutic and preclinical studies. Dogs and humans are exposed to comparable life- and environmental conditions. Tumours in dogs occur spontaneously and show similar biological behaviour and pathohistological findings. However, by using the the dog as an animal model it is easier to observe large quantities of tumours in less time, because of the faster progression of the tumours and the larger numbers of descendants compared to their human counterparts. Even cancer progression as well as effectiveness of the therapy of choice can be more easily observed. This thesis is addressed to different aspects of canine tumour development and is divided into five sections: Cytogenetic investigations in canine neoplasias, physical mapping of different tumour-associated genes in the canine genome, establishment of a tissue bank, HMGA2 expression in different canine prostatic tissues and cell culture, as well as the development of new therapeutic approaches using adeno-associated viruses. Cytogenetic investigation of canine neoplasias showed clonal aberrations like trisomies or centric fusions of canine chromosomes. The latter is rarely seen in man, while it is a frequent event in canine tumourigenesis. The frequent appearance of aberrations (numeric as well as structural) affecting the canine chromosome 13 is of notable interest, as CFA13, which shares homology with human chromosome 8, seems to contain important genes associated with the development of cancer. Knowledge about localisation and structure of several tumour-associated genes is precondition for better understanding of the function of these genes. This again is basic requirement for the development of new therapeutic approaches. Herein a subset of six selected tumour associated genes have been physically mapped by fluorescence in situ hybridization. By using tissue samples of the newly established tissue bank for tumours and non neoplastic tissues, some of these genes were further investigated with respect to cDNA-structure, partial DNA-structure and protein-expression. Special attention was called on HMGA2 Expression in canine prostatic tissues. To elucidate the question if HMGA2 proteins are overexpressed in canine prostate carcinomas, four non-neoplastic tissues of the canine prostate, three prostatic cysts, three canine prostatic hyperplasias and six canine carcinomas of the prostate as well as cells of the newly established prostate carcinoma cell-line were examined by quantita42 Summary tive real time PCR in respect to HMGA2 expression. Those investigations clearly showed a correlation between pathohistological findings and HMGA2 expression. Furthermore, adeno-associated viruses were generated, carrying HMGA1 and HMGA2 in antisense orientation. The infection of cells of the spontaneously immortalized cell-line CT1258 with those viruses lead to a statistically significant reduction of cell growth and viabilitiy, whereas the infection of cells with viruses carrying LacZ or no insert at all did not show any statistically significant reduction of cell growth. This antisense strategy for suppression of HMGA2 expression seems to be an effective target for the treatment of both, canine and human prostate carcinoma as well as any other tumour showing overexpression of HMGA2. Due to the fact of the very low or even absent expression of HMGA2 in adult organisms, very little side effects are to be expected. 43 Literatur 7. Literatur National Center for Biotechnology Information; Object Count: Cytogenetic Maps, http://www.ncbi.nlm.nih.gov/mapview/stats/BuildStats.cgi?taxid=9606&build=3 6&ver=1 2006. Abe, N., Watanabe, T., Masaki, T., Mori, T., Sugiyama, M., Uchimura, H., Fujioka, Y., Chiappetta, G., Fusco, A. and Atomi, Y.: Pancreatic duct cell carcinomas express high levels of high mobility group I(Y) proteins. Cancer Res 60 (2000) 3117-22. Abe, N., Watanabe, T., Sugiyama, M., Uchimura, H., Chiappetta, G., Fusco, A. and Atomi, Y.: Determination of high mobility group I(Y) expression level in colorectal neoplasias: a potential diagnostic marker. Cancer Res 59 (1999) 1169-74. Almoguera, C., Shibata, D., Forrester, K., Martin, J., Arnheim, N. and Perucho, M.: Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53 (1988) 549-54. Anastasi, J., Le Beau, M.M., Vardiman, J.W., Fernald, A.A., Larson, R.A. and Rowley, J.D.: Detection of trisomy 12 in chronic lymphocytic leukemia by fluorescence in situ hybridization to interphase cells: a simple and sensitive method. Blood 79 (1992) 1796-801. Arber, N.: Janus faces of ras: anti or pro-apoptotic? Apoptosis 4 (1999) 383-8. Ashar, H.R., Cherath, L., Przybysz, K.M. and Chada, K.: Genomic characterization of human HMGIC, a member of the accessory transcription factor family found at translocation breakpoints in lipomas. Genomics 31 (1996) 207-14. Ashar, H.R., Fejzo, M.S., Tkachenko, A., Zhou, X., Fletcher, J.A., Weremowicz, S., Morton, C.C. and Chada, K.: Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell 82 (1995) 57-65. Bandiera, A., Bonifacio, D., Manfioletti, G., Mantovani, F., Rustighi, A., Zanconati, F., Fusco, A., Di Bonito, L. and Giancotti, V.: Expression of HMGI(Y) proteins in squamous intraepithelial and invasive lesions of the uterine cervix. Cancer Res 58 (1998) 426-31. Banerjee, S.K., Weston, A.P., Persons, D.L. and Campbell, D.R.: Non-random loss of chromosome 3 during transition of Helicobacter pylori-associated gastric MALT 44 Literatur to B-cell MALT lymphoma revealed by fluorescence in situ hybridization. Cancer Lett 121 (1997) 83-90. Bartnitzke, S., Motzko, H., Caselitz, J., Kornberg, M., Bullerdiek, J. and Schloot, W.: A recurrent marker chromosome involving chromosome 1 in two mammary tumors of the dog. Cytogenet Cell Genet 60 (1992a) 135-7. Bartnitzke, S., Motzko, H., Rosenhagen, C. and Bullerdiek, J.: Benign mixed tumor of canine mammary gland showing an r(X) and trisomy 5 as the only clonal abnormalities. Cancer Genet Cytogenet 62 (1992b) 29-31. Battista, S., Fidanza, V., Fedele, M., Klein-Szanto, A.J., Outwater, E., Brunner, H., Santoro, M., Croce, C.M. and Fusco, A.: The expression of a truncated HMGIC gene induces gigantism associated with lipomatosis. Cancer Res 59 (1999) 4793-7. Becker, K., Murua Escobar, H., Richter, A., Meyer, B., Nolte, I. and Bullerdiek, J.: The canine HMGA1 gene maps to CFA 23. Anim Genet 34 (2003) 68-9. Belly, R.T., Rosenblatt, J.D., Steinmann, M., Toner, J., Sun, J., Shehadi, J., Peacock, J.L., Raubertas, R.F., Jani, N. and Ryan, C.K.: Detection of mutated K12-ras in histologically negative lymph nodes as an indicator of poor prognosis in stage II colorectal cancer. Clin Colorectal Cancer 1 (2001) 110-6. Bertz, J., Hentschel, S., Hundsdörfer, G., Kaatsch, P., Katalinic, A., Lehnert, M., Schön, D., Stegmaier, C. and Ziegler, H.: Krebs in Deutschland. Arbeitsgemeinschaft Bevölkerungsbezogener Krebsregister in Deutschland, Saarbrücken, 2004. Bos, J.L.: ras oncogenes in human cancer: a review. Cancer Res 49 (1989) 4682-9. Boutemmine, D., Bouchard, N., Boerboom, D., Jones, H.E., Goff, A.K., Dore, M. and Sirois, J.: Molecular characterization of canine prostaglandin G/H synthase-2 and regulation in prostatic adenocarcinoma cells in vitro. Endocrinology 143 (2002) 1134-43. Breen, M., Bullerdiek, J. and Langford, C.F.: The DAPI banded karyotype of the domestic dog (Canis familiaris) generated using chromosome-specific paint probes. Chromosome Res 7 (1999a) 401-6. Breen, M., Thomas, R., Binns, M.M., Carter, N.P. and Langford, C.F.: Reciprocal chromosome painting reveals detailed regions of conserved synteny between the karyotypes of the domestic dog (Canis familiaris) and human. Genomics 61 (1999b) 145-55. 45 Literatur Brezniceanu, M.L., Volp, K., Bosser, S., Solbach, C., Lichter, P., Joos, S. and Zornig, M.: HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. Faseb J 17 (2003) 1295-7. Bullerdiek, J., Leuschner, E., Taquia, E., Bonk, U. and Bartnitzke, S.: Trisomy 8 as a recurrent clonal abnormality in breast cancer? Cancer Genet Cytogenet 65 (1993) 64-7. Bussemakers, M.J., van de Ven, W.J., Debruyne, F.M. and Schalken, J.A.: Identification of high mobility group protein I(Y) as potential progression marker for prostate cancer by differential hybridization analysis. Cancer Res 51 (1991) 606-11. Bustin, M.: Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem Sci 26 (2001) 152-3. Bustin, M. and Reeves, R.: High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol 54 (1996) 35-100. Chiappetta, G., Avantaggiato, V., Visconti, R., Fedele, M., Battista, S., Trapasso, F., Merciai, B.M., Fidanza, V., Giancotti, V., Santoro, M., Simeone, A. and Fusco, A.: High level expression of the HMGI (Y) gene during embryonic development. Oncogene 13 (1996) 2439-46. Chiappetta, G., Bandiera, A., Berlingieri, M.T., Visconti, R., Manfioletti, G., Battista, S., Martinez-Tello, F.J., Santoro, M., Giancotti, V. and Fusco, A.: The expression of the high mobility group HMGI (Y) proteins correlates with the malignant phenotype of human thyroid neoplasias. Oncogene 10 (1995) 1307-14. Chiappetta, G., Manfioletti, G., Pentimalli, F., Abe, N., Di Bonito, M., Vento, M.T., Giuliano, A., Fedele, M., Viglietto, G., Santoro, M., Watanabe, T., Giancotti, V. and Fusco, A.: High mobility group HMGI(Y) protein expression in human colorectal hyperplastic and neoplastic diseases. Int J Cancer 91 (2001) 147-51. Chiappetta, G., Tallini, G., De Biasio, M.C., Manfioletti, G., Martinez-Tello, F.J., Pentimalli, F., de Nigris, F., Mastro, A., Botti, G., Fedele, M., Berger, N., Santoro, M., Giancotti, V. and Fusco, A.: Detection of high mobility group I HMGI(Y) protein in the diagnosis of thyroid tumors: HMGI(Y) expression represents a potential diagnostic indicator of carcinoma. Cancer Res 58 (1998) 4193-8. Chinnappan, D., Philip, A., Wu, X., Pan, A. and Wyandt, H.E.: Acquired Robertsonian translocations in two leukemia patients. Cancer Genet Cytogenet 131 (2001) 104-8. 46 Literatur Chinnappan, D., Verma, I.C., Arya, L.S. and Choudry, V.P.: Rare constitutional Robertsonian translocation in a childhood acute lymphoblastic leukemic patient. Cancer Genet Cytogenet 102 (1998) 151-2. Collins, S., Coleman, H. and Groudine, M.: Expression of bcr and bcr-abl fusion transcripts in normal and leukemic cells. Mol Cell Biol 7 (1987) 2870-6. Czepulkowski, B., Powell, A.R., Pagliuca, A. and Mufti, G.J.: Trisomy 10 and acute myeloid leukemia. Cancer Genet Cytogenet 134 (2002) 81-3. Czyz, W., Balcerczak, E., Jakubiak, M., Pasieka, Z., Kuzdak, K. and Mirowski, M.: HMGI(Y) gene expression as a potential marker of thyroid follicular carcinoma. Langenbecks Arch Surg 389 (2004) 193-7. Dal Cin, P., Timmerman, D., Van den Berghe, I., Wanschura, S., Kazmierczak, B., Vergote, I., Deprest, J., Neven, P., Moerman, P., Bullerdiek, J. and Van den Berghe, H.: Genomic changes in endometrial polyps associated with tamoxifen show no evidence for its action as an external carcinogen. Cancer Res 58 (1998) 2278-81. Fedele, M., Bandiera, A., Chiappetta, G., Battista, S., Viglietto, G., Manfioletti, G., Casamassimi, A., Santoro, M., Giancotti, V. and Fusco, A.: Human colorectal carcinomas express high levels of high mobility group HMGI(Y) proteins. Cancer Res 56 (1996) 1896-901. Fedele, M., Battista, S., Manfioletti, G., Croce, C.M., Giancotti, V. and Fusco, A.: Role of the high mobility group A proteins in human lipomas. Carcinogenesis 22 (2001) 1583-91. Flohr, A.M., Rogalla, P., Meiboom, M., Borrmann, L., Krohn, M., Thode-Halle, B. and Bullerdiek, J.: Variation of HMGB1 expression in breast cancer. Anticancer Res 21 (2001) 3881-5. Friedmann, M., Holth, L.T., Zoghbi, H.Y. and Reeves, R.: Organization, inducibleexpression and chromosome localization of the human HMG-I(Y) nonhistone protein gene. Nucleic Acids Res 21 (1993) 4259-67. Gattas, G.J., Quade, B.J., Nowak, R.A. and Morton, C.C.: HMGIC expression in human adult and fetal tissues and in uterine leiomyomata. Genes Chromosomes Cancer 25 (1999) 316-22. Graphodatsky, A.S., Beklemisheva, V.R. and Dolf, G.: High-resolution GTG-banding patterns of dog and silver fox chromosomes: description and comparative analysis. Cytogenet Cell Genet 69 (1995) 226-31. 47 Literatur Hahn, K.A., Richardson, R.C., Hahn, E.A. and Chrisman, C.L.: Diagnostic and prognostic importance of chromosomal aberrations identified in 61 dogs with lymphosarcoma. Vet Pathol 31 (1994) 528-40. Hansen, K. and Khanna, C.: Spontaneous and genetically engineered animal models; use in preclinical cancer drug development. Eur J Cancer 40 (2004) 858-80. Harley, C.B.: Telomere loss: mitotic clock or genetic time bomb? Mutat Res 256 (1991) 271-82. He, Q., Liang, C.H. and Lippard, S.J.: Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc Natl Acad Sci U S A 97 (2000) 5768-72. Hecht, F., Morgan, R. and Hecht, B.K.: Robertsonian chromosome recombinants are rare in cancer. Cancer Genet Cytogenet 35 (1988) 79-81. Hofmann, M.A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., Avila, C., Kambham, N., Bierhaus, A., Nawroth, P., Neurath, M.F., Slattery, T., Beach, D., McClary, J., Nagashima, M., Morser, J., Stern, D. and Schmidt, A.M.: RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97 (1999) 889-901. Hori, O., Brett, J., Slattery, T., Cao, R., Zhang, J., Chen, J.X., Nagashima, M., Lundh, E.R., Vijay, S., Nitecki, D. and et al.: The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 270 (1995) 25752-61. Horsting, N., Wohlsein, P., Reimann, N., Bartnitzke, S., Bullerdiek, J. and Nolte, I.: Cytogenetic analysis of three oropharyngeal malignant melanomas in dogs. Res Vet Sci 67 (1999) 149-51. Huttunen, H.J., Fages, C., Kuja-Panula, J., Ridley, A.J. and Rauvala, H.: Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res 62 (2002) 4805-11. Ishiguro, H., Nakaigawa, N., Miyoshi, Y., Fujinami, K., Kubota, Y. and Uemura, H.: Receptor for advanced glycation end products (RAGE) and its ligand, amphoterin are overexpressed and associated with prostate cancer development. Prostate 64 (2005) 92-100. Kazmierczak, B., Bullerdiek, J., Pham, K.H., Bartnitzke, S. and Wiesner, H.: Intron 3 of HMGIC is the most frequent target of chromosomal aberrations in human 48 Literatur tumors and has been conserved basically for at least 30 million years. Cancer Genet Cytogenet 103 (1998a) 175-7. Kazmierczak, B., Dal Cin, P., Wanschura, S., Bartnitzke, S., Van den Berghe, H. and Bullerdiek, J.: Cloning and molecular characterization of part of a new gene fused to HMGIC in mesenchymal tumors. Am J Pathol 152 (1998b) 431-5. Kazmierczak, B., Hennig, Y., Wanschura, S., Rogalla, P., Bartnitzke, S., Van de Ven, W. and Bullerdiek, J.: Description of a novel fusion transcript between HMGI-C, a gene encoding for a member of the high mobility group proteins, and the mitochondrial aldehyde dehydrogenase gene. Cancer Res 55 (1995) 6038-9. Kazmierczak, B., Rosigkeit, J., Wanschura, S., Meyer-Bolte, K., Van de Ven, W.J., Kayser, K., Krieghoff, B., Kastendiek, H., Bartnitzke, S. and Bullerdiek, J.: HMGI-C rearrangements as the molecular basis for the majority of pulmonary chondroid hamartomas: a survey of 30 tumors. Oncogene 12 (1996) 515-21. Kirkness, E.F., Bafna, V., Halpern, A.L., Levy, S., Remington, K., Rusch, D.B., Delcher, A.L., Pop, M., Wang, W., Fraser, C.M. and Venter, J.C.: The dog genome: survey sequencing and comparative analysis. Science 301 (2003) 1898903. Kurose, K., Mine, N., Doi, D., Ota, Y., Yoneyama, K., Konishi, H., Araki, T. and Emi, M.: Novel gene fusion of COX6C at 8q22-23 to HMGIC at 12q15 in a uterine leiomyoma. Genes Chromosomes Cancer 27 (2000) 303-7. Kurose, K., Mine, N., Iida, A., Nagai, H., Harada, H., Araki, T. and Emi, M.: Three aberrant splicing variants of the HMGIC gene transcribed in uterine leiomyomas. Genes Chromosomes Cancer 30 (2001) 212-7. Kuska, B.: Sit, DNA, sit: cancer genetics going to the dogs. J Natl Cancer Inst 91 (1999) 204-6. Landsman, D. and Bustin, M.: A signature for the HMG-1 box DNA-binding proteins. Bioessays 15 (1993) 539-46. Lemke, I., Rogalla, P. and Bullerdiek, J.: A novel LPP fusion gene indicates the crucial role of truncated LPP proteins in lipomas and pulmonary chondroid hamartomas. Cytogenet Cell Genet 95 (2001) 153-6. Lepretre, S., Buchonnet, G., Stamatoullas, A., Lenain, P., Duval, C., d'Anjou, J., Callat, M.P., Tilly, H. and Bastard, C.: Chromosome abnormalities in peripheral Tcell lymphoma. Cancer Genet Cytogenet 117 (2000) 71-9. 49 Literatur Ligon, A.H. and Morton, C.C.: Genetics of uterine leiomyomata. Genes Chromosomes Cancer 28 (2000) 235-45. Lin, L., Faraco, J., Li, R., Kadotani, H., Rogers, W., Lin, X., Qiu, X., de Jong, P.J., Nishino, S. and Mignot, E.: The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98 (1999) 365-76. Lindblad-Toh, K., Wade, C.M., Mikkelsen, T.S., Karlsson, E.K., Jaffe, D.B., Kamal, M., Clamp, M., Chang, J.L., Kulbokas, E.J., 3rd, Zody, M.C., Mauceli, E., Xie, X., Breen, M., Wayne, R.K., Ostrander, E.A., Ponting, C.P., Galibert, F., Smith, D.R., DeJong, P.J., Kirkness, E., Alvarez, P., Biagi, T., Brockman, W., Butler, J., Chin, C.W., Cook, A., Cuff, J., Daly, M.J., DeCaprio, D., Gnerre, S., Grabherr, M., Kellis, M., Kleber, M., Bardeleben, C., Goodstadt, L., Heger, A., Hitte, C., Kim, L., Koepfli, K.P., Parker, H.G., Pollinger, J.P., Searle, S.M., Sutter, N.B., Thomas, R., Webber, C., Baldwin, J., Abebe, A., Abouelleil, A., Aftuck, L., Ait-Zahra, M., Aldredge, T., Allen, N., An, P., Anderson, S., Antoine, C., Arachchi, H., Aslam, A., Ayotte, L., Bachantsang, P., Barry, A., Bayul, T., Benamara, M., Berlin, A., Bessette, D., Blitshteyn, B., Bloom, T., Blye, J., Boguslavskiy, L., Bonnet, C., Boukhgalter, B., Brown, A., Cahill, P., Calixte, N., Camarata, J., Cheshatsang, Y., Chu, J., Citroen, M., Collymore, A., Cooke, P., Dawoe, T., Daza, R., Decktor, K., DeGray, S., Dhargay, N., Dooley, K., Dooley, K., Dorje, P., Dorjee, K., Dorris, L., Duffey, N., Dupes, A., Egbiremolen, O., Elong, R., Falk, J., Farina, A., Faro, S., Ferguson, D., Ferreira, P., Fisher, S., FitzGerald, M., et al.: Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438 (2005) 803-19. Liotta, L.A. and Clair, T.: Cancer. Checkpoint for invasion. Nature 405 (2000) 287-8. MacEwen, E.G.: Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment. Cancer Metastasis Rev 9 (1990) 125-36. Manolache, M., Ross, W.M. and Schmid, M.: Banding analysis of the somatic chromosomes of the domestic dog (Canis familiaris). Can J Genet Cytol 18 (1976) 513-8. Mark, H.F., Feldman, D., Das, S., Samy, M., Sun, C.L. and Mark, S.: Assessment of chromosomal trisomies in prostate cancer using fluorescent in situ hybridization. Exp Mol Pathol 67 (1999) 109-17. Masciullo, V., Baldassarre, G., Pentimalli, F., Berlingieri, M.T., Boccia, A., Chiappetta, G., Palazzo, J., Manfioletti, G., Giancotti, V., Viglietto, G., Scambia, G. and Fu50 Literatur sco, A.: HMGA1 protein over-expression is a frequent feature of epithelial ovarian carcinomas. Carcinogenesis 24 (2003) 1191-8. Masure, S., Haefner, B., Wesselink, J.J., Hoefnagel, E., Mortier, E., Verhasselt, P., Tuytelaars, A., Gordon, R. and Richardson, A.: Molecular cloning, expression and characterization of the human serine/threonine kinase Akt-3. Eur J Biochem 265 (1999) 353-60. Mayr, B., Eschborn, U., Loupal, G. and Schleger, W.: Trisomy 1 in a canine mammary tubular adenocarcinoma, complex type. Vet Pathol 30 (1993) 311-3. Mayr, B., Furtmueller, G., Schleger, W. and Reifinger, M.: Trisomy 2 in three cases of canine haemangiopericytoma. Br Vet J 148 (1992a) 113-8. Mayr, B., Gilli, H., Schleger, W., Reifinger, M. and Burtscher, H.: Cytogenetic characterization of mammary tumors in two domestic dogs. Zentralbl Veterinarmed A 38 (1991a) 141-7. Mayr, B., Kramberger-Kaplan, E., Loupal, G. and Schleger, W.: Analysis of complex cytogenetic alterations in three canine mammary sarcomas. Res Vet Sci 53 (1992b) 205-11. Mayr, B., Reifinger, M., Brem, G., Feil, C. and Schleger, W.: Cytogenetic, ras, and p53: studies in cases of canine neoplasms (hemangiopericytoma, mastocytoma, histiocytoma, chloroma). J Hered 90 (1999) 124-8. Mayr, B., Reifinger, M., Weissenbock, H., Schleger, W. and Eisenmenger, E.: Cytogenetic analyses of four solid tumours in dogs. Res Vet Sci 57 (1994) 88-95. Mayr, B., Scheller, M., Reifinger, M. and Loupal, G.: Cytogenetic characterization of a fibroma and three haemangiopericytomas in domestic dogs. Br Vet J 151 (1995) 433-41. Mayr, B., Schleger, W., Kalat, M., Schweiger, P., Reifinger, M. and Eisenmenger, E.: Cytogenetic studies in a canine mammary tumor. Cancer Genet Cytogenet 47 (1990a) 83-7. Mayr, B., Schleger, W., Loupal, G. and Burtscher, H.: Characterisation of complex karyotype changes in a canine thyroid adenoma. Res Vet Sci 50 (1991b) 298300. Mayr, B., Wagner, B., Schleger, W. and Reifinger, M.: Cytogenetic studies in a canine neurofibroma. Br Vet J 146 (1990b) 500-3. McPherson, J.D., Marra, M., Hillier, L., Waterston, R.H., Chinwalla, A., Wallis, J., Sekhon, M., Wylie, K., Mardis, E.R., Wilson, R.K., Fulton, R., Kucaba, T.A., 51 Literatur Wagner-McPherson, C. and Barbazuk, W.B.: A physical map of the human genome. Macmillan Magazines Ltd (2001a). McPherson, J.D., Marra, M., Hillier, L., Waterston, R.H., Chinwalla, A., Wallis, J., Sekhon, M., Wylie, K., Mardis, E.R., Wilson, R.K., Fulton, R., Kucaba, T.A., Wagner-McPherson, C., Barbazuk, W.B., Gregory, S.G., Humphray, S.J., French, L., Evans, R.S., Bethel, G., Whittaker, A., Holden, J.L., McCann, O.T., Dunham, A., Soderlund, C., Scott, C.E., Bentley, D.R., Schuler, G., Chen, H.C., Jang, W., Green, E.D., Idol, J.R., Maduro, V.V., Montgomery, K.T., Lee, E., Miller, A., Emerling, S., Kucherlapati, Gibbs, R., Scherer, S., Gorrell, J.H., Sodergren, E., Clerc-Blankenburg, K., Tabor, P., Naylor, S., Garcia, D., de Jong, P.J., Catanese, J.J., Nowak, N., Osoegawa, K., Qin, S., Rowen, L., Madan, A., Dors, M., Hood, L., Trask, B., Friedman, C., Massa, H., Cheung, V.G., Kirsch, I.R., Reid, T., Yonescu, R., Weissenbach, J., Bruls, T., Heilig, R., Branscomb, E., Olsen, A., Doggett, N., Cheng, J.F., Hawkins, T., Myers, R.M., Shang, J., Ramirez, L., Schmutz, J., Velasquez, O., Dixon, K., Stone, N.E., Cox, D.R., Haussler, D., Kent, W.J., Furey, T., Rogic, S., Kennedy, S., Jones, S., Rosenthal, A., Wen, G., Schilhabel, M., Gloeckner, G., Nyakatura, G., Siebert, R., Schlegelberger, B., Korenberg, J., Chen, X.N., Fujiyama, A., Hattori, M., Toyoda, A., Yada, T., Park, H.S., Sakaki, Y., Shimizu, N., Asakawa, S., et al.: A physical map of the human genome. Nature 409 (2001b) 934-41. Meiboom, M., Murua Escobar, H., Winkler, S., Nolte, I. and Bullerdiek, J.: Molecular characterization and mapping of the canine KRAB zinc finger gene ZNF331. Anim Genet 35 (2004) 262-3. Meyer, B., Loeschke, S., Schultze, A., Weigel, T., Sandkamp, M., Goldmann, T., Vollmer, E. and Bullerdiek, J.: HMGA2 Overexpression in Non-Small Cell Lung Cancer. Molecular Carcinogenesis (in press). Meyer, B., Murua Escobar, H., Hauke, S., Richter, A., Winkler, S., Rogalla, P., Flohr, A.M., Bullerdiek, J. and Nolte, I.: Expression pattern of the HMGB1 gene in sarcomas of the dog. Anticancer Res 24 (2004a) 707-10. Meyer, B., Murua Escobar, H., Winkler, S., Dolf, G., Schelling, C., Bullerdiek, J. and Nolte, I.: Molecular characterization and mapping of the canine cyclin D1 (CCND1) gene. Anim Genet 35 (2004b) 413. 52 Literatur Mine, N., Kurose, K., Nagai, H., Doi, D., Ota, Y., Yoneyama, K., Konishi, H., Araki, T. and Emi, M.: Gene fusion involving HMGIC is a frequent aberration in uterine leiomyomas. J Hum Genet 46 (2001) 408-12. Mitelman, F., Johansson, B., Mandahl, N. and Mertens, F.: Clinical significance of cytogenetic findings in solid tumors. Cancer Genet Cytogenet 95 (1997) 1-8. Miyazawa, J., Mitoro, A., Kawashiri, S., Chada, K.K. and Imai, K.: Expression of mesenchyme-specific gene HMGA2 in squamous cell carcinomas of the oral cavity. Cancer Res 64 (2004) 2024-9. Muller, S., Scaffidi, P., Degryse, B., Bonaldi, T., Ronfani, L., Agresti, A., Beltrame, M. and Bianchi, M.E.: New EMBO members' review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. Embo J 20 (2001) 4337-40. Murua Escobar, H., Becker, K., Bullerdiek, J. and Nolte, I.: The canine ERBB2 gene maps to a chromosome region frequently affected by aberrations in tumors of the dog (Canis familiaris). Cytogenet Cell Genet 94 (2001) 194-5. Murua Escobar, H., Gunther, K., Richter, A., Soller, J.T., Winkler, S., Nolte, I. and Bullerdiek, J.: Absence of ras-gene hot-spot mutations in canine fibrosarcomas and melanomas. Anticancer Res 24 (2004a) 3027-8. Murua Escobar, H., Meyer, B., Richter, A., Becker, K., Flohr, A.M., Bullerdiek, J. and Nolte, I.: Molecular characterization of the canine HMGB1. Cytogenet Genome Res 101 (2003) 33-8. Murua Escobar, H., Meyer, J., Winkler, S., Schelling, C., Dolf, G., Nolte, I. and Bullerdiek, J.: The protein kinase B, gamma (AKT3) gene maps to canine chromosome 7. Anim Genet 35 (2004b) 354-5. Murua Escobar, H., Soller, J.T., Richter, A., Meyer, B., Winkler, S., Bullerdiek, J. and Nolte, I.: "Best friends" sharing the HMGA1 gene: comparison of the human and canine HMGA1 to orthologous other species. J Hered 96 (2005) 777-81. Murua Escobar, H., Soller, J.T., Richter, A., Meyer, B., Winkler, S., Flohr, A.M., Nolte, I. and Bullerdiek, J.: The canine HMGA1. Gene 330 (2004c) 93-9. Murua Escobar, H., Soller, J.T., Sterenczak, K.A., Sperveslage, J.D., Schlueter, C., Burchardt, B., Eberle, N., Fork, M., Nimzyk, R., Winkler, S., Nolte, I. and Bullerdiek, J.: Cloning and characterization of the canine receptor for advanced glycation end products. Gene 369 (2006) 45-52. 53 Literatur Nam, E.S., Kim, D.H., Cho, S.J., Chae, S.W., Kim, H.Y., Kim, S.M., Han, J.J., Shin, H.S. and Park, Y.E.: Expression of HMGI(Y) associated with malignant phenotype of human gastric tissue. Histopathology 42 (2003) 466-71. Neeper, M., Schmidt, A.M., Brett, J., Yan, S.D., Wang, F., Pan, Y.C., Elliston, K., Stern, D. and Shaw, A.: Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267 (1992) 14998-5004. Nicholson, K.M. and Anderson, N.G.: The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14 (2002) 381-95. Nielsen, J. and Wohlert, M.: Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus, Denmark. Hum Genet 87 (1991) 81-3. Nolte, I. and Nolte, M.: Praxis der Onkologie bei Hund und Katze. Enke, Stuttgart, 2000. Nolte, I., Reimann, N., Bullerdiek, J., Bartnitzke, S., Mischke, R. and Nolte, M.: [Importance of cytogenetic investigations in canine leukemias]. Tierarztl Prax 25 (1997) 393-7. Nolte, M., Werner, M., Nolte, I. and Georgii, A.: Different cytogenetic findings in two clinically similar leukaemic dogs. J Comp Pathol 108 (1993) 337-42. Ostrander, E.A., Galibert, F. and Patterson, D.F.: Canine genetics comes of age. Trends Genet 16 (2000) 117-24. Park, L., Raman, K.G., Lee, K.J., Lu, Y., Ferran, L.J., Jr., Chow, W.S., Stern, D. and Schmidt, A.M.: Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 4 (1998) 102531. Park, M.: Genetic abnormalities of cell growth. In: Scriver (Ed.), The Metabolic and Molecular Basis of Inherited Diseases. McGraw-Hill, New York, 1995. Pentimalli, F., Dentice, M., Fedele, M., Pierantoni, G.M., Cito, L., Pallante, P., Santoro, M., Viglietto, G., Dal Cin, P. and Fusco, A.: Suppression of HMGA2 protein synthesis could be a tool for the therapy of well differentiated liposarcomas overexpressing HMGA2. Cancer Res 63 (2003) 7423-7. Petit, M.M., Mols, R., Schoenmakers, E.F., Mandahl, N. and Van de Ven, W.J.: LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family. Genomics 36 (1996) 118-29. 54 Literatur Pil, P.M. and Lippard, S.J.: Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science 256 (1992) 234-7. Rawle, F.E. and Lillicrap, D.: Preclinical animal models for hemophilia gene therapy: predictive value and limitations. Semin Thromb Hemost 30 (2004) 205-13. Reeves, R.: Structure and function of the HMGI(Y) family of architectural transcription factors. Environ Health Perspect 108 Suppl 5 (2000) 803-9. Reeves, R., Edberg, D.D. and Li, Y.: Architectural transcription factor HMGI(Y) promotes tumor progression and mesenchymal transition of human epithelial cells. Mol Cell Biol 21 (2001) 575-94. Reimann, N., Bartnitzke, S., Bullerdiek, J., Mischke, R. and Nolte, I.: Trisomy 1 in a canine acute leukemia indicating the pathogenetic importance of polysomy 1 in leukemias of the dog. Cancer Genet Cytogenet 101 (1998) 49-52. Reimann, N., Bartnitzke, S., Bullerdiek, J., Schmitz, U., Rogalla, P., Nolte, I. and Ronne, M.: An extended nomenclature of the canine karyotype. Cytogenet Cell Genet 73 (1996a) 140-4. Reimann, N., Nolte, I., Bartnitzke, S. and Bullerdiek, J.: Re: Sit, DNA, sit: cancer genetics going to the dogs. J Natl Cancer Inst 91 (1999a) 1688-9. Reimann, N., Nolte, I., Bonk, U., Bartnitzke, S. and Bullerdiek, J.: Cytogenetic investigation of canine lipomas. Cancer Genet Cytogenet 111 (1999b) 172-4. Reimann, N., Nolte, I., Bonk, U., Werner, M., Bullerdiek, J. and Bartnitzke, S.: Trisomy 18 in a canine thyroid adenoma. Cancer Genet Cytogenet 90 (1996b) 154-6. Reimann, N., Rogalla, P., Kazmierczak, B., Bonk, U., Nolte, I., Grzonka, T., Bartnitzke, S. and Bullerdiek, J.: Evidence that metacentric and submetacentric chromosomes in canine tumors can result from telomeric fusions. Cytogenet Cell Genet 67 (1994) 81-5. Rho, Y.S., Lim, Y.C., Park, I.S., Kim, J.H., Ahn, H.Y., Cho, S.J. and Shin, H.S.: High mobility group HMGI(Y) protein expression in head and neck squamous cell carcinoma. Acta Otolaryngol 127 (2007) 76-81. Richter, A., Murua Escobar, H., Gunther, K., Meyer, B., Winkler, S., Dolf, G., Schelling, C., Nolte, I. and Bullerdiek, J.: The canine NRAS gene maps to CFA 17. Anim Genet 35 (2004) 355-6. Richter, A., Murua Escobar, H., Gunther, K., Soller, J.T., Winkler, S., Nolte, I. and Bullerdiek, J.: RAS gene hot-spot mutations in canine neoplasias. J Hered 96 (2005) 764-5. 55 Literatur Rogalla, P., Drechsler, K., Frey, G., Hennig, Y., Helmke, B., Bonk, U. and Bullerdiek, J.: HMGI-C expression patterns in human tissues. Implications for the genesis of frequent mesenchymal tumors. Am J Pathol 149 (1996) 775-9. Rogalla, P., Drechsler, K., Kazmierczak, B., Rippe, V., Bonk, U. and Bullerdiek, J.: Expression of HMGI-C, a member of the high mobility group protein family, in a subset of breast cancers: relationship to histologic grade. Mol Carcinog 19 (1997) 153-6. Rogalla, P., Drechsler, K., Schroder-Babo, W., Eberhardt, K. and Bullerdiek, J.: HMGIC expression patterns in non-small lung cancer and surrounding tissue. Anticancer Res 18 (1998) 3327-30. Sarhadi, V., Wikman, H., Salmenkivi, K., Kuosma, E., Sioris, T., Salo, J., Karjalainen, A., Knuutila, S. and Anttila, S.: Increased expression of high mobility group A proteins in lung cancer. J Pathol (2006). Scala, S., Portella, G., Fedele, M., Chiappetta, G. and Fusco, A.: Adenovirusmediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias. Proc Natl Acad Sci U S A 97 (2000) 4256-61. Schlueter, C., Hauke, S., Flohr, A.M., Rogalla, P. and Bullerdiek, J.: Tissue-specific expression patterns of the RAGE receptor and its soluble forms--a result of regulated alternative splicing? Biochim Biophys Acta 1630 (2003) 1-6. Schmidt, A.M., Hori, O., Brett, J., Yan, S.D., Wautier, J.L. and Stern, D.: Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb 14 (1994) 1521-8. Schoenmakers, E.F., Huysmans, C. and Van de Ven, W.J.: Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas. Cancer Res 59 (1999) 19-23. Schoenmakers, E.F., Wanschura, S., Mols, R., Bullerdiek, J., Van den Berghe, H. and Van de Ven, W.J.: Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nat Genet 10 (1995) 436-44. Seabright, M.: A rapid banding technique for human chromosomes. Lancet 2 (1971) 971-2. Selden, J.R., Moorhead, P.S., Oehlert, M.L. and Patterson, D.F.: The Giemsa banding pattern of the canine karyotype. Cytogenet Cell Genet 15 (1975) 380-7. 56 Literatur Shukla, V.K., Hughes, D.C., Hughes, L.E., McCormick, F. and Padua, R.A.: ras mutations in human melanotic lesions: K-ras activation is a frequent and early event in melanoma development. Oncogene Res 5 (1989) 121-7. Slijepcevic, P.: Telomeres and mechanisms of Robertsonian fusion. Chromosoma 107 (1998) 136-40. Soller, J.T., Murua Escobar, H., Winkler, S., Fork, M., Pöhler, C., Bünger, S., Sterenczak, K.A., Willenbrock, S., Nolte, I. and Bullerdiek, J.: Inhibitory effect of antisense HMGA AAV-mediated delivery suppresses cell proliferation in canine carcinoma cell line. (in Vorbereitung). Sornberger, K.S., Weremowicz, S., Williams, A.J., Quade, B.J., Ligon, A.H., Pedeutour, F., Vanni, R. and Morton, C.C.: Expression of HMGIY in three uterine leiomyomata with complex rearrangements of chromosome 6. Cancer Genet Cytogenet 114 (1999) 9-16. Spandidos, D.A., Sourvinos, G., Tsatsanis, C. and Zafiropoulos, A.: Normal ras genes: their onco-suppressor and pro-apoptotic functions (review). Int J Oncol 21 (2002) 237-41. Steiner, T., Junker, K., Burkhardt, F., Braunsdorf, A., Janitzky, V. and Schubert, J.: Gain in chromosome 8q correlates with early progression in hormonal treated prostate cancer. Eur Urol 41 (2002) 167-71. Stone, D.M., Jacky, P.B. and Prieur, D.J.: The giemsa banding pattern of canine chromosomes, using a cell synchronization technique. Genome 34 (1991) 40712. Switonski, M., Reimann, N., Bosma, A.A., Long, S., Bartnitzke, S., Pienkowska, A., Moreno-Milan, M.M. and Fischer, P.: Report on the progress of standardization of the G-banded canine (Canis familiaris) karyotype. Committee for the Standardized Karyotype of the Dog (Canis familiaris). Chromosome Res 4 (1996) 306-9. Switonski, M., Szczerbal, I. and Nowacka, J.: The dog genome map and its use in mammalian comparative genomics. J Appl Genet 45 (2004) 195-214. Taguchi, A., Blood, D.C., del Toro, G., Canet, A., Lee, D.C., Qu, W., Tanji, N., Lu, Y., Lalla, E., Fu, C., Hofmann, M.A., Kislinger, T., Ingram, M., Lu, A., Tanaka, H., Hori, O., Ogawa, S., Stern, D.M. and Schmidt, A.M.: Blockade of RAGEamphoterin signalling suppresses tumour growth and metastases. Nature 405 (2000) 354-60. 57 Literatur Takaha, N., Hawkins, A.L., Griffin, C.A., Isaacs, W.B. and Coffey, D.S.: High mobility group protein I(Y): a candidate architectural protein for chromosomal rearrangements in prostate cancer cells. Cancer Res 62 (2002) 647-51. Takaha, N., Resar, L.M., Vindivich, D. and Coffey, D.S.: High mobility group protein HMGI(Y) enhances tumor cell growth, invasion, and matrix metalloproteinase-2 expression in prostate cancer cells. Prostate 60 (2004) 160-7. Tallini, G. and Dal Cin, P.: HMGI(Y) and HMGI-C dysregulation: a common occurrence in human tumors. Adv Anat Pathol 6 (1999) 237-46. Tallini, G., Dal Cin, P., Rhoden, K.J., Chiapetta, G., Manfioletti, G., Giancotti, V., Fusco, A., Van den Berghe, H. and Sciot, R.: Expression of HMGI-C and HMGI(Y) in ordinary lipoma and atypical lipomatous tumors: immunohistochemical reactivity correlates with karyotypic alterations. Am J Pathol 151 (1997) 37-43. Tamimi, Y., van der Poel, H.G., Denyn, M.M., Umbas, R., Karthaus, H.F., Debruyne, F.M. and Schalken, J.A.: Increased expression of high mobility group protein I(Y) in high grade prostatic cancer determined by in situ hybridization. Cancer Res 53 (1993) 5512-6. Thomas, R., Smith, K.C., Ostrander, E.A., Galibert, F. and Breen, M.: Chromosome aberrations in canine multicentric lymphomas detected with comparative genomic hybridisation and a panel of single locus probes. Br J Cancer 89 (2003) 1530-7. Trapasso, F., Sarti, M., Cesari, R., Yendamuri, S., Dumon, K.R., Aqeilan, R.I., Pentimalli, F., Infante, L., Alder, H., Abe, N., Watanabe, T., Viglietto, G., Croce, C.M. and Fusco, A.: Therapy of human pancreatic carcinoma based on suppression of HMGA1 protein synthesis in preclinical models. Cancer Gene Ther 11 (2004) 633-41. Vail, D.M. and MacEwen, E.G.: Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest 18 (2000) 781-92. van Duin, M., van Marion, R., Vissers, K., Watson, J.E., van Weerden, W.M., Schroder, F.H., Hop, W.C., van der Kwast, T.H., Collins, C. and van Dekken, H.: High-resolution array comparative genomic hybridization of chromosome arm 8q: Evaluation of genetic progression markers for prostate cancer. Genes Chromosomes Cancer 44 (2005) 438-49. 58 Literatur Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., Gocayne, J.D., Amanatides, P., Ballew, R.M., Huson, D.H., Wortman, J.R., Zhang, Q., Kodira, C.D., Zheng, X.H., Chen, L., Skupski, M., Subramanian, G., Thomas, P.D., Zhang, J., Gabor Miklos, G.L., Nelson, C., Broder, S., Clark, A.G., Nadeau, J., McKusick, V.A., Zinder, N., Levine, A.J., Roberts, R.J., Simon, M., Slayman, C., Hunkapiller, M., Bolanos, R., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Florea, L., Halpern, A., Hannenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington, K., Abu-Threideh, J., Beasley, E., Biddick, K., Bonazzi, V., Brandon, R., Cargill, M., Chandramouliswaran, I., Charlab, R., Chaturvedi, K., Deng, Z., Di Francesco, V., Dunn, P., Eilbeck, K., Evangelista, C., Gabrielian, A.E., Gan, W., Ge, W., Gong, F., Gu, Z., Guan, P., Heiman, T.J., Higgins, M.E., Ji, R.R., Ke, Z., Ketchum, K.A., Lai, Z., Lei, Y., Li, Z., Li, J., Liang, Y., Lin, X., Lu, F., Merkulov, G.V., Milshina, N., Moore, H.M., Naik, A.K., Narayan, V.A., Neelam, B., Nusskern, D., Rusch, D.B., Salzberg, S., Shao, W., Shue, B., Sun, J., Wang, Z., Wang, A., Wang, X., Wang, J., Wei, M., Wides, R., Xiao, C., Yan, C., et al.: The sequence of the human genome. Science 291 (2001) 130451. Williams, A.J., Powell, W.L., Collins, T. and Morton, C.C.: HMGI(Y) expression in human uterine leiomyomata. Involvement of another high-mobility group architectural factor in a benign neoplasm. Am J Pathol 150 (1997) 911-8. Winkler, S., Murua Escobar, H., Eberle, N., Reimann-Berg, N., Nolte, I. and Bullerdiek, J.: Establishment of a Cell Line Derived from a Canine Prostate Carcinoma with a Highly Rearranged Karyotype. J Hered (2005a). Winkler, S., Murua Escobar, H., Meyer, B., Simon, D., Eberle, N., Baumgartner, W., Loeschke, S., Nolte, I. and Bullerdiek, J.: HMGA2 Expression in a Canine Model of Prostate Cancer. Cancer genetics and cytogenetics (accepted for publication). Winkler, S., Murua Escobar, H., Gunther, K., Richter, A., Dolf, G., Schelling, C., Bullerdiek, J. and Nolte, I.: The canine KRAS2 gene maps to chromosome 22. Anim Genet 35 (2004) 350-1. Winkler, S., Murua Escobar, H., Reimann-Berg, N., Bullerdiek, J. and Nolte, I.: Cytogenetic Investigations in Four Canine Lymphomas. Anticancer Res 25 (2005b) 3995-8. 59 Literatur Winkler, S., Reimann-Berg, N., Murua Escobar, H., Loeschke, S., Eberle, N., Hoinghaus, R., Nolte, I. and Bullerdiek, J.: Polysomy 13 in a canine prostate carcinoma underlining its significance in the development of prostate cancer. Cancer Genet Cytogenet 169 (2006) 154-8. Withrow, S.J. and MacEwen, E.G.: Clinical Veterinary Oncology. J.B. Lippincott, Co., 1989. Withrow, S.J. and MacEwen, E.G.: Small Animal Clinical Oncology. WB Saunders Company, 2001. Withrow, S.J., Thrall, D.E., Straw, R.C., Powers, B.E., Wrigley, R.H., Larue, S.M., Page, R.L., Richardson, D.C., Bissonette, K.W., Betts, C.W. and et al.: Intraarterial cisplatin with or without radiation in limb-sparing for canine osteosarcoma. Cancer 71 (1993) 2484-90. Wolffe, A.P.: Architectural transcription factors. Science 264 (1994) 1100-1. Wolman, S.R., Gundacker, H., Appelbaum, F.R. and Slovak, M.L.: Impact of trisomy 8 (+8) on clinical presentation, treatment response, and survival in acute myeloid leukemia: a Southwest Oncology Group study. Blood 100 (2002) 29-35. Wood, L.J., Maher, J.F., Bunton, T.E. and Resar, L.M.: The oncogenic properties of the HMG-I gene family. Cancer Res 60 (2000a) 4256-61. Wood, L.J., Mukherjee, M., Dolde, C.E., Xu, Y., Maher, J.F., Bunton, T.E., Williams, J.B. and Resar, L.M.: HMG-I/Y, a new c-Myc target gene and potential oncogene. Mol Cell Biol 20 (2000b) 5490-502. Xiang, Y.Y., Wang, D.Y., Tanaka, M., Suzuki, M., Kiyokawa, E., Igarashi, H., Naito, Y., Shen, Q. and Sugimura, H.: Expression of high-mobility group-1 mRNA in human gastrointestinal adenocarcinoma and corresponding non-cancerous mucosa. Int J Cancer 74 (1997) 1-6. Yang, F., O'Brien, P.C., Milne, B.S., Graphodatsky, A.S., Solanky, N., Trifonov, V., Rens, W., Sargan, D. and Ferguson-Smith, M.A.: A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62 (1999) 189-202. 60 Danksagung 8. Danksagung Herrn Prof. Bullerdiek danke ich für die Überlassung des Themas und die Möglichkeit, diese Arbeit in seinem Institut durchführen zu können, sowie für die damit verbundene wissenschaftliche Betreuung Herrn Prof. Nolte danke ich für zwei lehrreiche Jahre in seiner Klinik, sowie für die Übernahme des Koreferates Herrn Dr. Murua Escobar -DEM Hugo- danke ich für seine unzähligen Tipps, Anregungen und Hilfestellungen im Bezug auf meine Arbeit, fürs Zuhören und das geduldige Ertragen meines Dickschädels (manchmal sind wir auch einer Meinung) Frau Dr. Reimann-Berg -DER Nicola- danke ich ebenfalls für zahlreiche Tipps und Hilfestellungen insbesondere im Bereich der Zytogenetik (Nein, das ist kein Fliegendreck und ja, man kann die Dinger sortieren) und für die jederzeit offenen Ohren Den „Hunde“ Kollegen Andreas „Trendy Andy“ Richter, Saskia „Cpt. Chaos“ Willenbrock“, Katharina „dem Kati“ Sterenczak, Miriam „Mi-Ma-Miri“ Janssen und Jan Soller; aber auch Norbert Drieschner, Martina Lübbing, Markus Klemke, Jan Sperveslage, Britta Meyer, Maren Meiboom, Cornelia Blank, Sven Hauke und Claudia Schlüter ein herzliches Dankeschön für den Spaß bei der Arbeit Den Hannoveraner Kollegen, insbesondere Nina Eberle und Ruth Höinghaus vielen Dank für Verständnis und Unterstützung in der Klinik, sowie für die geduldige Nachsorge in Form der Erfüllung von Sonderwünsche (Die Bremer schon wieder...) Bettina „Lotta“ Weniger und ihrer Familie vielen Dank für ihre Freundschaft und die zurückhaltenden Nachfragen (wann ist es denn soweit?) Ein Dankeschön geht auch an alle Freunde, die in irgendeiner Form Anteil am entstehen dieser Arbeit genommen haben, sei es durch offene Ohren, aktiven Stressabbau (Zappelhalle, Sport), Daumen drücken etc. 61 Danksagung Last but not least die beiden wichtigsten Menschen in meinem Leben: Vielen Dank an meine Mutter Hermanne Winkler, die einen großen Anteil daran trägt, dass ich die bin, die ich bin und die mir alles zutraut und Vielen Dank an meinen Freund und Lebensgefährten Frank Kruse, der alle Höhen und Tiefen mit mir durchlebt 62 Publikationsübersicht 9. Publikationsübersicht In der folgenden Übersicht sind die der vorliegenden Arbeiten zugrunde liegenden Arbeiten in der Reihenfolge, in der sie im Ergebnisteil erscheinen, aufgeführt: I. Winkler S, Murua Esobar H., Reimann-Berg N, Nolte I, Bullerdiek J. Cytogenetic Investigations in four canine Lymphomas Anticancer Res. 2005 Nov-Dec;25(6B):3995-8. II. Winkler S, Murua Escobar H, Eberle N, Reimann-Berg N, Nolte I, Bullerdiek J. Establishment of a cell line derived from a canine prostate carcinoma with a highly rearranged karyotype J Hered. 2005 Nov-Dec;96(7):782-5 III. Winkler S, Reimann-Berg N, Murua Escobar H., Loeschke S., Eberle N, Höinghaus R, Nolte I and Bullerdiek J. Polysomy 13 in a Canine Prostate Carcinoma Underlining its Significance in the Development of Prostate Cancer Cancer Genet Cytogenet. 2006 Sep;169(2):154-8. IV. Meiboom M, Murua Escobar H, Winkler S, Nolte I, Bullerdiek J. Molecular characterization and mapping of the canine KRAB zinc finger gene ZNF331. Anim Genet. 2004 Jun;35(3):262-3. V. Murua Escobar H, Meyer J, Winkler S, Schelling C, Dolf G, Nolte I, Bullerdiek J. The protein kinase B, gamma (AKT3) gene maps to canine chromosome 7. Anim Genet. 2004 Aug;35(4):354-5. VI. Meyer B, Murua Escobar H, Winkler S, Dolf G, Schelling C, Bullerdiek J, Nolte I. Molecular characterization and mapping of the canine cyclin D1 (CCND1) gene. Anim Genet. 2004 Oct;35(5):413. 63 Publikationsübersicht VII. Richter A, Murua Escobar H, Gunther K, Meyer B, Winkler S, Dolf G, Schelling C, Nolte I, Bullerdiek J. The canine NRAS gene maps to CFA 17. Anim Genet. 2004 Aug;35(4):355-6. VIII. Winkler S, Murua Escobar H, Gunther K, Richter A, Dolf G, Schelling C, Bullerdiek J, Nolte I. The canine KRAS2 gene maps to chromosome 22. Anim Genet. 2004 Aug;35(4):350-1. IX. Murua Escobar H, Soller JT, Sterenczak KA, Sperveslage JD, Schlueter C, Burchardt B, Eberle N, Fork M, Nimzyk R, Winkler S, Nolte I, Bullerdiek J. Cloning and characterization of the canine receptor for advanced glycation end Products Gene. 2006 Mar 15;369:45-52 X. Murua Escobar H, Gunther K, Richter A, Soller JT, Winkler S, Nolte I, Bullerdiek J. Absence of ras-gene hot-spot mutations in canine fibrosarcomas and melanomas. Anticancer Res. 2004 Sep-Oct;24(5A):3027-8. XI. Richter A, Murua Escobar H, Gunther K, Soller JT, Winkler S, Nolte I, Bullerdiek J. RAS gene hot-spot Mutations in canine neoplasias. J Hered. 2005 Nov-Dec;96(7):764-5. XII: Meyer B, Murua Escobar H, Hauke S, Richter A, Winkler S, Rogalla P, Flohr AM, Bullerdiek J, Nolte I. Expression pattern of the HMGB1 gene in sarcomas of the dog. Anticancer Res. 2004 Mar-Apr;24(2B):707-10. 64 Publikationsübersicht XIII. Murua Escobar H, Soller JT, Richter A, Meyer B, Winkler S, Flohr AM, Nolte I, Bullerdiek J. The canine HMGA1. Gene. 2004 Apr 14;330:93-9. XIV. Murua Escobar H, Soller JT, Richter A, Meyer B, Winkler S, Bullerdiek J, Nolte I. "Best Friends" Sharing the HMGA1 Gene: Comparison of the Human and Canine HMGA1 to Orthologous Other Species. J Hered. 2005 Nov-Dec;96(7):777-81. XV. Winkler S, Murua Escobar H, Meyer B, Simon D, Eberle N, Baumgartner W, Loeschke S, Nolte I und Bullerdiek, J.. HMGA2 Expression in a Canine Model of Prostate Cancer Zur Veröffentlichung angenommen XVI. Soller JT, Murua Escobar H, Winkler S, Fork M, Pöhler C, Bünger S, Sterenczak KA, Willenbrock S, Nolte I and Bullerdiek J Inhibitory effect of antisense HMGA AAV-mediated delivery suppresses cell proliferation in canine carcinoma cell line in Vorbereitung Folgende zusätzliche Publikationen erscheinen nicht im Ergebnisteil, sind jedoch der vorliegenden Arbeit beigefügt: XVII. Santos SE, Murua Escobar H, Sider LH, Winkler S, Aoki SM, Milazzotto MP, Campagnari F, Vannucchi CI, Bullerdiek J, Nolte I, Garcia JF. DNA sequence, polymorphism, and mapping of luteinizing hormone receptor fragment (LHCGR) gene in Great Dane dogs. Anim Genet. 2004 Feb;35(1):74-5. 65 I. Cytogenetic investigations in four canine lymphomas. Winkler S, Murua Escobar H, Reimann-Berg N, Bullerdiek J, Nolte I. Anticancer Res. 2005 Nov-Dec;25(6B):3995-8. Eigenanteil: • Kultivierung der Zellen • Erstellen der caninen Karyogramme • Verfassen des Artikels ANrrcaNcBR (2005) RESEARCH 25: 3995-3998 CytogeneticInvestigationsin Four CanineLymphomas SUSANNE WINKLERI, HUGO MURUA ESCOBAR2, NICOLA REIMANN-BBRG1. TÖnN BULLERDIEK1 and INGO NOTTE2 lCenter for Human Genetics, University of Bremen, Leobener StrasseZHG, 28359Bremen; 2SmallAnimal Clinic, School of VeterinaryMedicine, BischofsholerDamm 15,30173 Hannover, Germany Four cases of canine lymphoma are presented, including histological examination and cytogeneticinvestigation. The first case showed a derivative chromosome 13, the second Abstract. case showed a clonal tisomy 8 and the third case showed a complex karyotype with a clonal trisomy 13 and additional clonal trisomies of the chromosomes 20, 30 and 37, as well as a non-clonal tetrasomy 9. Case four showed a single tisomy 2. these results with human hematopoietic Comparing by Hahn et al. (I5) on canine lymphosarcomas, trisomies of chromosomes 13, 34 and 36 were found. In previous investigations, we were able to show two cases of leukemia in which trisomy L was present. One case consisted of a simple trisomy of chromosome 1, and the other case of centric fusion of two additional chromosomes l- (8-10). Herein, the karyotypic alterations detected in four dogs with different types of lymphomas are described. malignancies, there are notable similaities between both species. CaseReport A number of genetic alterations for hematopoietic diseases in humans have been described. Often. these alterations are specific chromosomal abnormalities, making cytogenetic analyses on outstanding tool for the diagnosis of these diseases.To date, only a few reports exist about cytogenetic investigations of hematopoietic diseases in dogs. This is certainly due to the difficult karyotype of the dog, which is Fourdogs,admittedto the Clinicfor SmallAnimals,School of Veterinary Medicine, Hannover, Germany, were clinically, cytologically and cytogenetically examined in detail. They included a 5-year-old male Munsterlander (Case KM 15) and a 4-year-old female Bernese Mountain Dog (case KM 115) both with centroblastic lymphomas stage IV, a 4-year-old male German Shepherd dog (case KM 39) with a centroblastic lymphoma stage V and a 6- comprised of 76 small acrocentric autosomes. However, there are some papers describing cytogenetic changes in canine cancers (1-13). On the one hand, these investigations provide a comparison with corresponding findings in year-old male Golden Retriever (case KM 29) with an immunoblastic B-cell lymphoma stage V. humans and, on the other hand, they can help to improve diagnosis in veterinary medicine and facilitate prognosis Materials and Methods about progress of the disease. Diseases of the hematopoietic and the lymphatic system, in particular, are among the most frequently observed malignant neoplasms in dogs (14). Thus, canine lymphosarcomas, the clinical appearance, histopathology and treatment of which are comparable to human non-Hodgkin's lymphomas, are found in approximately 036% of all dogs receiving veterinary care. Thus, the canine lymphosarcoma accounts for about 83Vo of all hematological malignancies of the dog (15). In a study to: Prof. Dr. Jörn Bullerdiek, Center for Human Correspondence Genetics,University of Bremen, Leobener StrasseZHG, D-28359 Bremen, Germany. Tel: + 49-(0)421-218-4239,F ax: + 49-(Q)42I- Bone marrow sampleswere taken from the iliac crest of the dogs and immediatelytransferredto 1 ml sodium heparin. The marrow cells were centrifuged at I35 x g and incubated for 48 hours in McCoy's medium. Subsequently,colcemide(0.1 pglml) was added for 2 hours. The cells were centrifuged again at 135 x g for 10 minutes and incubatedfor 15 minutes in 0.05 M KCl. Finally, the cells were fixed overnight with methanol/glacialacetic acid. This suspensionwas dropped on ice-cold slidesand dried for at least 7 daysat 37'C. The chromosomeswere stainedby GTG banding, and the karyotype was describedfollowing the nomenclature of Reimannet al. (1,6).The descriptionof the cytogeneticaberrations was carried out accordingto the instructionsof the "International Systemfor Human CytogeneticNomenclature(1995)" (I7). Results 21,8-4239, e-mail: [email protected] Key Words:Canisfamiliais, cytogenetics,lymphoma. 0250-700512005 $2.00+ .40 As listed in Table I, cytogenetic investigation of the bone marrow showed a derivative chromosome L3 in case KM 15. 3995 ANrrcaNcpR (2005) RSSEARCH 25: 3995-3998 Table I. Karyotype description of the four cases of canine lymphomas examined. Brackets show the number of metaphaseswith similar findings, bold type summarizes clonal changes. KM 15 KM 29 KM 39 KM 115 Histological diagnosis Karyotype Centroblastic lymphoma stage IV 78,XY [1] 78, XY, der (13) [2] 7 7 , X Y , - 3 6[ 1 ] 78,XY, -13, +mar [1] 78 [3] 7s [1] 77 l2l Immunoblastic 7 9 , X Y , + 8 [ 3 ] B-cell 79,XY, der(4),der(7),+8 [2] lymphoma 79,Xy l3l stage V Centroblastic lymphoma stage V Centroblastic lymphoma stage IV 84,XY, +9, +9, +13, +20, +30, +37 [3] 84,XY, +9, +9, +13, +16, +24, +31 lll 84,XY, +9, +13, +20, +30, +36, +37 [1] 82,XY, +9, +13, +20, +37 lll 84 [1] 86 [1] 87 [1] 78,XX [1] 78, XX, +2, -29 [l] 79,){X,+2lll 77 l2l 78 [3] 7e l4l 80 [1] Aberrations of chromosome 13 were found in two cases of the present study (KM 15, KM 39), including one case with trisomy L3 (Figure 1, Figure 2B). Concerning canine lymphosarcomas, trisomy 13 has been described earlier. In a study of 61 dogs with lymphosarcoma, trisomy 13 was found in 15 cases (15). Cytogenetic changes with involvement of chromosome L3 were even considered the most frequent clonal changes in canine lymphosarcomas. Dogs that exhibited trisomy 13 as the primary aberration in a lymphosarcoma showed a significantly longer duration of the first remission and of survival compared to animals with other chromosomal changes, because they responded better to a given chemotherapy (15). Thus, changes of the canine chromosome 13 may turn out to be a suitable marker for diagnosis and prognosis of canine lymphosarcomas. With regard to homology to human chromosomes, Yang et al. (18) showed homologies between CFA L3 and a comparatively long segment of HSA 8 and two small segments on HSA 4. The appearance of trisomy 8 in human lymphomas and myeloid leukemias, as well as the appearance of trisomy 4 in acute myeloid leukemias, supports the assumption that, in both species, the generation of cancer is comparable, even though there is a lack of structural chromosomal aberrations in canine hematopoietic neoplasias. Up to now, chromosomal fusions as well as translocations have not been found frequently in dogs. However, in addition to aberrations of chromosome 13, other aberrations detected in the present study are similar to those described earlier in solid or hematopoietic tumors of the dog. The clonal trisomy 2 of case KM 115 shows similarities to cases already described in the literature. In solid canine tumors, aberrations of chromosome 2 have that was present in 2 out of 5 metaphases for which karyotype descriptions were performed, representing the primary aberration. In this case, the derivative chromosome been reported repeatedly (I9,20). Again, compared to human chromosomes, Yang et al. (1S) showed homologies of CFA 2 to a relatively long segment on 13 obviously shows an increase of chromosomal material. In case KM 39, a clonal trisomy 13 was observed as well, in conjunction with a complex karyotype showing additional clonal trisomies of chromosomes 20,30 and 37 and a clonal HSA 10 and a smaller segment on HSA 1. In human leukemia and lymphoma, trisomy 10 is sometimes observed in myeloid leukemia. tetrasomy 9. Case KM 115 showed a clonal trisomy 2. Case KM 29 showed a clonal trisomy 8, that was found in all metaphases investigated. Additionally, two derivative chromosomes, 4 and 7, were present in two metaphases, indicating another clonal aberration. Discussion Although to date little is known about chromosomal changes in hematopoietic diseases and solid tumors of the dog, some differences in comparison to those found in humans are remarkable, such as the overall low frequency of specific translocations in canine neoplasias. 3996 The fourth case in the present study resembles the cases described earlier in this paper. In case KM 29, a clonal trisomy 8 was found (Figure 2A). According to Yang et al. (18), CFA 8 was nearly identical to human chromosome 14. Again, trisomy L4 often occurs in human myeloid leukemias and malignant lymphomas, with a main focus in myeloid disorders. Some cases arö reported in which trisomy 14 is due to an isochromosome 14 (21). The human oncogene BCL-L is located on the long arm of chromosome 14 at band q32. Translocations affecting this chromosomal region represent a common mechanism of oncogene activation in human malignant lymphoid malignancies, whereas in human multiple myeloma, the most frequent chromosomal aberration is a 14q+ marker (22). Winkler et al: Cytogenetic Investigations in Four Canine Lymphomas ffiffiffiffiffiffiffiffi.ffif 1 ä s 4 " . S 1 ffiffi@ffiffiffiffi ffiffi s ü ltt & WW tß ,#*" ffiw iiwe" f f i f f i qiw ffi @ ffingi ffiffi ryf t2 g4 44 E,' | ts l? - " l t . 3tt . ts @ M wsf "{tr" M W 3tt äl #s, ".Wi ffi 3ü wffi sg ,,Ä: @ ffi z7 z& t 4l , ml ffiffi 35 3{ ffi 3fi 3? l{ @ ffiffi Il f f 'i f f i-M l l f f i w f;6 I ffiffi ffiffi Wffi 3r *t 6 ffiffi. Wffi ## r r & ffiffi ffiffi |l @ffiffi1 - " - ' l *s rg 35 ffi W f f iq+t: | w"w 1ffi*ffiffi l W w wI Äw. ffiffi wi*ffi @i&ü ffi: @ffi |----;l lä ffi;tu, iffi @ . w w ffi:ffi' t5 1l #,ffi ffiffi ww ffi ffi H Y ffi Figure 1..Thecomplexkaryotypeof KM 39: 84,XY, +9, +9, +13, +20, +30, +37. A wffiw z I ffiffiffiffi ffiffiffiffi ffiffi 3 4 \ 5 6 ? \ ffiw ffiffi ffi# ffiffi ffiffi W,ffi @ g ft II 1l 1t ts t{ 8ffiffi l 3 \ \ Figure 2. Partial karyotypes.A: representativechromosomes I - 14 of KM 29. B: representativechromosome 13 of KM 15. Comparing the resultsof the presentstudywith findings in human hematopoieticdiseases, there are striking similarities in both speciesregardingcytogeneticalterationsinvolvedin the development of cancer. Thus, the dog may serve as an animal model for cancer research and drug discovery, thereby also taking advantage of improved therapy. ANucaNcnR (2005) RBSEARCH 25: 3995-399s References I Bafinitzke S, Motzko H, Caselitz J, Kornberg M, Bullerdiek J and Schloot W: A recurrent marker chromosome involving chromosome1 in two mammary tumors of the dog. Cytogenet Cell Genet 60: 135-137,1.992. 2 Bartnitzke S, Motzko H, Rosenhagen C and Bullerdiek J: Benign mixed tumor of canine mammary gland showingan r(X) and trisomy 5 as the only clonal abnormalities.Cancer Genet Cytogenet62: 29-31,1992. 3 Mayr B, Eschborn IJ, Loupal G and Schleger W: Characterisationof complex karyotype changesin two canine bonetumours.Res Vet Sci 51:34I-343,1991,. 4 Mayr B, Kramberger-Kaplan E, Loupal G and Schleger W: Analysis of complex cytogenetic alterations in three canine mammary sarcomas.Res Vet Sci 53: 205-211,1992. 5 Mayr B, Reifinger M, Weissenbock H, Schleger W and EisenmengerE: Cytogeneticanalysesof four solid tumours in dogs.Res Vet Sci57:88-95,1.994. 6 Mayr B, SchlegerW, Kalat M, SchweigerP, Reifinger M and Eisenmenger E: Cytogenetic studies in a canine mammary tumor. Cancer Genet Cytogenet47: 83-87,1.990. 'W, 7 Mayr B, Schleger Loupal G and Burtscher H: Characterisation of cornplex karyotype changesin a canine thyroid adenoma.Res Vet Sci 50: 298-300,I99I. 8 Nolte I, Reimann N, Bullerdiek J, Bartnitzke S, Mischke R and Nolte M: Importance of cytogeneticinvestigationsin canine leukemias.Tieraztl Prax 25: 393-397,1997. 9 Nolte M, Werner M, Nolte I and Georgii A: Different cytogeneticfindings in two clinically similar leukaemicdogs.J Comp Pathol 108:337-342,1993. 10 Reimann N, Bartnitzke S, Bullerdiek J, Mischke R and Nolte I: Trisomy 1 in a canine acute leukemia indicating the pathogeneticimportanceof polysomy1 in leukemiasof the dog. Cancer Genet Cltogenet 101: 49-52,1998. 11 Reimann N, Nolte I, Bonk U,Bartnitzke S and Bullerdiek J: Cytogenetic investigation of canine lipomas. Cancer Genet Cytogenet111: 172-17 4, 1999. 12 Reimann N, Nolte I, Bonk IJ, Werner M, Bullerdiek J and Bartnitzke S: Trisomy 18 in a canine thyroid adenoma.Cancer Genet Cytogenet90: 1,54-156, 1996. 3998 13 Reimann N, Rogalla P, Kazmierczak B, Bonk U, Nolte I, Grzonka T, Bartnitzke S and Bullerdiek J: Evidence that metacentricand submetacentricchromosomesin caninetumors can result from telomericfusions.Cltogenet Cell Genet 67: 8195, lgg4. 14 MacEwen EG: Spontaneoustumors in dogs and cats: models for the study of cancer biology and treatment. Cancer MetastasisRev 9: I25-L36.1990. 15 Hahn KA, Richardson RC, Hahn EA and Chrisman CL: Diagnostic and prognostic importance of chromosomal aberrations identified in 61 dogs with lymphosarcoma.Vet Pathol31: 528-540,1994. 16 Reimann N, Bartnitzke S, Bullerdiek J, SchmitzU, Rogalla P, Nolte I and Ronne M: An extendednomenclatureof the canine karyotype.CytogenetCell Genet 73: 140-144,1996. L7 Mitelman F: An International Systemfor Human Cytogenetic Nomenclature(1995).Basel:S. Karger, 1995. 18 Yang F, O'Brien PC, Milne BS, GraphodatskyAS, SolankyN, Trifonov V, Rens W, Sargan D and Ferguson-SmithMA: A complete comparativechromosomemap for the dog, red fox, and human and its integration with canine genetic maps. Genomics62: 189-202.1999. 19 Mayr B, Furtmueller G, SchlegerW and Reifinger M: Trisomy 2 in three casesof caninehaemangiopericytoma. Br Vet J 148: II3-t18, 1992. 20 Reimann N, Nolte I, Bartnitzke S and Bullerdiek J: Re: Sit, DNA, sit: cancergeneticsgoing to the dogs.J Natl CancerInst 91:1688-1689,1999. 21 Reddy KS: Trisomy 14 and leukemia.CancerGenet Cytogenet 106:144-1.51, L998. 22 Richelda R, Ronchetti D, Baldini L, Cro L, Viggiano L, Marzella R, Rocchi M, Otsuki T, Lombardi L, Maiolo AT and Neri A: A novel chromosomaltranslocationt(4; M)(p16.3; q32) in multiple myeloma involves the fibroblast growth-factor receptor3 gene.Blood 90:4062-4070,1997. ReceivedApril 25, 2005 Acceptedlune 30, 2005 II. Establishment of a cell line derived from a canine prostate carcinoma with a highly rearranged karyotype. Winkler S, Murua Escobar H, Eberle N, Reimann-Berg N, Nolte I, Bullerdiek J. J Hered. 2005;96(7):782-5. Eigenanteil: • Etablierung der Zell-Linie • Zytogenetische Auswertung • Verfassen des Artikels Journal of Heredity 2005:96(7):782–785 doi:10.1093/jhered/esi085 Advance Access publication June 30, 2005 ª The American Genetic Association. 2005. All rights reserved. For Permissions, please email: [email protected]. Establishment of a Cell Line Derived from a Canine Prostate Carcinoma with a Highly Rearranged Karyotype S. WINKLER, H. MURUA ESCOBAR, N. EBERLE, N. REIMANN-BERG, I. NOLTE, AND J. BULLERDIEK From the Centre for Human Genetics, University of Bremen, Leobener Strasse ZHG, 28359 Bremen, Germany (Winkler, Reimann-Berg, Bullerdiek) and Small Animal Clinic, School of Veterinary Medicine, Bischofsholer Damm 15, 30173 Hanover, Germany (Murua Escobar, Eberle, Nolte). Address correspondence to Jörn Bullerdiek at the address above, or e-mail: [email protected]. Abstract Akin to the situation in humans, dogs are frequently affected by tumors of the prostate. The malignancies share many similarities between both species, for example, median age at the onset of the disease and metastatic behavior. In human prostatic tumor samples, investigations of prepared metaphase spreads showed a variety of chromosomal aberrations, with trisomies of chromosomes 7, 8, and 17 as the leading cytogenetic abnormalities. In this article we present one case of a canine adenocarcinoma of the prostate, including clinical examination and establishment of a cell line from a tumor sample obtained from the affected 10-year-old male Briard. Searching for similarities between both species in respect to chromosomal changes within the tumor samples, we investigated prepared metaphases of the canine cell line cytogenetically. These investigations presented a highly rearranged karyotype showing a large biarmed marker consisting of material from chromosomes 1 and 2 in addition to centromeric fusions between dog chromosomes 1 and 5 that both could be identified in every metaphase investigated, while centric fusions of chromosomes 4 and 5 occurred in up to 50% of the metaphases. The cell line grew very well and showed evidence of being spontaneously immortalized when it crossed the 20th passage. Introduction Cytogenetic investigations of human malignancies look back on a long history. They revealed different chromosomal aberrations including mono- or trisomies, translocations, and isochromosomes. Some of them are known to be characteristic, for example, trisomy 12 in chronic lymphatic leukaemia (Anastasi et al. 1992) or the Philadelphia chromosome and/or isochromosome 17 in chronic myeloid leukaemia (Fioretos et al. 1999; Reid et al. 2003). However, centric fusions have only very rarely been described in human neoplasias. In most cases, the altered expression or fusion transcripts of tumor-associated genes are associated with tumor formation and progression. Thus chromosome analysis of solid tumors as well as hematopoietic malignancies has become an important tool to help establish a correct diagnosis and/or to decide between benign or malignant tumors of various origins (Mitelman 1998; Mitelman et al. 1997). Over the past few years, the dog has become an increasingly important model for genetic diseases. Dogs and humans share the same environment, have access to qualified medical care, and last but not least share a variety of genetic 782 diseases, including cancer (Withrow and MacEwen 1989, 2001). Compared to the situation in humans, cytogenetic studies in tumors of the dog are rare. This is certainly due to the difficult karyotype of the dog with its 76 small acrocentric autosomes and metacentric X- and Y-chromosomes (Reimann et al. 1996a). The existing reports showed that, akin to human tumors, malignant as well as benign canine tumors show an apparently higher incidence of clonal aberrations in mesenchymal tumors (lipomas and sarcomas) compared to epithelial neoplasms (Reimann et al. 1999a). As for the type of aberrations in canine tumors, numerical changes were found most frequently (Mayr et al. 1994; Reimann et al. 1996b, 1998, 1999a), followed by centric fusions (Mayr et al. 1991a,b, 1992). Another step forward in cytogenetic investigations of canine tumors was taken when fluorescence in situ hybridization (FISH) was used for assignment of canine cancer-related genes and for comparative genomic hybridization (CGH) (Murua Escobar et al. 2001; Richter et al. 2004; Thomas et al. 2003a,b; Winkler et al. 2004). By the use of CGH analysis Thomas et al. (2003b) were able to show that in canine multicentric lymphoma gains of chromosome material were significantly more common than losses. Winkler et al. Cell Line Derived from Canine Prostate Carcinoma Carcinomas of the prostate are the third leading cause of death in human male patients, with an incidence of 193,000 deaths in 1990 and an expected number of cancer-related deaths of 393,000 by 2020 (Brundtland 2001). Besides humans, the dog is the only mammalian species that spontaneously develops tumors of the prostate (Boutemmine et al. 2002). Even though they show a lower incidence than their human counterparts, there is an increasing number of dogs developing tumors of the prostate. These tumors may present different histology, but adenocarcinomas predominate, and all of them are likely to metastasize (Nolte and Nolte 2000). In this article we present a case of prostate carcinoma in a dog, including clinical examination, establishment of a cell line, and cytogenetic analyses, the latter revealing a highly rearranged karyotype. Case Report In February 2003, a 10-year-old male Briard was presented at the Clinic for Small Animals Hanover with the following symptoms. The dog had troubles of defecation and gain of abdominal girth with reduced ingestion and increased drinking. Clinical examination showed no abnormalities in heart, lung, testicles, and lymph nodes; the body temperature was about 38.78C. The abdomen was strained; X-ray examination revealed only reduced perceptibility of details. On diagnostic laparatomy, enlargement of the prostate and several small metastases in the mesentery were visible. The tumor was removed surgically, and pathohistological examination revealed a highly malignant adenocarcinoma of the prostate. Because of poor prognosis the dog was euthanized during surgical treatment. Materials and Methods For establishment of the cell line, tumor samples were minced into small fragments followed by collagenase treatment (0.35%) for 2 h at 378C. The dissociated cells were transferred into sterile flasks containing 5 ml medium 199. The cultures were incubated in 5% CO2/air at 378C for 3 days. Well-grown culture flasks were subcultivated. For chromosome preparation colcemid was added at a final concentration of 0.1 lg/ml for 1.5 h before harvesting. The preparation of cell cultures for chromosome analyses followed routine methods (Bartnitzke et al. 1992). The cell suspension was dropped onto ice-cold slides, which were then allowed to age for 7 days at 378C followed by GTG-banding according to a modification (Bartnitzke et al. 1992) of the protocol described by Seabright (1971). Karyotype description followed the nomenclature proposed by Reimann et al. (1996a). Results Cell culture resulted in well growing cells with a high mitotic rate. The cells were subcultivated about once every 10 days. Cytogenetic investigation of 30 metaphases revealed the presence of a hyperdiploid karyotype (Figure 1). The chromosome number ranged between 81 and 131, with various centromeric fusions and several biarmed markers. Centromeric fusions between dog chromosomes 1 and 5 were observed in every metaphase investigated, whereas centric fusions of chromosomes 4 and 5 occurred in up to 50%. Additionally, a large biarmed marker was found in every metaphase investigated, consisting of material from chromosomes 1 and 2. It is thus likely to assume that chromosome material deriving from chromosome 1 is overrepresented in the presented cell line. Discussion In human prostate cancers, a variety of genetic aberrations is known to occur. Aneuploidia in the form of trisomies has frequently been described, in most cases trisomies of chromosomes 7, 8, and 17 (Liu et al. 2001; Mark et al. 1999; Skacel et al. 2001). In the present case, canine chromosome 1 is the chromosome affected in several ways, leading to the overrepresentation of chromosome material deriving from CFA 1. Previous publications dealing with canine tumors showed interesting cytogenetic abnormalities, including centric fusions involving chromosome 1 (Mayr et al. 1990, 1991a; Nolte et al. 1993), a third copy of chromosome 4 involved in tandem translocation (Mayr et al. 1994), or derivative chromosomes 4 and 7 (Reimann et al. 1999b). In a cytogenetic study investigating 270 canine solid tumors, it was shown that chromosomes 1, 2, 4, 5, and 25 are frequently involved in numerical changes as well as in structural aberrations (Reimann et al. 1999a). Horsting et al. (1999) speculated that chromosome 1 might contain a gene responsible for tumor development and that chromosome fusions involving chromosome 1 might be an initiating factor leading to karyotype instability and complex karyotype changes, respectively. In fact, all metaphases investigated in our study showed a highly rearranged karyotype with several centric fusions. This finding corresponds to the assumption that aneuploidy caused by failures of accuracy of chromosome disjunction is common in tumor cells and is assumed to be a general feature (Holliday 1989). The appearance of biarmed chromosomes is also a frequent event during tumorigenesis in the dog (Reimann et al. 1994). They can be divided into two categories: isochromosomes, consisting of two arms of the same chromosome and translocation chromosomes, consisting of two acrocentric chromosomes. Both of them are present in the metaphase spreads of the canine prostatic cell line. Compared to each other, all results together strengthen the speculation that humans and dog often share the same genetic pathways in generation of cancer. To the best of our knowledge, up to now there are only three well-known human prostate carcinoma cell lines and their various sublines, which are frequently used for prostate cancer research: DU-145, established from the tumor tissue removed from the metastatic central nervous system lesion of a 69-year-old man with prostate carcinoma in 1975 (Mickey 1980); PC-3, established from the bone marrow 783 Journal of Heredity 2005:96(7) Figure 1. Metaphase spread from cells derived from the canine prostate carcinoma. metastasis isolated postmortem from a 62-year-old Caucasian man with grade IV prostate cancer (poorly differentiated adenocarcinoma) after androgen suppression therapy (Kaighn et al. 1979); and LNCaP, established from the left supraclavicular lymph node metastasis from a 50-year-old man with prostate carcinoma in 1977 (Horoszewicz 1981). These cell lines are used in cancer research and drug discovery to test the effects of various agents on, for example, gene expression, cell proliferation, apoptosis, and metastatic behavior. With the newly established canine prostate carcinoma cell line presented herein, there is now another tool available for the research in prostate cancer. Due to the above-mentioned similarities seen in canine and human cancer genetics, the availability of the new canine prostate carcinoma cell line could open new fields in terms of comparison of this kind of neoplasia in both species. by fluorescence in situ hybridization to interphase cells: a simple and sensitive method. Blood 79:1796–1801. Bartnitzke S, Motzko H, Caselitz J, Kornberg M, Bullerdiek J, and Schloot W, 1992. A recurrent marker chromosome involving chromosome 1 in two mammary tumors of the dog. Cytogenet Cell Genet 60:135–137. Boutemmine D, Bouchard N, Boerboom D, Jones HE, Goff AK, Dore M, and Sirois J, 2002. Molecular characterization of canine prostaglandin G/H synthase-2 and regulation in prostatic adenocarcinoma cells in vitro. Endocrinology 143:1134–1143. Brundtland GH, 2001. Men, ageing and health—achieving health across the life span. Geneva: World Health Organization. Fioretos T, Strombeck B, Sandberg T, Johansson B, Billstrom R, Borg A, Nilsson PG, Van Den Berghe H, Hagemeijer A, Mitelman F, and Hoglund M, 1999. Isochromosome 17q in blast crisis of chronic myeloid leukemia and in other hematologic malignancies is the result of clustered breakpoints in 17p11 and is not associated with coding TP53 mutations. Blood 94:225–232. Holliday R, 1989. Untwisting B-Z DNA. Trends Genet 5:355–356. Acknowledgments This paper was delivered at the 2nd International Conference on the ‘‘Advances in Canine and Feline Genomics: Comparative Genome Anatomy and Genetic Disease,’’ Universiteit Utrecht, Utrecht, The Netherlands, October 14–16, 2004. References Anastasi J, Le Beau MM, Vardiman JW, Fernald AA, Larson RA, and Rowley JD, 1992. Detection of trisomy 12 in chronic lymphocytic leukemia 784 Horoszewicz JS, 1981. Models for prostate cancer (Murphy GP, ed). New York: Alan R. Liss; 115–132. Horsting N, Wohlsein P, Reimann N, Bartnitzke S, Bullerdiek J, and Nolte I, 1999. Cytogenetic analysis of three oropharyngeal malignant melanomas in dogs. Res Vet Sci 67:149–151. Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, and Jones LW, 1979. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17:16–23. Liu HL, Gandour-Edwards R, Lara PN Jr., de Vere White R, and LaSalle JM, 2001. Detection of low level HER-2/neu gene amplification in prostate cancer by fluorescence in situ hybridization. Cancer J 7:395–403. Winkler et al. Cell Line Derived from Canine Prostate Carcinoma Mark HF, Feldman D, Das S, Samy M, Sun CL, and Mark S, 1999. Assessment of chromosomal trisomies in prostate cancer using fluorescent in situ hybridization. Exp Mol Pathol 67:109–117. Reimann N, Bartnitzke S, Bullerdiek J, Schmitz U, Rogalla P, Nolte I, and Ronne M, 1996a. An extended nomenclature of the canine karyotype. Cytogenet Cell Genet 73:140–144. Mayr B, Schleger W, Kalat M, Schweiger P, Reifinger M, and Eisenmenger E, 1990. Cytogenetic studies in a canine mammary tumor. Cancer Genet Cytogenet 47:83–97. Reimann N, Nolte I, Bonk U, Werner M, Bullerdiek J, and Bartnitzke S, 1996b. Trisomy 18 in a canine thyroid adenoma. Cancer Genet Cytogenet 90:154–156. Mayr B, Eschborn U, Loupal G, and Schleger W, 1991a. Characterisation of complex karyotype changes in two canine bone tumours. Res Vet Sci 51:341–343. Reimann N, Bartnitzke S, Bullerdiek J, Mischke R, and Nolte I, 1998. Trisomy 1 in a canine acute leukemia indicating the pathogenetic importance of polysomy 1 in leukemias of the dog. Cancer Genet Cytogenet 101:49–52. Mayr B, Schleger W, Loupal G, and Burtscher H, 1991b. Characterisation of complex karyotype changes in a canine thyroid adenoma. Res Vet Sci 50:298–300. Mayr B, Kramberger-Kaplan E, Loupal G, and Schleger W, 1992. Analysis of complex cytogenetic alterations in three canine mammary sarcomas. Res Vet Sci 53:205–211. Mayr B, Reifinger M, Weissenbock H, Schleger W, and Eisenmenger E, 1994. Cytogenetic analyses of four solid tumours in dogs. Res Vet Sci 57:88–95. Mickey DD, 1980. Models for prostate cancer (Murphy GP, ed). New York: Alan R. Liss; 67–84. Mitelman F, ed., 1998. Catalog of chromosome aberrations in cancer (CD-ROM). New York: John Wiley & Sons. Mitelman F, Johansson B, Mandahl N, and Mertens F, 1997. Clinical significance of cytogenetic findings in solid tumors. Cancer Genet Cytogenet 95:1–8. Murua Escobar H, Becker K, Bullerdiek J, and Nolte I, 2001. The canine ERBB2 gene maps to a chromosome region frequently affected by aberrations in tumors of the dog (Canis familiaris). Cytogenet Cell Genet 94:194–195. Nolte I and Nolte M, 2000. Praxis der Onkologie bei Hund und Katze. Stuttgart: Enke Verlag. Nolte M, Werner M, Nolte I, and Georgii A, 1993. Different cytogenetic findings in two clinically similar leukaemic dogs. J Comp Pathol 108: 337–342. Reid AG, Tarpey PS, and Nacheva EP, 2003. High-resolution analysis of acquired genomic imbalances in bone marrow samples from chronic myeloid leukemia patients by use of multiple short DNA probes. Genes Chrom Cancer 37:282–290. Reimann N, Rogalla P, Kazmierczak B, Bonk U, Nolte I, Grzonka T, Bartnitzke S, and Bullerdiek J, 1994. Evidence that metacentric and submetacentric chromosomes in canine tumors can result from telomeric fusions. Cytogenet Cell Genet 67:81–85. Reimann N, Nolte I, Bartnitzke S, and Bullerdiek J, 1999a. Re: Sit, DNA, sit: cancer genetics going to the dogs. J Natl Cancer Inst 91: 1688–1689. Reimann N, Nolte I, Bonk U, Bartnitzke S, and Bullerdiek J, 1999b. Cytogenetic investigation of canine lipomas. Cancer Genet Cytogenet 111:172–174. Richter A, Murua Escobar H, Gunther K, Meyer B, Winkler S, Dolf G, Schelling C, Nolte I, and Bullerdiek J, 2004. The canine NRAS gene maps to CFA 17. Anim Genet 35:355–356. Seabright M, 1971. A rapid banding technique for human chromosomes. Lancet 2:971–972. Skacel M, Ormsby AH, Pettay JD, Tsiftsakis EK, Liou LS, Klein EA, Levin HS, Zippe CD, and Tubbs RR, 2001. Aneusomy of chromosomes 7, 8, and 17 and amplification of HER-2/neu and epidermal growth factor receptor in Gleason score 7 prostate carcinoma: a differential fluorescent in situ hybridization study of Gleason pattern 3 and 4 using tissue microarray. Hum Pathol 32:1392–1397. Thomas R, Bridge W, Benke K, and Breen M, 2003a. Isolation and chromosomal assignment of canine genomic BAC clones representing 25 cancer-related genes. Cytogenet Genome Res 102:249–253. Thomas R, Smith KC, Ostrander EA, Galibert F, and Breen M, 2003b. Chromosome aberrations in canine multicentric lymphomas detected with comparative genomic hybridisation and a panel of single locus probes. Br J Cancer 89:1530–1537. Winkler S, Murua Escobar H, Gunther K, Richter A, Dolf G, Schelling C, Bullerdiek J, and Nolte I, 2004. The canine KRAS2 gene maps to chromosome 22. Anim Genet 35:350–351. Withrow SJ and MacEwen EG, 1989. Clinical veterinary oncology. Philadelphia: JB Lippincott. Withrow SJ and MacEwen EG, 2001. Small animal clinical oncology. Philadelphia: WB Saunders. Corresponding Editor: Elaine Ostrander 785 III. Polysomy 13 in a canine prostate carcinoma underlining its significance in the development of prostate cancer. Winkler S, Reimann-Berg N, Murua Escobar H, Loeschke S, Eberle N, Höinghaus R, Nolte I, Bullerdiek J. Cancer Genet Cytogenet. 2006 Sep;169(2):154-8. Eigentanteil: • Kultivierung der Zellen • Erstellen der caninen Karyogramme • Verfassen des Artikels Cancer Genetics and Cytogenetics 169 (2006) 154e158 Short communication Polysomy 13 in a canine prostate carcinoma underlining its significance in the development of prostate cancer Susanne Winklera, Nicola Reimann-Berga, Hugo Murua Escobara,b, Siegfried Loeschkea, Nina Eberleb, Ruth Höinghausb, Ingo Nolteb, Jörn Bullerdieka,* b a Center for Human Genetics, University of Bremen, Leobener Strasse ZHG, 28359 Bremen, Germany Small Animal Clinic, University of Veterinary Medicine, Bischofsholer Damm 15, 30173 Hannover, Germany Received 23 January 2006; received in revised form 22 March 2006; accepted 29 March 2006 Abstract The dog is a well-accepted model for prostate cancer in man because of the striking similarities between both species with respect to the clinical course of the disease as well as to its similar histopathology. Cytogenetic investigations of human prostate cancers has revealed the frequent occurrence of trisomies 7, 8, and 17. In this report, we present a case of prostate carcinoma in a dog characterized by polysomy 13 as the sole cytogenetic abnormality. Along with the known homology between canine chromosome 13 and human chromosome 8 these findings suggest that a homologous area on both chromosomes plays a crucial role in subsets of prostate cancer in both species. Ó 2006 Elsevier Inc. All rights reserved. 1. Introduction Over the last decade, a growing number of scientists have used the dog as the species of choice to unravel the genetic mechanisms of a variety of diseases occurring in dog and man [1]. The dog could serve as a genetic model, for example in cancer predisposition, development, and progression. For instance, beside man the dog is the only known mammalian species that frequently develops carcinomas of the prostate [2], showing clear similarities to its human counterpart in terms of development and progression of the disease. In both species, adenocarcinomas of the prostate represent a locally invasive cancer and are likely to metastasize to the same distant regions as, for example lung and bones by blood or the lymphatic system. Older individuals are predominantly affected with an average age of 10 years in dogs and 71 years in humans [3,4]. Akin to their human counterparts canine prostatic cancers vary over a broad range with respect to their clinical behavior [5]. Cytogenetic investigations in human prostate cancers revealed a variety of genetic aberrations. Recurrent trisomies have been described frequently, i.e., those of chromosomes 7, 8, and 17 [6e8]. By the use of comparative genome hybridization it was possible to determine gain of 8q as a potential marker of aggressiveness in prostate cancer [9]. * Corresponding author. Tel.: þ49-0-421-218-4239; fax: þ49-0-421218-4239. E-mail address: [email protected] (J. Bullerdiek). 0165-4608/06/$ e see front matter Ó 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.cancergencyto.2006.03.015 To the best of our knowledge, there is currently only one publication dealing with cytogenetic investigations in canine prostate carcinomas [10]. Analysis of cells of a cellline derived from a canine prostate carcinoma revealed the existence of several centric fusions. Among others these fusions led to the formation of a large bi-armed marker consisting of chromosome material from chromosomes 1 and 2. Thus, chromosome material deriving from these chromosomes was assumed to be overrepresented in the cell-line and to be involved in initiation of tumor development [10]. In the following report we present a case of prostate carcinoma in a dog revealing polysomy 13 emphasizing the importance of chromosome 13 in canine carcinogenesis. 2. Case report A 10-year-old male Deutsch Drahthaar was admitted to the Clinic of Small Animals, School of Veterinary Medicine, Hannover, Germany, because of progressive hematuria and apathia of 3 weeks duration. No abnormalities were found during rectal palpation of the prostate. X-ray examination showed liquidothorax and ascites. Sonographic examination of the prostate revealed multiple intra- and paraprostatic cysts. Fine needle aspiration of liquidothorax, ascites, and the prostate was done. Cytological examination of the cells of the tumor as well as of exfoliated cells from both body cavity effusions revealed a prostatic carcinoma (Fig. 1). Due to the poor prognosis, the dog was euthanised. S. Winkler et al. / Cancer Genetics and Cytogenetics 169 (2006) 154e158 3. Material and methods Samples of liquidothorax and ascites were washed with Hanks’ solution. After centrifugation, the cells were resuspended and transferred into sterile flasks containing 5 mL medium 199 (Earle’s salts, 2 % penicillin/streptomycin, 20% fetal bovine serum). The cultures were incubated in 5% CO2/air at 37 C. For chromosome preparation, Colcemid (Biochrom, Berlin, Germany) was added at a final concentration of 0.1 mg/mL for 1.5 hours before harvesting. The preparation of cell cultures for chromosome analyses followed routine methods [11]. The cell suspension was dropped onto ice cold slides which were then allowed to air dry for 5 days before GTG-banding [12]. Karyotype description followed the nomenclature proposed by Reimann et al. [13]. 4. Results Cell culture resulted in well-growing cells with a moderate mitotic rate. The cells were subcultivated about once every 20 days. They reached the 5th passage before they deteriorated and died. A total of 30 metaphase cells in the 1st passage were analyzed. Cytogenetic investigation revealed the presence of a nearly diploid karyotype, with the majority of metaphases exhibiting 78 chromosomes. However, in 90% of the investigated metaphases, centric fusions of additional copies of chromosome 13 were found in varying numbers (Fig. 2). No other clonal aberration was detected. 5. Discussion Fusion between acrocentric chromosomes based on head-to-head telomeric associations or centric fusions appears to be a frequent event during tumorigenesis in the 155 dog [14]. It has been assumed that shortening of telomeric repeats due to increased cell-proliferation is responsible for an increased fusigenic behavior [15]. Fusion chromosomes can be divided into 2 categories: 1) translocation chromosomes, consisting of two acrocentric chromosomes; and 2) isochromosomes, consisting of 2 identical chromosome arms [16]. In a frequent number of cytogenetically investigated neoplasias, isochromosomes occurred along with the normal homologue of the same chromosome, leading to a gain of chromosomal material [17e19]. Trisomies of canine chromosomes have been reported in a variety of canine neoplasias, e.g., leukemia, hemangiopericytomas, and tumors of the thyroid and mammary gland [20e29]. In the present case, we were able to demonstrate the existence of centric fusions involving chromosome 13 in varying numbers leading to a gain of material from chromosome 13. This is of notable importance because polysomies of canine chromosome 13 have been described before. Cytogenetic investigations of a canine osteoid sarcoma and a canine mammary carcinoma both revealed the existence of isochromosome 13 accompanied by other chromosomal aberrations, whereas in a canine osteoid chondrosarcoma, isochromosome 13 was the sole cytogenetic abnormality [17,30]. In 61 dogs with lymphosarcoma examined by Hahn et al. [31], trisomy 13 was found in 15 cases. In addition, dogs with tumors showing trisomy 13 as the primary aberration had a clearly longer duration of first remission and survival compared to dogs possessing other chromosome aberrations. Dogs with trisomy 13 responded better to a therapy consisting of at least 5 treatments with either adriamycin or epirubicin [31]. In a recent study, we were able to describe a trisomy 13 in a complex karyotype with several chromosomal aberrations and a partial trisomy 13 as the sole abnormality both occurring in canine lymphomas [32]. Using CGH analysis, Fig. 1. (a) Fine needle aspiration cytology of the prostate. The neoplastic epithelial cells in typical clusters are showing distinct criteria of malignancy. Erythrocytes are in the background (Pappenheim stain). (b) Fine needle aspiration cytology of the ascites. Exfoliated cells or cells in clusters. Large cells with distinct criteria of malignancy are present. The carcinoma cells are morphologically similar to cells of mesothelial origin. Granulocytes are in the background (Pappenheim stain). 156 S. Winkler et al. / Cancer Genetics and Cytogenetics 169 (2006) 154e158 Fig. 2. (a) Metaphase derived from ascites showing one centric fusion of chromosomes 13. Karyotype analyses revealed the following karyotype: 78,XY,der(13;13) (b) Part of a metaphase derived from ascites showing two centric fusions leading to a gain of chromosome 13 material. Chromosome analyses revealed the following karyotype: 78, XY,þder(13;13),þder(13;13),-19,-20. Monosomy 19 and 20 were not clonal. (c) Karyogram of a third metaphase derived from ascites revealing 2 centric fusions leading to a gain of chromosomes 13 material, showing the following karyotype: 78,XY,-4,der(13;13), þder(13;13). Monosomy 4 was not clonal. Thomas et al. [33] were able to show that the gain of canine chromosome 13 was the most commonly observed aberration in canine multicentric lymphomas. Thus, combining the results in the literature with the results presented in this study it is likely to assume that the canine chromosome 13 (CFA 13) might contain a gene or a group of genes, which could be involved in tumor development. Interestingly, canine chromosome 13 shares homology to the terminal region of human chromosome 8q (HSA 8q22.1~qter) [34,35]. This is a chromosomal region frequently involved S. Winkler et al. / Cancer Genetics and Cytogenetics 169 (2006) 154e158 in the onset of several human hematopoietic malignancies, e.g., acute leukemia and lymphoma [36,37], but is also involved in growth and progression of human breast and prostate cancer [7,9,38]. As for the latter, gain of 8q is one of the most frequent alterations in prostate cancer and is thought to promote the progression of the disease [9,39,40]. Because of the poor clinical outcome and tumor recurrence associated with copy number increase of 8q in patients with prostate cancer, a detailed analysis of genes on the long arm of human chromosome 8 has been performed by van Duin et al [41]. Sixteen genes, including the MYC oncogene, in 5 regions with putative relevance to cancer were subject of detailed investigations. Three of the 16 genes were significantly overexpressed in prostate cancer compared to normal prostate tissue specimens: PDP (8q22.1), PABPCI (8q22.3), and KIAA0196 (8q24.13), thus considered being putative progression markers for prostate cancer [41]. This again confirms the assumption that in both species trisomy of a similar part of the genome located on chromosome 13 and 8, respectively, is associated with tumor formation and progression at similar sites. References [1] Ostrander EA, Galibert F, Patterson DF. Canine genetics comes of age. Trends Genet 2000;16:117e24. [2] Boutemmine D, Bouchard N, Boerboom D, Jones HE, Goff AK, Dore M, Sirois J. Molecular characterization of canine prostaglandin G/H synthase-2 and regulation in prostatic adenocarcinoma cells in vitro. Endocrinology 2002;143:1134e43. [3] Nolte I, Nolte M. Praxis der Onkologie bei Hund und Katze. Stuttgart: Enke, 2000. [4] Bertz J, Hentschel S, Hundsdörfer G, Kaatsch P, Katalinic A, Lehnert M, Schön D, Stegmaier C, Ziegler H. Krebs in Deutschland. Arbeitsgemeinschaft Bevölkerungsbezogener Krebsregister in Deutschland, Saarbrücken, 2004. [5] MacEwen EG. Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment. Cancer Metastasis Rev 1990; 9:125e36. [6] Liu HL, Gandour-Edwards R, Lara PN Jr, de Vere White R, LaSalle JM. Detection of low level HER-2/neu gene amplification in prostate cancer by fluorescence in situ hybridization. Cancer J 2001;7:395e403. [7] Mark HF, Feldman D, Das S, Samy M, Sun CL, Mark S. Assessment of chromosomal trisomies in prostate cancer using fluorescent in situ hybridization. Exp Mol Pathol 1999;67:109e17. [8] Skacel M, Ormsby AH, Pettay JD, Tsiftsakis EK, Liou LS, Klein EA, Levin HS, Zippe CD, Tubbs RR. Aneusomy of chromosomes 7, 8, and 17 and amplification of HER-2/neu and epidermal growth factor receptor in Gleason score 7 prostate carcinoma: a differential fluorescent in situ hybridization study of Gleason pattern 3 and 4 using tissue microarray. Hum Pathol 2001;32:1392e7. [9] Steiner T, Junker K, Burkhardt F, Braunsdorf A, Janitzky V, Schubert J. Gain in chromosome 8q correlates with early progression in hormonal treated prostate cancer. Eur Urol 2002;41:167e71. [10] Winkler S, Murua Escobar H, Eberle N, Reimann-Berg N, Nolte I, Bullerdiek J. Establishment of a cell line derived from a canine prostate carcinoma with a highly rearranged karyotype. J Hered 2005;96:782e5. 157 [11] Bartnitzke S, Motzko H, Caselitz J, Kornberg M, Bullerdiek J, Schloot W. A recurrent marker chromosome involving chromosome 1 in two mammary tumors of the dog. Cytogenet Cell Genet 1992; 60:135e7. [12] Seabright M. A rapid banding technique for human chromosomes. Lancet 1971;2:971e2. [13] Reimann N, Bartnitzke S, Bullerdiek J, Schmitz U, Rogalla P, Nolte I, Ronne M. An extended nomenclature of the canine karyotype. Cytogenet Cell Genet 1996;73:140e4. [14] Reimann N, Rogalla P, Kazmierczak B, Bonk U, Nolte I, Grzonka T, Bartnitzke S, Bullerdiek J. Evidence that metacentric and submetacentric chromosomes in canine tumors can result from telomeric fusions. Cytogenet Cell Genet 1994;67:81e5. [15] Slijepcevic P, Hande MP, Bouffler SD, Lansdorp P, Bryant PE. Telomere length, chromatin structure and chromosome fusigenic potential. Chromosoma 1997;106:413e21. [16] Slijepcevic P. Telomeres and mechanisms of Robertsonian fusion. Chromosoma 1998;107:136e40. [17] Mayr B, Kramberger-Kaplan E, Loupal G, Schleger W. Analysis of complex cytogenetic alterations in three canine mammary sarcomas. Res Vet Sci 1992;53:205e11. [18] Mayr B, Eschborn U, Schleger W, Loupal G, Burtscher H. Cytogenetic studies in a canine malignant melanoma. J Comp Pathol 1992;106:319e22. [19] Anand M, Kumar R, Kumar L, Barge S, Singh S. Chronic myeloid leukemia presenting with absence of basophils and marked dyspoiesis. Indian J Cancer 2003;40:144e7. [20] Mayr B, Eschborn U, Loupal G, Schleger W. Trisomy 1 in a canine mammary tubular adenocarcinoma, complex type. Vet Pathol 1993;30:311e3. [21] Mayr B, Furtmueller G, Schleger W, Reifinger M. Trisomy 2 in three cases of canine haemangiopericytoma. Br Vet J 1992;148:113e8. [22] Mayr B, Gilli H, Schleger W, Reifinger M, Burtscher H. Cytogenetic characterization of mammary tumors in two domestic dogs. Zentralbl Veterinarmed A 1991;38:141e7. [23] Mayr B, Reifinger M, Brem G, Feil C, Schleger W. Cytogenetic, ras, and p53: studies in cases of canine neoplasms (hemangiopericytoma, mastocytoma, histiocytoma, chloroma). J Hered 1999;90:124e8. [24] Mayr B, Scheller M, Reifinger M, Loupal G. Cytogenetic characterization of a fibroma and three haemangiopericytomas in domestic dogs. Br Vet J 1995;151:433e41. [25] Mayr B, Swidersky W, Schleger W, Reifinger M. Cytogenetic characterization of a canine haemangiopericytoma. Br Vet J 1990; 146:260e3. [26] Nolte I, Reimann N, Bullerdiek J, Bartnitzke S, Mischke R, Nolte M. [Importance of cytogenetic investigations in canine leukemias]. Tierarztl Prax 1997;25:393e7. [27] Nolte M, Werner M, Nolte I, Georgii A. Different cytogenetic findings in two clinically similar leukaemic dogs. J Comp Pathol 1993;108:337e42. [28] Reimann N, Bartnitzke S, Bullerdiek J, Mischke R, Nolte I. Trisomy 1 in a canine acute leukemia indicating the pathogenetic importance of polysomy 1 in leukemias of the dog. Cancer Genet Cytogenet 1998;101:49e52. [29] Reimann N, Nolte I, Bonk U, Werner M, Bullerdiek J, Bartnitzke S. Trisomy 18 in a canine thyroid adenoma. Cancer Genet Cytogenet 1996;90:154e6. [30] Mayr B, Reifinger M, Weissenbock H, Schleger W, Eisenmenger E. Cytogenetic analyses of four solid tumours in dogs. Res Vet Sci 1994;57:88e95. [31] Hahn KA, Richardson RC, Hahn EA, Chrisman CL. Diagnostic and prognostic importance of chromosomal aberrations identified in 61 dogs with lymphosarcoma. Vet Pathol 1994;31:528e40. [32] Winkler S, Murua Escobar H, Reimann-Berg N, Bullerdiek J, Nolte I. Cytogenetic Investigations in Four Canine Lymphomas. Anticancer Research 2005;25:3995e8. 158 S. Winkler et al. / Cancer Genetics and Cytogenetics 169 (2006) 154e158 [33] Thomas R, Smith KC, Ostrander EA, Galibert F, Breen M. Chromosome aberrations in canine multicentric lymphomas detected with comparative genomic hybridisation and a panel of single locus probes. Br J Cancer 2003;89:1530e7. [34] Yang F, O’Brien PC, Milne BS, Graphodatsky AS, Solanky N, Trifonov V, Rens W, Sargan D, Ferguson-Smith MA. A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 1999;62:189e202. [35] Yang F, Graphodatsky AS, O’Brien PC, Colabella A, Solanky N, Squire M, Sargan DR, Ferguson-Smith MA. Reciprocal chromosome painting illuminates the history of genome evolution of the domestic cat, dog and human. Chromosome Res 2000;8:393e404. [36] Lepretre S, Buchonnet G, Stamatoullas A, Lenain P, Duval C, d’Anjou J, Callat MP, Tilly H, Bastard C. Chromosome abnormalities in peripheral T-cell lymphoma. Cancer Genet Cytogenet 2000;117: 71e9. [37] Wolman SR, Gundacker H, Appelbaum FR, Slovak ML. Impact of trisomy 8 (þ8) on clinical presentation, treatment response, and survival in acute myeloid leukemia: a Southwest Oncology Group study. Blood 2002;100:29e35. [38] Bullerdiek J, Leuschner E, Taquia E, Bonk U, Bartnitzke S. Trisomy 8 as a recurrent clonal abnormality in breast cancer? Cancer Genet Cytogenet 1993;65:64e7. [39] van Dekken H, Alers JC, Damen IA, Vissers KJ, Krijtenburg PJ, Hoedemaeker RF, Wildhagen MF, Hop WC, van der Kwast TH, Tanke HJ, Schroder FH. Genetic evaluation of localized prostate cancer in a cohort of forty patients: gain of distal 8q discriminates between progressors and nonprogressors. Lab Invest 2003;83: 789e96. [40] Alers JC, Krijtenburg PJ, Rosenberg C, Hop WC, Verkerk AM, Schroder FH, van der Kwast TH, Bosman FT, van Dekken H. Interphase cytogenetics of prostatic tumor progression: specific chromosomal abnormalities are involved in metastasis to the bone. Lab Invest 1997;77:437e48. [41] van Duin M, van Marion R, Vissers K, Watson JE, van Weerden WM, Schroder FH, Hop WC, van der Kwast TH, Collins C, van Dekken H. High-resolution array comparative genomic hybridization of chromosome arm 8q: evaluation of genetic progression markers for prostate cancer. Genes Chromosomes Cancer 2005;44:438e49. IV. Molecular characterization and mapping of the canine KRAB zinc finger gene ZNF331 Meiboom M, Murua Escobar H, Winkler S, Nolte I, Bullerdiek J Anim Genet. 2004 Jun;35(3):262-3. Eigenanteil: • Hilfestellung bei der FISH • Erstellung der caninen Karyogramme 262 Brief notes 10 McNatty K. P. et al. (2003) Reprod Suppl 61, 339–51. 11 Bidanel J. P. & Rothschild M. (2002) Pig News Info 23, 39N–54N. Correspondence: S. Čepica ([email protected]) doi:10.1111/j.1365-2052.2004.01146.x Molecular characterization and mapping of the canine KRAB zinc finger gene ZNF331 M. Meiboom*, H. Murua Escobar†,*, S. Winkler*, I. Nolte† and J. Bullerdiek* *Center for Human Genetics, University of Bremen, Bremen, Germany. †Small Animal Clinic, Hannover School of Veterinary Medicine, Hannover, Germany Accepted for publication 12 April 2004 Figure 2 Radiation hybrid map of porcine chromosome 28 showing position of GDF9 gene. 524/01/0903). We thank Mrs Markéta Hančová for technical assistance. References 1 Bodensteiner K. J. et al. (1999) Biol Reprod 60, 381–6. 2 Committee for Standardized Karyotype of the Domestic Pig (1988) Hereditas 109, 151–7. 3 Trask B. J. (1991) Meth Cell Biol 35, 3–35. 4 NCBI database, Gene ID: 2661 (URL ¼ http://www.ncbi. nlm.nih.gov/LocusLink/LocRptcgi?l¼2661). 5 Goureau A. et al. (1996) Genomics 36, 252–62. 6 Yerle M. et al. (1998) Cytogenet Cell Genet 82, 182–8. 7 Milan D. et al. (2000) Bioinformatics 16, 558–9. 8 Hawken R. J. et al. (1999) Mamm Genome 10, 824–30. 9 Dong J. et al. (1996) Nature 383, 531–5. Source/description: ZNF331 is a KRAB zinc finger protein gene consisting of a KRAB-A box and a zinc finger domain with 12 zinc fingers and has recently been identified as putative target gene in thyroid tumorigenesis.1,2 For characterization of canine ZNF331, a canine testis cDNA library (Center for Human Genetics, Bremen, Germany) was screened with primers specific for human ZNF331 (acc.-no. NM_018555; Primer Up: GTA AAT CCC TTG GCC GTA ACT G; Lo: AGG CCT TCC CAC ATT CTT GAC). To obtain a full-length cDNA clone 5¢RACEPCRs with a vector-specific primer [Primer Up: AGC GGA TAA CAA TTT CAC ACA GG (M13rev)] and a gene-specific primer (Primer Lo: TAT TTT CTC TAC AAG TGG GCG TTT T) were performed using the cDNA library as template. Sequence analysis of the isolated clone and the 5¢ RACE products allowed the assembling of the mRNA sequence of ZNF331. The composed canine ZNF331 cDNA (GenBank acc. no. AY375188) consists of 2148 bp including the full ORF and shows 85.3% sequence identity in the cds to the human ZNF331 gene. Expression studies using Northern blots containing mRNA from several canine tissues including testis and a canine ZNF331 spacer-specific probe did not reveal transcripts of canine ZNF331 which points to a very low expression level of this gene (data not shown). Fluorescent in situ hybridization: A cDNA probe representing the spacer region of canine ZNF331 was used to screen the canine RCPI 81 BAC/PAC filter (BACPAC RESOURCES, Childrens Hospital, Oakland, CA, USA). The probe was generated by EcoRI digestion of a PCR product of primers CTG TAC TGG GAC GTG ATG TTG GAG AA and AGA GTA AAG AGG TGG GAT GGT GAT GG resulting in a 300-bp fragment. The fragment was cloned and sequenced for verification. Hybridization was performed as previously described.3 BAC 138K24 gave a positive signal which was verified by ZNF331-specific PCR, and sequence analysis of the PCR product. A 4 ng/ll volume of diglabelled BAC 138K24 DNA (Dig-Nick-Translation-Kit; Roche Diagnostics, Mannheim, Germany) was used as probe for fluorescence in situ hybridization (FISH) in a hybridization 2004 International Society for Animal Genetics, Animal Genetics, 35, 245–264 Brief notes Figure 1 Canine metaphase spread after GTG-banding (a) and the same metaphase after FISH with BAC 138K24 showing signal on both chromosomes 1q33 (b). mixture also containing 1 lg/ll salmon sperm DNA, 20 ng/ll sonicated dog DNA, 1 · SSC, 1· SSPE, 50% formamide and 10% dextran sulphate. FISH was performed using the protocol of Fischer et al.4 with some modifications5 on metaphase preparations obtained from blood samples of different dogs. FISH analyses were performed after GTG banding of the same metaphase cells. Counterstaining of the chromosomes was carried out using propidium iodide/antifade solution. G-banded chromosomes were identified according to Reimann et al.6 Sixteen metaphases were examined and all showed a signal on CFA1q33 on both chromatids of both chromosomes 1 (Fig. 1). According to previous mapping data,7 this region is homologous to HSA19q13. Furthermore, two genes, i.e. CRX and GRLF1, located on HSA19q13.3, recently have been mapped to the telomeric region of CFA1.8,9 7 8 9 10 11 12 13 Comments: During the past few years, the dog has become an interesting model organism for several human diseases and tumours. Cytogenetic hotspots in canine tumours that have been found in the dog genome so far include chromosomes 1, 19 and 25 which are preferentially involved in chromosomal fusions.10 Aberrations in tumours of the dog involving chromosome 1 were described earlier by several authors in various tumours of the dog such as leukaemias, melanomas and breast cancer.11–14 With the assignment of ZNF331 to CFA1q33, a region of frequent breaks in human follicular thyroid adenomas has been mapped in the canine genome. doi:10.1111/j.1365-2052.2004.01147.x Accession numbers: human ZNF331: NM_018555; canine ZNF331: AY375188. References 1 Rippe V. et al. (1999) Genes Chromosomes Cancer 26, 229–36. 2 Meiboom M. et al. (2003) Cytogenet Genome Res 101, 113–7. 3 Murua Escobar H. et al. (2001) Cytogenet Cell Genet 94, 194–5. 4 Fischer P. et al. (1996) Mamm Genome 7, 37–41. 5 Murua Escobar H. et al. (2003) Cytogenet Genome Res 101, 33–8. 6 Reimann N. et al. (1996) Cytogenet Cell Genet 73, 140–4. Yang F. et al. (1999) Genomics 62, 189–202. Akhmedov N.B. et al. (2002) Mol Vis 8, 79–84. Zangerl B. et al. (2002) Gene 294, 167–76. Reimann N. et al. (1999) J Natl Cancer Inst 91, 1688–9. Bartnitzke S. et al. (1992) Cytogenet Cell Genet 60, 135–7. Mayr B. et al. (1993) Vet Pathol 30, 311–3. Reimann N. et al. (1998) Cancer Genet Cytogenet 101, 49–52. 14 Horsting N. et al. (1999) Res Vet Sci 67, 149–51. Correspondence: Dr J. Bullerdiek ([email protected]) Linkage mapping of ovine cysteine and histidine-rich protein gene (CYHR1) to chromosome 9 J. H. Calvo*, S. Marcos*, A. E. Beattie†, J. J. Jurado* and M. Serrano* *Departamento de Mejora Genètica Animal, INIA, Madrid, Spain. † AgResearch Molecular Biology Unit, Department of Biochemistry and Centre for Gene Research, University of Otago, Dunedin, New Zealand. Present address: J. H. Calvo, Unidad de Tecnologia en Produccion Animal, CITA-Gobierno de Aragon, Zaragoza, Spain Accepted for publication 12 April 2004 Source/description: Cysteine and histidine-rich cytoplasmic protein (CYHR1) is involved in cellular trafficking transport of galectin 3.1 Furthermore, CYHR1 has a broad range of biological activities including DNA and RNA binding, enzyme catalysis, protein–protein interactions, and signal transduction, because it contributes a metal-binding domain multimeric protein. In cattle, the gene encoding this protein has been mapped in the centromeric region of BTA14 (at 8 cM proximal to CSSM66) and linkage disequilibrium between the bovine CYHR1 gene and a QTL with significant effects on milk, fat and protein yield has been demonstrated.2 2004 International Society for Animal Genetics, Animal Genetics, 35, 245–264 263 V. The protein kinase B, gamma (AKT3) gene maps to canine chromosome 7. Murua Escobar H, Meyer J, Winkler S, Schelling C, Dolf G, Nolte I, Bullerdiek J. Anim Genet. 2004 Aug;35(4):354-5. Eigenanteil: • Anleitung zur Durchführung der FISH • Erstellen der caninen Karyogramme 354 Brief notes and 82% similarity to the above mentioned species, respectively. Chromosomal location: Chromosomal localization was determined using a porcine-rodent somatic cell hybrid panel.4 Primers CCS-RHAF and CCS-RHAR were designed to amplify an approximately 400 bp genomic fragment spanning part of exon 6, exon 7 and part of exon 8 of the porcine CCS. Statistical evaluation using the ÔInterpreting PCR dataÕ program (http://www.toulouse.inra.fr/lgc/pig/pcr/pcr.htm) suggested a chromosome probability and correlation of 1.00 to the short arm of chromosome 2. The most likely localization for porcine CCS was 2p14-p17 with a probability of 0.7929 and a correlation of 0.8748. CCS is localized to human 11q13 and in mouse to the centromeric end of chromosome 19.5,6 Human chromosome 11q13 shows conservation of synteny with the centromere of mouse chromosome 19 and porcine 2p14-17. The localization of markers flanking CCS is also conserved in pig and human, which supports the CCS mapping data and confirms that the gene described here is the pig orthologue of human CCS. PCR conditions: For somatic cell hybridization – PCR was performed in 10 ll of reaction containing 10 ng DNA, 1X PCR buffer, 2.5 mM of each dNTP, 5 pmol of each primer, 3 ll 2% cresol red loading buffer and 0.5 U of Taq polymerase (Bioline, London, UK) under the following conditions: 95 C for 5 min; 40 cycles of 95 C for 30 s, 60 C for 20 s and 72 C for 20 s; 72 C for 5 min. For cloning and sequencing – PCR was performed using 3 ll cDNA (corresponding to 50 ng RNA) in a 15 ll reaction mixture containing 1X PCR buffer, 2.5 mM of each dNTP, 12 pmol of each primer and 0.1 U of Taq DNA polymerase (Amersham Biosciences, Hillerod, Denmark) in a thermal cycler (MJ Research, Waltham, MA, USA). The cycling conditions were 94 C for 5 min; 40 cycles of 94 C for 20 s, annealing temperature (indicated after primer sequences) for 20 s, 72 C for 20 s; 72 C for 10 min. Gel-purified amplification products were sequenced using Thermo Sequenase Terminator Cycle Sequencing kit (Amersham Life Science Inc.) in a thermal cycler (MJ research). Primers (5¢–>3¢): HS-CCS1244: CTCGGGGTGGTGACTG (55 C) HS-CCS1944: TCTGCTTGGGGTTCTGG (55 C) Pig-CCS2085: TAACCCTGATGGGATG (58 C) Poly-A 1576: AGCAGTGGTAACAACGCAGAGTACTTTTTTTTTTTTTTTTTT TTTTTTTTTTTTVN (58 C) CCS-RHAF: GGGGACCTAGGGAATGTCTGTG CCS-RHAR: TCTGCTTGGGGTTCTGGAAGA Acknowledgements: We gratefully acknowledge M. Yerle (INRA, Toulouse) for the pig–rodent panel. The Wilhelm Johannsen Centre for Functional Genome Research is established by the Danish National Research Foundation. A. N. Silahtaroglu is supported by Danish Research Agency (project no: 2013-010033). References 1 Culotta V. C. et al. (1997) J Biol Chem 272, 23469–72. 2 Rosen D. R. et al. (1993) Nature 362, 59–62. 3 4 5 6 Silahtaroglu A. N. et al. (2002) BMC Genet 19, 5. Yerle M. et al. (1996) Cytogenet Cell Genet 73, 194–202. Bartnikas T. B. et al. (2000) Mamm Genome 11, 409–11. Moore S. D. P. et al. (2000) Cytogenet Cell Genet 88, 35–7. Correspondence: Asli N. Silahtaroglu MSc., PhD ([email protected]) doi:10.1111/j.1365-2052.2004.01153.x The protein kinase B, gamma (AKT3) gene maps to canine chromosome 7 H. Murua Escobar*,†, J. Meyer*,†, S. Winkler*, C. Schelling‡, G. Dolf§, I. Nolte† and J. Bullerdiek* *Center for Human Genetics, University of Bremen, Leobener Strasse ZHG, 28359 Bremen, Germany. †Small Animal Clinic, School for Veterinary Medicine, Bischofsholer Damm 15, D-30173 Hannover, Germany. ‡Department of Animal Science, Swiss Federal Institute of Technology Zurich and Faculty of Veterinary Medicine, University of Zurich, 8092 Zurich, Switzerland. §Institute of Animal Genetics, Nutrition and Housing, University of Berne, Bremgartenstrasse 109a, 3012 Berne, Switzerland Accepted for publication 19 April 2004 Introduction: The protein kinase B, gamma (AKT3) protein is an intracellular serine/threonine kinase involved in regulating cell survival. This protein phosphorylates and regulates the function of many cellular proteins involved in processes that include metabolism, apoptosis and proliferation,1,2 making it a promising target for drug discovery to treat cancer. Expression of the human gene is found in normal and tumour tissues. Prior to this study, the assignment of the canine AKT3 gene was unknown. Herein, we report the assignment of the AKT3 gene to canine chromosome (CFA) 7q17 by FISH. BAC clone and probe: In order to generate an AKT3 DNA probe, polymerase chain reaction (PCR) amplification of genomic DNA from a 2-year-old Golden retriever was performed using primers that spanned part of exon 13 (primer up: AGA CAG TAG CAG CAG CAG CA and dn: ATG ACG AGG ACG GTA TGG AC). Primers were designed using NCBI Sequence AY575066, which shows 80.3% identity to human AKT3 mRNA (NM_005465). PCR conditions: The total volume of 50 ll included 34.5 ll Aqua Bidest, 1x Buffer, 3 mM MgCl2, 2 mM dNTPs, 2 lM of each primer, approximately 50 ng genomic DNA and 2.5 U TaqPolymerase. Thermocycler conditions were as follows: 10 min at 94 C, 35 cycles of 1 min 94 C, 1 min at 75 C, 2 min at 72 C and a final extension of 10 min at 72 C. The resulting amplicon of 303 bp was verified by sequencing (GenBank accession no. AY575065). These PCR primers and conditions were also used to screen a canine BAC library3 (URL: http:// www.dogmap.ch) for AKT3 positive clones. To rule out falsepositive BAC screening results, the initial PCR was repeated, 2004 International Society for Animal Genetics, Animal Genetics, 35, 350–359 Brief notes canine AKT3 gent to CFA 7q17 and defined the chromosomal band following the nomenclature established by Reimann et al.6 References 1 Masure S. et al. (1999) Eur J Biochem 265, 353–60. 2 Nicholson K. M. et al. (2002) Cell Signal 14, 381–95. 3 Schelling C. et al. (2002) J Anim Breed Genet 119, 400–1. 4 Murua Escobar H. et al. (2001) Cytogenet Cell Genet 94, 194–5. 5 Yang F. et al. (1999) Genomics 62, 189–202. 6 Reimann N. et al. (1996) Cytogenetics Cell Genetics 73, 140–4. Correspondence: J. Bullerdiek ([email protected]) doi:10.1111/j.1365-2052.2004.01158.x The canine NRAS gene maps to CFA 17 A. Richter*, H. Murua Escobar*,†, K. Günther*, B. Meyer*, S. Winkler*, G. Dolf‡, C. Schelling§, I. Nolte† and J. Bullerdiek* *Centre for Human Genetics, University of Bremen, Bremen, Germany. †Small Animal Clinic, School of Veterinary Medicine Hanover, Hanover, Germany. ‡Institute of Animal Genetics, Nutrition and Housing, University of Berne, Berne, Switzerland. § Department of Animal Science, Swiss Federal Institute of Technology Zurich, Faculty of Veterinary Medicine, University of Zurich, ETH-Zentrum, Zurich, Switzerland Accepted for publication 1 May 2004 Figure 1 Metaphase spread after fluorescence in situ hybridization with signals on both chromosome 7s (above) and GTG- banding (below). cloned and sequenced for verification of AKT3 with BAC clone 10C05-4. Fluorescence in situ hybridization: Metaphase preparations and fluorescence in situ hybridization (FISH) were performed as described previously.4 Ten metaphases were examined and all demonstrated hybridization of the AKT3 probe on both chromatids of canine chromosome 7 (Fig. 1). Comments: It has been reported that canine chromosome 7 shares homology with human chromosomes (HSA) 1 and 18. The long (q) arm of CFA7 corresponds to the homologous region on HSA1, whereas the homologous regions with HSA18 are distributed over both arms of CFA7.5 The human AKT3 gene is located at HSA 1q43–44. According to Yang et al.,5 this region shares homology with CFA7. We mapped the Introduction: The dog is an emerging model organism for the investigation of mechanisms involved in human disease, including cancer. Several parallels in human and canine tumours have been described, with comparable environmental living conditions and age of tumour onset in both human and canine patients as well as similarities in development and histology of tumours in both species.1 NRAS is a member of the ras proto-oncogene family of proteins that act in growth-related signal transduction and are frequently involved in the development of human tumours, with ras point mutations being one of the most important alterations in the onset of malignancies.2 Ras genes show high sequence similarity across different mammalian species such as human, cat, dog, cattle and rodents, with most nucleotide differences representing synonymous changes not affecting the amino acid sequence.3 In malignancies, most amino acid exchanges in ras genes are caused by alterations of the so-called hot spot codons 12, 13, and 61 in exons 1 and 2, respectively, leading to constitutively active ras proteins that bring about constant signal transduction, facilitating uncontrolled cell division. These hot-spot codons have been described to be affected in other mammalian species as well. In dogs, NRAS mutations were found in lymphomas4 and malignant melanomas.5 The canine NRAS gene had not been mapped so far, therefore, in this study we localized the chromosomal location of the canine NRAS gene by fluorescence in situ hybridization (FISH). 2004 International Society for Animal Genetics, Animal Genetics, 35, 350–359 355 VI. Molecular characterization and mapping of the canine cyclin D1 (CCND1) gene. Meyer B, Murua Escobar H, Winkler S, Dolf G, Schelling C, Bullerdiek J, Nolte I. Anim Genet. 2004 Oct;35(5):413. Eigenanteil: • Durchführung der FISH • Erstellen der caninen Karyogramme Brief notes doi:10.1111/j.1365-2052.2004.01172.x Molecular characterization and mapping of the canine cyclin D1 (CCND1) gene B. Meyer*, H. Murua Escobar*,†, S. Winkler*, G. Dolf‡, C. Schelling§, J. Bullerdiek* and I. Nolte† *Center for Human Genetics, University of Bremen, Bremen, Germany. †Small Animal Clinic, School of Veterinary Medicine, Hanover, Germany. ‡Institute of Animal Genetics, Nutrition and Housing, University of Berne, Berne, Switzerland. §Department of Animal Science, Swiss Federal Institute of Technology Zurich and Faculty of Veterinary Medicine, University of Zurich, Zurich, Switzerland Accepted for publication 23 June 2004 Introduction: Cyclin D1, also known as PRAD1 or BCL-1, acts as regulator of progression through the G1 phase during the cell cycle by activation of cyclin-dependent kinases CDK4 and CDK6. In humans overexpression of cyclin D1, partially due to gene amplification, has been found in a wide variety of cancers, including breast cancer.1 Sequence analysis: For characterization of the canine CCND1 gene and the corresponding protein, cDNA from a canine osteosarcoma was screened with primers specific for the ORF of human cyclin D1 (GenBank accession no. NM_053056; primer pair CYCup: CGA TGC CAA CCT CCT CAA CGA, CYClo: TGT GGC ACA AGA GGC AAC GAA). After cloning and sequencing of the amplification product two additional primer sets were used to amplify the complete ORF (primer pairs Cyc1up: CAC ACG GAC TAC AGG GGA GT, Cyc333doglo: GCA CAC ACT TGA AGT AGG ACA C and Cyc695dogup: ACA CTT CCT CTC CAA GAT GCC, AP2: AAG GAT CCG TCG ACA TCT TTT TTT TTT TTT TTT T). Sequence analyses allowed the composition of a 1246 bp cDNA contig (GenBank accession no. AY620434), showing 90.4% sequence identity of the canine ORF compared with the human counterpart. In accordance with the human orthologue the deduced canine protein comprises 295 AA with 93.3% similarity between the two species. BAC library screening: For use as FISH probe, a BAC clone was PCR-screened from the DogBAC library (http://www.dogmap.ch) with primers designed using human CCND1 DNA sequence GenBank accession no. L09054 (primer pair CYCup: CGA TGC CAA CCT CCT CAA CGA, CYCint1lo: GAA ACG TGG GTC TGG GCA ACA). The obtained positive BAC clone (DogBAC library ID S041P23D08) was verified by PCR, cloning and subsequent sequencing. Gene mapping: For mapping of the chromosomal location of the canine CCND1 gene, metaphase preparations and fluorescence in situ hybridization (FISH) were performed as described previously.2 G-banded chromosomes were identified according to Reimann et al.3 Ten well-spread metaphases were analysed exhibiting a signal on CFA17 on both chromatids of both chromosomes (Fig. 1). Comments: During the last decade the dog has gained in importance as a model organism for the investigation of mechanisms underlying human genetic disease, including cancer. Immunohistochemical analyses of cyclin D1 expression in canine mammary tumours using a polyclonal antibody against human cyclin D1 revealed contradictory data. Murakami et al.4 found cyclin D1 expression in only two adenocarcinomas of 75 mammary lesions tested whereas Sfacteria et al.5 detected cyclin D1 in 60% of pre-cancerous lesions and 44% of cancerous lesions of the canine mammary gland with correlation of proliferative ratio and cyclin D1 expression. Mapping and sequencing of the canine CCND1 gene and corresponding protein could help to elucidate the role of cyclin D1 in dogs and its usefulness as model organism concerning this matter. Yang et al.6 found no conservation of synteny between HSA11, where the human CCND1 maps, and CFA17. This discordance could be due to small rearrangements, deletions and insertions existing in the dog.7 References 1 Ormandy C. J. et al. (2003) Breast Cancer Res Treat 78, 323– 35. 2 Murua Escobar H. et al. (2001) Cytogenet Cell Genet 94, 194–5. 3 Reimann N. et al. (1996) Cytogenet Cell Genet 73, 140–4. 4 Murakami Y. et al. (2000) J Vet Med Sci 62, 743–50. 5 Sfacteria A. et al. (2003) J Comp Pathol 128, 245–51. 6 Yang F. et al. (1999) Genomics 62, 189–202. 7 Guyon R. et al. (2003) Cold Spring Harb Symp Quant Biol 68, 171–8. Correspondence: Prof. Dr Ingo Nolte (inolte@klt. tiho-hannover.de) Figure 1 Canine metaphase spread after GTGbanding (a) and the same metaphase after FISH with BAC S041P23D08 showing signals on both chromosomes 17 (b). 2004 International Society for Animal Genetics, Animal Genetics, 35, 408–423 413 VII. The canine NRAS gene maps to CFA 17. Richter A, Murua Escobar H, Gunther K, Meyer B, Winkler S, Dolf G, Schelling C, Nolte I, Bullerdiek J. Anim Genet. 2004 Aug;35(4):355-6. Eigentanteil: • Durchführung der FISH • Erstellen der caninen Karyogramme Brief notes canine AKT3 gent to CFA 7q17 and defined the chromosomal band following the nomenclature established by Reimann et al.6 References 1 Masure S. et al. (1999) Eur J Biochem 265, 353–60. 2 Nicholson K. M. et al. (2002) Cell Signal 14, 381–95. 3 Schelling C. et al. (2002) J Anim Breed Genet 119, 400–1. 4 Murua Escobar H. et al. (2001) Cytogenet Cell Genet 94, 194–5. 5 Yang F. et al. (1999) Genomics 62, 189–202. 6 Reimann N. et al. (1996) Cytogenetics Cell Genetics 73, 140–4. Correspondence: J. Bullerdiek ([email protected]) doi:10.1111/j.1365-2052.2004.01158.x The canine NRAS gene maps to CFA 17 A. Richter*, H. Murua Escobar*,†, K. Günther*, B. Meyer*, S. Winkler*, G. Dolf‡, C. Schelling§, I. Nolte† and J. Bullerdiek* *Centre for Human Genetics, University of Bremen, Bremen, Germany. †Small Animal Clinic, School of Veterinary Medicine Hanover, Hanover, Germany. ‡Institute of Animal Genetics, Nutrition and Housing, University of Berne, Berne, Switzerland. § Department of Animal Science, Swiss Federal Institute of Technology Zurich, Faculty of Veterinary Medicine, University of Zurich, ETH-Zentrum, Zurich, Switzerland Accepted for publication 1 May 2004 Figure 1 Metaphase spread after fluorescence in situ hybridization with signals on both chromosome 7s (above) and GTG- banding (below). cloned and sequenced for verification of AKT3 with BAC clone 10C05-4. Fluorescence in situ hybridization: Metaphase preparations and fluorescence in situ hybridization (FISH) were performed as described previously.4 Ten metaphases were examined and all demonstrated hybridization of the AKT3 probe on both chromatids of canine chromosome 7 (Fig. 1). Comments: It has been reported that canine chromosome 7 shares homology with human chromosomes (HSA) 1 and 18. The long (q) arm of CFA7 corresponds to the homologous region on HSA1, whereas the homologous regions with HSA18 are distributed over both arms of CFA7.5 The human AKT3 gene is located at HSA 1q43–44. According to Yang et al.,5 this region shares homology with CFA7. We mapped the Introduction: The dog is an emerging model organism for the investigation of mechanisms involved in human disease, including cancer. Several parallels in human and canine tumours have been described, with comparable environmental living conditions and age of tumour onset in both human and canine patients as well as similarities in development and histology of tumours in both species.1 NRAS is a member of the ras proto-oncogene family of proteins that act in growth-related signal transduction and are frequently involved in the development of human tumours, with ras point mutations being one of the most important alterations in the onset of malignancies.2 Ras genes show high sequence similarity across different mammalian species such as human, cat, dog, cattle and rodents, with most nucleotide differences representing synonymous changes not affecting the amino acid sequence.3 In malignancies, most amino acid exchanges in ras genes are caused by alterations of the so-called hot spot codons 12, 13, and 61 in exons 1 and 2, respectively, leading to constitutively active ras proteins that bring about constant signal transduction, facilitating uncontrolled cell division. These hot-spot codons have been described to be affected in other mammalian species as well. In dogs, NRAS mutations were found in lymphomas4 and malignant melanomas.5 The canine NRAS gene had not been mapped so far, therefore, in this study we localized the chromosomal location of the canine NRAS gene by fluorescence in situ hybridization (FISH). 2004 International Society for Animal Genetics, Animal Genetics, 35, 350–359 355 356 Brief notes Figure 1 Metaphase spread after fluorescence in situ hybridization showing signals on both chromosomes 17 (right) and the same metaphase after GTG-banding (left). BAC library screening: In order to isolate a FISH probe, the DogBAC canine BAC library6 (http://www.dogmap.ch/) was polymerase chain reaction (PCR)-screened. Primers were designed using canine mRNA sequence GenBank accession no. U62093 (primer UP: GACTGAGTACAAACTGGTGG and primer LO: GGGCCTCACCTCTATGGTG). The PCR conditions were established on canine blood genomic DNA, the corresponding PCR product cloned and verified by sequencing. The positive BAC clone (DogBAC library ID S050P24H09) was verified by PCR and sequencing. Gene mapping: For mapping the chromosomal location of the canine NRAS gene, metaphase preparations and FISH were performed as described previously.7 Ten well spread metaphases exhibited a signal on CFA 17 on both chromatids of both chromosomes (Fig. 1), following the nomenclature of the canine karyotype as established by Reimann et al.8 Comments: NRAS mutations in humans have been found in 30% of liver tumours, 40% of myelodysplastic syndrome, 30% of acute myelogenous leukaemia, 13% of brain tumours and in 53% of follicular and 60% of undifferentiated papillary thyroid tumours.9 In dogs, depending on tumour type, comparable occurrences exist in malignant melanomas,5 while fibrosarcomas showed no amino acid alteration of the NRAS protein (H. Murua Escobar, K. Günther, A. Richter, J. T. Soller, S. Winkler, I. Nolte & J. Bullerdiek 2004, personal communication). Overall, data available on involvement of ras protooncogenes in tumours of dogs are still insufficient. Knowledge of the cytogenetic properties of NRAS will further the understanding of this important gene. The mapping results obtained in this study are in accordance with the known homology between canine chromosome 17 and the centromer-proximal regions 11.1–13.3 of the p-arm of human chromosome 1.10 References 1 Hahn K A. et al. (1994) In Vivo 8, 133–43. 2 Arber N. (1999) Apoptosis 4, 383–8. 3 Watzinger F. et al. (1998) Mamm Genome 9, 214–9. 4 5 6 7 8 9 10 Mayr B. et al. (2003) Acta Vet Hung 51, 91–4. Mayr B. et al. (2003) Vet J 165, 169–71. Schelling C. et al. (2002) J Anim Breeding Genet 119, 400–1. Becker K. et al. (2003) Anim Genet 34, 68–9. Reimann N. et al. (1996) Cytogenet Cell Genet 73, 140–4. Spandidos D. A. et al. (2002) Int J Oncol 21, 237–41. Yang F. et al. (1999) Genomics 62, 189–202. Correspondence: J. Bullerdiek ([email protected]) doi:10.1111/j.1365-2052.2004.01159.x Linkage mapping of chicken ovoinhibitor and ovomucoid genes to chromosome 13 K. Kinoshita*, T. Shimogiri†, S. Okamoto†, K. Yoshizawa‡, H. Mannen‡, H. R. Ibrahim†, H. H Cheng§ and Y. Maeda† *The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan. †Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima 8900065, Japan. ‡Faculty of Agriculture, Kobe University, Nada-ku, Kobe 657-8501, Japan. §United States Department of Agriculture, Agriculture Research Service, East Lansing, MI 48823, USA Accepted for publication 10 May 2004 Source/description: Ovoinhibitor (OIH) and ovomucoid (OVM) are the major proteinase inhibitors constituting 1.5 and 11% of the total proteins in hen egg white, respectively. Although OVM exerts its antiprotease activity only against trypsin, OIH has a wide spectrum of inhibitory activity for other proteinases that occur in chicken egg white and blood plasma.1 They are functionally similar proteins and having multiple domains with a characteristic pattern of disulphide bridges.1 From the analysis of DNA sequences and the positions of exons and introns, it 2004 International Society for Animal Genetics, Animal Genetics, 35, 350–359 VIII. The canine KRAS2 gene maps to chromosome 22. Winkler S, Murua Escobar H, Gunther K, Richter A, Dolf G, Schelling C, Bullerdiek J, Nolte I. Anim Genet. 2004 Aug;35(4):350-1. Eigenanteil: • Durchführung der FISH • Erstellen der caninen Karyogramme • Verfassen des Artikels BRIEF NOTES doi:10.1111/j.1365-2052.2004.01136.x The canine KRAS2 gene maps to chromosome 22 S. Winkler*, H. Murua Escobar*,†, K. Günther*, A. Richter*, G. Dolf‡, C. Schelling§, J. Bullerdiek* and Ingo Nolte† *Center for Human Genetics, University of Bremen, Bremen, Germany. †Small Animal Clinic, School of Veterinary Medicine, Hannover, Germany. ‡Institute of Animal Genetics, Nutrition and Housing, University of Berne, Berne, Switzerland. §Department of Animal Science, Swiss Federal Institute of Technology Zürich and Faculty of Veterinary Medicine, University of Zürich, Zürich, Switzerland Accepted for publication 20 March 2004 Introduction: Dogs and human beings often share the same genetic pathways in development of cancer. Point mutations affecting genes of the ras family are assumed to be among the most important alterations in human tumourigenesis.1 Ras proteins play an important role as signal transmitters. The binding of growth factors activate the ras protein and thus initiates cell division. Mutations in ras genes are assumed to remove the time limit of the cell stimulating signals which results in uncontrolled cell division.2 Mutations in KRAS2 have been described in human pancreatic cancers and tumours of the gastrointestinal tract as well as in tumours of the skin.3–5 Hot spot point mutations in KRAS2 described in different types of human lung tumours and breast cancers are also present in the corresponding canine gene.6 For further characterization of the gene, we have mapped the canine KRAS2 gene. BAC clone and probe: A KRAS2 DNA probe was generated by polymerase chain reaction (PCR) spanning part of the exon 2 (primer up: 5¢-caggattcctacaggaaaca-3¢/lo: 5¢-aacccacctataatggtgaa-3¢ based on NCBI sequence M54968) using genomic canine DNA. The resulting amplicon was cloned and sequenced for verification. These PCR conditions were also used to screen a canine BAC library7 (URL: http:// www.dogmap.ch). To rule out false-positive BAC screening results, a PCR using the initial primer pair was performed, and the resulting amplicon cloned and sequenced for verification. BAC S069P22D02 was positive for KRAS2 and was used for fluorescence in situ hybridization (FISH) analysis. FISH: Metaphase preparations and FISH were performed as described previously.8 Ten well spread metaphases were examined and all showed a signal on both chromatids of chromosome 22s (CFA 22) (Fig. 1). Comments: Different investigations show that 30% of human lung tumours, 90% of human pancreatic tumours and 50% of tumours of the gastrointestinal tract depend on specific point mutations in genes of the ras gene family.9–11 Molecular investigations of the ras family are rare in dogs, but existing publications point to the fact that there are the same point mutations affecting hotspot codons 12, 13 and 61, as they are in human malignancies.6 Up to 24% of cases investigated in dogs showed point mutations in those codons. The canine chromosome to which KRAS2 was mapped has been involved in a centric fusion of CFA 8/22.12 According to Yang et al.13 the canine chromosome 22 shares homology with HSA13, whereas the human KRAS2 gene is located on HSA12. In our FISH studies, there were no metaphase signals on the corresponding canine chromosomes, 29 and 10. Acknowledgements: We thank Norbert Drieschner for his helpful advice in FISH techniques. References 1 Arber N. (1999) Apoptosis 4, 383–8. 2 Scriver et al. eds (1995) The Metabolic and Molecular Bases of Inherited Disease, McGraw-Hill, New York, 7th edn, pp. 589–611. 3 Almoguera C. et al. (1988) Cell 53, 549–54. 4 Belly R. T. et al. (2001) Clin Colorectal Cancer 1, 110–6. 5 Shukla V. K. et al. (1989) Oncogene Res 5, 121–7. 6 Watzinger F. et al. (2001) Mol Carcinog 30, 190–8. 7 Schelling C. et al. (2002) J Anim Breeding Genet 119, 400–1. 8 Murua Escobar H. et al. (2001) Cytogenet Cell Genet 94, M194–5. 9 Bos J. L. et al. (1989) Cancer Res 50, 1352. 10 Tang E. M. et al. (2002) J Natl Cancer Inst 94, 1527–36. Figure 1 Metaphase spread after fluorescence in situ hybridization with signals on both chromosomes 22 (right) and the same metaphase after GTG banding (left). 2004 International Society for Animal Genetics Animal Genetics, 35, 350–359 Brief notes 11 Knapp D. W. & Waters D. J. (1997) Mol Med Today 3, 8–11. 12 Mayr B. et al. (1991) Br Vet J 6, 545–8. 13 Yang F. et al. (1999) Genomics 62, 189–202. Correspondence: Prof. Dr Jörn Bullerdiek (bullerd@ uni-bremen.de) doi:10.1111/j.1365-2052.2004.01148.x Genomic localization and SNP discovery in the bovine melanocortin receptor 4 gene (MC4R) E. Valle*, F. A. Habermann†, S. S. Moore‡, D. H. Crews* and B. F. Benkel* *Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada. †Chair of Animal Breeding, Technical University of Munich, Freising-Weihenstephan, Germany. ‡ Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada Accepted for publication 12 April 2004 Source/description: MC4R is a G-protein-coupled receptor that is implicated in the control of food intake and energy expenditure. In mice, knock out of the Mc4r gene results in a maturity-onset obesity syndrome which is due primarily to leptin-resistant hyperphagia.1,2 Moreover, a significant association has been reported between MC4R genotypes and backfat, growth rates, and feed intake in a number of lines of swine.3 MC4R is an intron-less gene with a transcript of 1800 nt containing a coding region of roughly 1 kb. MC4R has been assigned to the telomeric region of BTA24 by radiation hybrid mapping4 (RH) and linkage analysis.5 Both papers also report SNPs in the MC4R coding region – two single nucleotide substitutions specific to the Red Holstein and Red Pied breeds,4 and a single nucleotide substitution in cattle of unspecified origin.5 In this study we report: (i) the anchoring of the gene to a specific contig in the bovine reference BAC genome scaffold; (ii) the cytogenetic localization of the bovine MC4R gene using FISH; and (iii) the results of an SNP discovery experiment using a beef cattle reference panel. Primer sequences: Overgo hybridization MC4RP1: 5¢-GCCTAAGATTTCCAAGTGATGCT MC4RP2: 5¢-AAGTGTGGCTCTGGTCAGCATCAC PCR verification MC4RRev: 5¢-AAAGTTAGGCGGCGGAGA SNP discovery Forward: 5¢-GATTTCCAAGTGATGCTGACC Reverse: 5¢-ACACACAGTATGGGTTCTGGG Overgo hybridization to BAC filters: High density filters for the bovine BAC library CHORI-240 were purchased from the BACPAC Resource Centre (http://bacpac.chori.org/home.htm). Overgo probe oligomers (MC4RP1 and MC4RP2) and the PCR verification primer (MC4RRev) were designed using the Overgo 1.02 program (http://www.mouse-genome.bcm.tmc.edu/web overgo/OvergoInput.asp). Overgo probes were labelled and hybridizations to high density filters carried out as previously described.6 Hybridization-positive BAC clones were confirmed via locus-specific PCR reactions using primers MC4RP1 and MC4RRev revealing three clones for the MC4R gene – CHORI240 180D6, 213B5 and 265F11. All three clones map to contig no. 926 in the bovine reference BAC genome scaffold (http://www.bcgsc.ca/lab/mapping/bovine), thereby anchoring this contig of 95 BACs to the telomeric end of BTA24. Fluorescent in situ hybridization (FISH): BAC DNA for clone 180D6 was prepared using the R.E.A.L. Prep BAC kit (Qiagen, Mississauga, ON, Canada). BAC DNA was labelled with digoxigenin-11-dUTP by standard nick translation and hybridized with a 10· excess of bovine Cot1-DNA to normal male bovine metaphase spreads. Probe hybridization was detected with monoclonal mouse-anti digoxigenin (Roche, Mannheim, Table 1 SNP discovery in the bovine MC4R gene. Nucleotide position1,2 244 270 271 414 648 747 927 Codon 11 19 20 67 145 178 238 A A A A A A A C C C C C C C G G G G G G G G G G G G G G G G G G G G G G G G 4G/2A (silent)4 G G G C C C 5C/1T (silent) C C C A G (T11A) C 5C/1T (silent) G 1G/5A (A20T) G 5G/1A (silent) G 1G/5A (silent) G G C C Bos taurus Angus3 Charolais Hereford Limousin Simmental Holstein Wagyu Bos indicus Brahman Bison bison 1 Positions are numbered according to GenBank accession no. AF265221. SNPs detected previously at positions 647 and 7274 were not observed in this study, and the previously reported SNP at position 10695 lies downstream of the fragment analysed. 3 Three unrelated bulls (six alleles) were sampled from each breed. 4 The impact of the SNP on the amino acid at the affected position is indicated in brackets. 2 2004 International Society for Animal Genetics, Animal Genetics, 35, 350–359 351 IX. Cloning and characterization of the canine receptor for advanced glycation end products. Murua Escobar H, Soller JT, Sterenczak KA, Sperveslage JD, Schlueter C, Burchardt B, Eberle N, Fork M, Nimzyk R, Winkler S, Nolte I, Bullerdiek J Gene. 2006 Mar 15;369:45-52. Eigentanteil: • Durchführung der FISH • Erstellen der caninen Karyogramme + MODEL ARTICLE IN PRESS Gene xx (2005) xxx – xxx www.elsevier.com/locate/gene Cloning and characterization of the canine receptor for advanced glycation end products Hugo Murua Escobar a,⁎,1 , Jan T. Soller a,b,1 , Katharina A. Sterenczak b , Jan D. Sperveslage b , Claudia Schlueter b , Birgit Burchardt b , Nina Eberle a , Melanie Fork a , Rolf Nimzyk b , Susanne Winkler b , Ingo Nolte a , Jörn Bullerdiek b a Small Animal Clinic, University of Veterinary Medicine, Bischofsholer Damm 15, D-30173 Hannover, Germany b Centre for Human Genetics, University of Bremen, Leobener Strasse ZHG, D-28359 Bremen, Germany Received 2 August 2005; received in revised form 26 September 2005; accepted 11 October 2005 Received by D.A. Tagle Abstract Metastasis is one of the major problems when dealing with malignant neoplasias. Accordingly, the finding of molecular targets, which can be addressed to reduce tumour metastasising, will have significant impact on the development of new therapeutic approaches. Recently, the receptor for advanced glycation end products (RAGE)–high mobility group B1 (HMGB1) protein complex has been shown to have significant influence on invasiveness, growth and motility of tumour cells, which are essential characteristics required for metastatic behaviour. A set of in vitro and in vivo approaches showed that blocking of this complex resulted in drastic suppression of tumour cell growth. Due to the similarities of human and canine cancer the dog has joined the common rodent animal model for therapeutic and preclinical studies. However, complete characterisation of the protein complex is a precondition to a therapeutic approach based on the blocking of the RAGE– HMGB1 complex to spontaneously occurring tumours in dogs. We recently characterised the canine HMGB1 gene and protein completely. Here we present the complete characterisation of the canine RAGE gene including its 1384 bp mRNA, the 1215 bp protein coding sequence, the 2835 bp genomic structure, chromosomal localisation, gene expression pattern, and its 404 amino acid protein. Furthermore we compared the CDS of six different canine breeds and screened them for single nucleotide polymorphisms. © 2005 Elsevier B.V. All rights reserved. Keywords: Receptor for advanced glycation end products; RAGE; HMGB1; Metastasis; Canis familiaris; Comparative genomics Abbreviations: A, adenosine; aa, amino acid(s); AGE, advanced glycation end product(s); BAC, bacterial artificial chromosome; bp, base pair(s); BSA, bovine serum albumin; cDNA, DNA complementary to RNA; CDS, coding sequence(s); CFA, Canis familiaris; Ci, Curie; CD, carboxy-terminal domain; dCTP, deoxycytidine 5′-triphosphate; DNA, deoxy-ribonucleic acid; DNase, deoxyribonuclease; EC, extracellular; FISH, fluorescence in situ hybridisation; G, guanosine; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GTG, g-bands by trypsine using gimsa; HMG, high mobility group; HMGB1, high mobility group protein B1; HSA, Homo sapiens; I, inosine; Ig, immunoglobulin; kDa, kilo Dalton; M-MLV, Moloney murine leukemia virus; mRNA, messenger ribonucleic acid; NCBI, National Center for Biotechnology Information; ORF, open reading frame; 32P, phosphorus 32 radioisotope; PHA, phytohemagglutinin; PCR, polymerase chain reaction; R, arginine; RACE, rapid amplification of cDNA ends; RAGE, receptor for advanced glycation end products; sRAGE, soluble RAGE variant(s); RNA, ribonucleic acid; SDS, sodium dodecyl sulfate; SNP, single nucleotide polymorphism; SSC, standard saline citrate; SSPE, sodium saline phosphate EDTA; TM, transmembrane domain; UTR, untranslated region; W, tryptophane. ⁎ Corresponding author. Tel.: +49 511 856 7251; fax: +49 511 856 7686. E-mail address: [email protected] (H. Murua Escobar). 1 H. Murua Escobar and J. T. Soller have contributed equally to this article. 0378-1119/$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.gene.2005.10.015 GENE-35223; No of Pages 8 ARTICLE IN PRESS 2 H. Murua Escobar et al. / Gene xx (2005) xxx–xxx 1. Introduction The canine genome offers a wide field for genetic studies on various areas as e.g. phenotypic diversity, heredity and diseases including cancer. In terms of cancer, the canine model shows several advantages. First of all, the dog enjoys after the human the second best medical care of all species allowing a detailed surveillance of the cancer, progression, and therapy. The cancers seen in dogs are spontaneously developing as opposed to rodents with tumours being experimentally induced by carcinogen or transplanted to immunocompromised animals. Also, the canine cancers are more akin to human cancers than rodent tumours in terms of patient size and cell kinetics allowing better comparison of medical examinations as e.g. ultrasonography. It is generally believed that dogs develop cancer twice as frequently as humans, and it has been shown that the presentation, histology and biology of several canine cancers are similar to those in humans (Withrow and MacEwen, 1989, 2001; MacEwen, 1990). Most canine cancers progress more rapidly than their human counterparts permitting a better surveillance of the tumour state (Withrow and MacEwen, 2001). Additionally, dogs show similar characteristics of physiology and metabolism for most organ systems and drugs, which allows better comparability of modalities e.g. surgery, radiation, chemotherapy (Withrow and MacEwen, 2001), and new therapeutic approaches aimed at cancer treatment. At least a dozen distinct canine cancers are hypothesized to be appropriate models for their human counterparts (Patterson et al., 1982; Withrow and MacEwen, 1989; MacEwen, 1990; Knapp and Waters, 1997), among those osteosarcoma, breast carcinoma, oral melanomas, lung carcinomas and malignant non-Hodgkin's lymphomas (MacEwen, 1990). Lately, the RAGE–HMGB1 protein complex has attracted significant interest in terms of metastasic behaviour of tumours. The receptor itself is a multiligand member of the immunoglobulin superfamily, which was shown to bind nonenzymatically glycated adducts, i.e. advanced glycation end products (AGE). It has been described to be involved in a variety of pathophysiological processes, e.g. immune/inflammatory disorders (Hofmann et al., 1999, 2002), Alzheimer's disease (Yan et al., 1997; Lue et al., 2001), abnormalities associated with diabetes, e.g. arteriosclerosis (Park et al., 1998) or impaired wound healing (Goova et al., 2001), and tumourigenesis (Taguchi et al., 2000; Huttunen et al., 2002). In terms of tumours and metastasis, the interaction with the extracellular ligand amphoterin, synonymously called HMGB1, was shown to have significant influence (Taguchi et al., 2000; Huttunen et al., 2002) by activating key cell signalling pathways such as MAP kinases and NF-κB (Taguchi et al., 2000). Taguchi et al. (2000) were able to show that blocking of this complex by using a soluble variant of the receptor lacking the cytosolic and transmembrane domains strongly inhibited the metastatic behaviour of glioma cells in terms of invasive growth, motility and migration. To establish a therapeutic approach based on blocking of the RAGE–HMGB1 protein complex in canine tumours as preclinical approach for human neoplasias, the knowledge of the canine protein complex is precondition. Previously we characterised the canine HMGB1 gene and its protein (Murua Escobar et al., 2003). Here we present the complete characterisation of the canine RAGE gene including its mRNA, the genomic structure, chromosomal localisation, gene expression pattern, and its protein. Furthermore we compared the protein coding sequences (CDS) of six different canine breeds and screened them for single nucleotide polymorphisms (SNPs). The complete characterisation of the canine RAGE– HMGB1 protein complex will serve as base for future clinical studies aimed at the development of blocking strategies to inhibit metastatic behaviour of canine and human tumours. 2. Methods and materials 2.1. Tissues The tissues used in this study were provided by the Small Animal Clinic, University of Veterinary Medicine, Hannover, Germany. The breeds represented were Bernese Mountain Dog, Border Collie, Dachshund, Golden Retriever, Rottweiler, and Siberian Husky. From each breed up to three samples of lung tissue were taken and used for analyses. 2.2. Bacterial artificial chromosome (BAC) screening and fluorescence in situ hybridisation FISH A canine genomic RAGE DNA probe was used for hybridisation of canine RPCI 81 BAC/PAC filter (BACPAC RESOURCES/Children's Hospital Oakland Research Institute, Oakland, USA). The 261 bp probe was generated by PCR with the primer set 480up and canisRlo623 (5′ AGGGACTCTTAGCTGGCACT 3′/5′ GAAGGTGGGGTGGGGAGCTC 3′) on genomic DNA prepared from a blood sample of a healthy dog. The obtained PCR product was separated on a 1.5% agarose gel, recovered with QIAEX II (QIAGEN, Hilden, Germany), cloned in pGEM–T-Easy vector system (Promega, Madison, USA) and sequenced for verification. The probe labelling was performed by random primed labelling (Roche Diagnostics, Mannheim, Germany) as described in the manufacturer's protocol with 250 ng probe and 250 μCi (α32P)dCTP (GE Healthcare, Freiburg, Germany). Purification of the labelled probe was done using Sephadex G-50 Nick Columns (Amersham Pharmacia Biotech, Freiburg, Germany) and the probe was stored at − 20 °C before use. The filters were placed in a minimum volume of Church Buffer (0.15 mM bovine serum albumin (BSA), 1 mM EDTA, 0.5 M NaHPO4, 7% SDS) and transferred into hybridisation bottles. The filters were prehybridised at 65 °C for 1 h in 25 ml Church Buffer. Hybridisation was performed at 65 °C overnight (16–18 h) in the same solution. All further steps were performed according to manufacturer's protocol. Signals were visualised using a STORM imager (Molecular Dynamics, Sunnyvale, USA). Metaphase preparations were obtained from blood samples of different dogs. The samples were stimulated with phytohemagglutinin (PHA) and cultured for 96 h at 37 °C. After incubation for 2 h with colcemide (0.1 μg/ml), the lymphocytes ARTICLE IN PRESS H. Murua Escobar et al. / Gene xx (2005) xxx–xxx were harvested and slides were prepared according to routine procedures. Prior to FISH, chromosomes were stained using an adapted GTG-banding method. Chromosomal G-bands were identified according to Reimann et al. (1996). After recording the metaphases, the slides were destained in 70% ethanol for 15 min, air-dried and incubated at 60 °C overnight. FISH was performed using the protocol of Fischer et al. (1996) with some modifications. BAC DNA was digoxigenin labelled (Dig-Nick-Translation-Kit, Roche Diagnostics, Mannheim, Germany). The hybridisation mixture contained 200 ng probe, 43.2 μg salmon sperm DNA, 800 ng sonicated dog DNA, 1× SSC, 1× SSPE, 50% formamide and 10% dextransulfate. The chromosomes were counterstained with propidiumiodide. 2.3. Genomic characterisation For genomic characterization the canine RAGE gene was amplified by PCR using the screened BAC RP81339J10 (BACPAC RESOURCES/Children's Hospital Oakland Research Institute, Oakland, USA). A 1298 bp fragment spanning exon 1 to exon 6 was generated by the primer pair canisRup1/ canisRlo623 (5′ ATGGCAGCAGGGGCGGCAGC 3′/5′ GAAGGTGGGGTGGGGAGCTC 3′) and an additional 1403 bp fragment spanning exon 6 to exon 11 was generated with pair cEx6up/3046lo (5′ CTCCCCACCCCACCTTCTCC 3′/5′ TCATGGCCCTGCTGCACCGCTCT 3′) including the respective introns. The obtained PCR products were separated on an 1.5% agarose gel, recovered with QIAEX II (QIAGEN, Hilden, Germany), cloned in pGEM–T-Easy vector system (Promega, Madison, USA) and sequenced for verification. The final genomic canine RAGE contig and the identity alignments were created with Lasergene software (DNAStar, Madison, USA) using various sequences from the NCBI database (GenBank accession nos.: D28769, AB036432, NM_001136, BC020669, M91211) and the following described cDNA (see Section 2.4). 2.4. cDNA characterisation Total RNA was isolated from 50 mg canine lung tissue using TRIZOL LS (Invitrogen, Karlsruhe, Germany) following the manufacturer's protocol. To avoid genomic DNA contamination a DNase digest of each sample was performed using RNase-Free DNase Set (Qiagen, Hilden, Germany). cDNA was synthesised using 3′-RACE adaptor primer AP2 (AAGGATCCGTCGACATC(17)T), 5 μg total RNA, and SuperScript II (Invitrogen, Karlsruhe, Germany) reverse transcriptase according to the manufacturer's instructions. The PCRs for the molecular cloning of the cDNA were done using the primer pairs canisRup1/canisRlo623 (5′ ATGGCAGCAGGGGCGGCAGC 3′/5′ GAAGGTGGGGTGGGGAGCTC 3′), 480up/ RAGElo1236 (5′ AGGGACTCTTAGCTGGCACT 3′/5′ TGTCTGTGGGCCCCTCAAGG 3′) and gene-specific primers cEx6up/cEx11up (5′ CTCCCCACCCCACCTTCTCC 3′/5′ GAATCAGTCAGAGGAGCCCGAGG 3′). 3′RACE PCR was done using the adaptor primer AP2 specified above. The primers were derived from human cDNA sequences (GenBank 3 accession no. M91211). 5′RACE was performed using the primers 5′RACE Abridged Anchor Primer (5′ GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGII 3′), Universal Amplification Primer (5′ CTACTACTACTAGGCCACGCGTCGACTAGTAC 3′), and the gene-specific primers RAGElo1236 and canisRlo623 determined as above according to the 5′RACE System for Rapid Amplifications of cDNA Ends by Invitrogen. The PCR products were separated on a 1.5% agarose gel, recovered with QIAEX II (QIAGEN, Hilden, Germany), cloned in pGEM–T-Easy vector system (Promega, Madison, USA) and sequenced. The cDNA contig and the identity alignments were created with Lasergene software (DNAStar, Madison, USA) and various sequences from the NCBI database (GenBank accession nos.: D28769, AB036432, NM_001136, BC020669, M91211). 2.5. CDS comparison between breeds The CDSs were characterised for all breeds as described previously in Section 2.2. The contigs and the identity alignments were created using several sequences from the NCBI database (GenBank accession nos.: D28769 AB036432, NM_001136, BC020669, M91211). In case of single-nucleotide exchanges, the samples were sequenced again in both forward and reverse direction. Exchanges causing no amino acid (aa) substitution were not taken into account for further analyses. For all samples with aa substitutions, the initial PCR was repeated and the exchange verified by sequencing the product in both forward and reverse direction. 2.6. Protein sequences The canine RAGE protein sequence was derived from the ORF (open reading frames) of the characterised cDNA sequence described previously in Section 2.4. The protein homology alignments were created with four sequences from the NCBI database (GenBank accession nos.: BAA89369, NP_776407, AAA42027, AAH61182). 2.7. Northern Blot and RT–PCR Total RNA was isolated from canine liver, kidney, heart, testis, lung, muscle, pancreas and spleen tissue using RNeasy midi system (QIAGEN, Hilden, Germany). For Northern Blot hybridisation 30 μg of total RNA from each tissue sample was separated on a 1.2% denaturing agarose gel containing 0.65% formaldehyde. RNA was transferred onto Hybond–N+ positive nylon membrane (Amersham Pharmacia Biotech, Freiburg, Germany) by capillary blot. A 624 bp cDNA fragment derived from the canine RAGE sequence (exon 1/exon 5) served as a molecular probe for hybridisation. The probe was generated by PCR with the primer set canisRup1 and canisRlo623 (5′ ATGGCAGCAGGGGCGGCAGC 3′/5′ GAAGGTGGGGTGGGGAGCTC 3′) using the cloned cDNA described in Section 2.2. Probe labelling was performed by random primed labelling (Amersham Pharmacia Biotech, Freiburg, Germany) as described in the manufacturer's ARTICLE IN PRESS 4 H. Murua Escobar et al. / Gene xx (2005) xxx–xxx Fig. 1. An example of a metaphase spread after FISH with signals on both chromosomes 12 (A) and the same metaphase after GTG-banding (B). protocol with 50 μCi (α32P)dCTP (Amersham Pharmacia Biotech, Freiburg, Germany). Purification of the labelled probe was performed using Sephadex G-50 Nick Columns (Amersham Pharmacia Biotech, Freiburg, Germany) and the probe was stored at − 20 °C before use. Prehybridisation was carried out for 30 min and hybridisation overnight at 68 °C using the PERFECTHYB PLUS hybridisation solution (Sigma-Aldrich, Saint Louis, MO, USA). The membrane was washed for 5 min at room temperature in 2× SSC/0.1% SDS, and twice for 20 min at 68 °C in 0.5× SSC/ 0.1% SDS. Signals were visualised using a STORM phosphorimager (Molecular Dynamics, Sunnyvale, USA). RT–PCR was performed using all isolated tissue cDNAs with primer pair cEx6up/3046lo (5′ CTCCCCACCCCACCTTCTCC 3′/5′ TCATGGCCCTGCTGCACCGCTCT 3′). 3. Results and discussion The RAGE–HMGB1 protein complex has lately attracted significant interest of researchers working on cancer and other diseases. Several publications demonstrate the involvement of the RAGE receptor in a variety of pathophysiological processes, e.g. immune/inflammatory disorders (Hofmann et al., 1999, 2002), Alzheimer disease (Yan et al., 1997; Lue et al., 2001), abnormalities associated with diabetes, e.g. arteriosclerosis (Park et al., 1998) and impaired wound healing (Goova et al., 2001). It has been shown that the specific RAGE-related diseases are caused by binding of different specific ligands to the receptor (for reviews, see Schmidt et al., 2001; Huttunen and Rauvala, 2004). In terms of tumourigenesis and metastasis, the interaction with the extracellular ligand amphoterin, synonymously called HMGB1, was shown to have significant influence by activating key cell signalling MAP kinase pathways (Huttunen et al., 2002; Taguchi et al., 2000). A set of in vivo and in vitro experiments showed that blocking of this complex strongly inhibited the metastatic behaviour of cancer cells in terms of invasive growth, motility and migration (Taguchi et al., 2000). Furthermore, deregulation of the RAGE gene expression level was associated with prostate cancer (Simm et al., 2004), with malignant potential of colorectal cancer (Sasahira et al., 2005) and non-small-cell lung cancer (Bartling et al., 2005). To establish a therapeutic approach based on blocking of the RAGE–HMGB1 protein complex in canine tumours as a preclinical approach for human neoplasias, the knowledge of the canine protein complex is preconditioned. 3.1. Chromosomal localisation A canine RAGE genomic DNA probe was generated and used for screening of a canine BAC for localisation of the canine RAGE gene locus by FISH. The verified BAC 339-J10 was used for FISH experiments. Twelve well-spread metaphases were Fig. 2. Structure of the canine RAGE gene on genomic, cDNA and protein level. ARTICLE IN PRESS H. Murua Escobar et al. / Gene xx (2005) xxx–xxx examined for analyses, showing signals on both chromatides of both chromosomes CFA 12 (Fig. 1). The chromosomal localisation was done following the nomenclature established by Reimann et al. (1996). Presented synteny studies (Yang et al., 1999; Breen et al., 1999) showed that the canine CFA 12 shares homology to the human chromosome 6 where the RAGE gene is located at HSA 6p21.32. As far as we know, chromosomal aberrations affecting CFA 12 are not reported to be significantly associated with canine neoplasias. 3.2. Genomic structure The genomic structure of the canine RAGE gene consists of eleven exons and ten introns. The complete canine gene spans 2835 bp. The exon/intron structure, size and the homologies to their human counterparts were analysed and defined (Fig. 2 and Table 1). The total identity to the corresponding human region shows 63.4%. In detail, the identities of the exons vary between 73.9% and 86.7% to their human counterpart, while the introns show identities between 43.4% and 71.0% (for details see Table Table 1 Detailed analysis of the RAGE gene elements and the RAGE protein Element Size in bp Identity to human counterpart in % (D28769) Total genomic gene Total cDNA 5′UTR CDS 3′UTR Detail exons/introns Exon 1 Intron 1 Exon 2 Intron 2 Exon 3 Intron 3 Exon 4 Intron 4 Exon 5 Intron 5 Exon 6 Intron 6 Exon 7 Intron 7 Exon 8 Intron 8 Exon 9 Intron 9 Exon 10 Intron 10 Exon 11 2835 1384 18 1215 151 63.4 80.9 100 82.9 70.8 58 170 107 131 193 159 65 119 88 98 183 94 125 199 139 268 27 106 127 125 254 78.0 67.5 86.7 71.0 85.8 53.8 85.5 57.0 86.6 71.1 86.7 47.3 80.2 57.6 85.0 51.8 79.2 62.3 84.3 62.3 73.9 Protein Size in aa Total protein Total extracellular domain Ig-type V domain Transmebrane domain Cytosolic tail 404 318 33 19 43 Identity to human counterpart in % (BAA89369) 77.6 78.2 85.7 78.9 72.7 Identity comparison of the canine RAGE genomic elements, cDNA elements, and protein to their human counterparts. 5 1). The genomic sequences were submitted to the NCBI database (GenBank accession no. AY836509). 3.3. The canine RAGE cDNA transcript The complete canine RAGE cDNA consist of eleven exons spanning 1384 bp in total. The exon size varies between 27 bp to 254 bp composing all together a 5′UTR of 18 bp, a CDS of 1215 bp, and a 3′UTR of 151 bp (Fig. 2 and Table 1). Identity comparison to its human counterpart (GenBank accession no. D28769) revealed a total identity of 80.9% on nucleotide level varying in the exons from 73.9% (exon 11) to 86.7% (exon 2) (for details see Table 1). In humans several naturally occurring truncated RAGE transcripts have been described lacking the cytosolic and transmembrane domains named soluble RAGE variants (sRAGE) (Malherbe et al., 1999; Schlueter et al., 2003). These aberrant transcripts act as naturally occurring competitive inhibitors of the RAGE receptor taking effect on receptor efficiency. Detailed analysis of the aberrant transcript structure revealed the partial insertion of different genomic RAGE intron DNA fragments leading to the observed aberrant splicing products (Malherbe et al., 1999; Schlueter et al., 2003). In dogs, we could not detect corresponding aberrant splicing products using the experimental design developed previously in our group by Schlueter et al. (2003). However, the application of such soluble RAGE variants to block e.g. the HMGB1 protein drastically suppressed the growth of tumour cells in vitro and in vivo (for review see Huttunen et al., 2002). Treatment of mice with sRAGE completely suppressed diabetic atherosclerosis in a glycemia- and lipid-independent manner (Park et al., 1998). The total canine RAGE cDNA sequence was submitted to the NCBI database with GenBank accession no. AY836152 completing our previous submission of AY530943. 3.4. RAGE CDS comparison between different canine breeds For six different canine breeds the protein coding sequences were characterised by amplification of a fragment spanning the CDS using the canine lung cDNA samples as template. Nucleotide exchanges causing no amino acid substitution were not taken into account in further analyses. The comparison of these six protein-coding sequences revealed one amino acid change. A Bernese Mountaindog sample showed a nucleotide transition from C (CGG) to T (TGG) at the first base of the CDS codon 364, leading to an aa replacement from arginine (R) to tryptophane (W). Possible PCR artefacts seem rather unlikely, since several clones were sequenced for verification. Polymorphisms causing mutations in the RAGE gene had been associated with various inflammatory diseases and diabetic syndromes such as rheumatoid arthritis, psoriasis, nephropathy, periodontitis, and microvascular diseases (Hudson et al., 1998, 2001; Kankova et al., 1999, 2001; Liu and Xiang, 1999; Poirier et al., 2001; Hofmann et al., 2002; Schmidt, 2002; Vasku et al., 2002). Considering the fact that canine breeds show breed-specific predispositions for various cancers and ARTICLE IN PRESS 6 H. Murua Escobar et al. / Gene xx (2005) xxx–xxx other diseases, the detailed analyses of single breeds could be of significant value to unravel the disease associated mechanisms involved. The CDS cDNA sequences of the six breeds were submitted to the NCBI database with GenBank accession nos. DQ125936, DQ125937, DQ125938, DQ125939, DQ125940, and DQ125941. 3.5. The canine RAGE protein The canine RAGE protein sequence was deduced from the characterised cDNA sequence. The canine RAGE protein is a 404-amino-acid molecule with a calculated weight of 43 kDa (Fig. 1 and Table 1). Identity comparison of the canine molecule to its human counterpart (GenBank accession no. BAA89369) showed a total of 77.6% identity to the human protein including the described three extracellular (EC) immunoglobulin (Ig) type domains V, C, C′, the hydrophobic transmembrane domain (TM), and the highly charged cytosolic tail including acidic carboxy-terminal domain (CD) (Neeper et al., 1992). The total canine extracellular domain shows 78.2%, the transmembrane domain 78.9%, and the cytosolic tail 72.7% identity to their human counterparts, respectively. The RAGE immunoglobulin type V domain was identified as HMGB1 binding domain. The identity comparison of this domain between dog and human showed 85.7% with 10 amino acid exchanges (Fig. 3). Recently, the motive Fig. 4. Total RNA Northern blot showing 1.4 kb RAGE and 1.3 kb GAPDH transcripts. Lanes: (1) canine testis, (2) canine heart, (3) canine lung, (4) canine muscle, (5) canine kidney, (6) canine pancreas, (7) canine spleen, (8) canine liver. of the human HMGB1 protein for binding the V domain of RAGE receptor was identified to consist of aa 150–183 including the HMG-Box-B and part of carboxy-terminal domain (Huttunen et al., 2002). We previously characterised the canine HMGB1 protein and comparison of the functional domains revealed that the canine amino acid sequence is identical to the human counterpart (Murua Escobar et al., 2003). Due to the high similarity of the canine and human RAGE–HMGB1 protein complexes in their interacting domains, therapeutic approaches applied in dogs could be more suitable in terms of transferability for the development of human therapies than approaches tested in other organisms. Comparison of the canine RAGE protein with the described mouse (GenBank accession no. AAH61182), rat (GenBank accession no. AAA42027) and bovine (GenBank accession no. Fig. 3. Comparison of the canine, human, mouse, rat, and bovine RAGE proteins. The amino acid differences are shown as bold letters. ARTICLE IN PRESS H. Murua Escobar et al. / Gene xx (2005) xxx–xxx NP_776407) molecules showed identities of 73.5%, 72.8% and 77.7%, respectively (Fig. 3). The canine RAGE protein sequence was submitted to the NCBI database with GenBank accession no. AAX38183. 3.6. Canine RAGE expression analysis To elucidate the expression patterns of the canine RAGE gene, a canine Northern blot was performed using RNA from canine liver, kidney, heart, testis, lung, muscle, pancreas and spleen tissue samples as well as RNA from different canine cell lines and hybridised with a 32P-labelled canine RAGE cDNA probe. Except for the lung tissue showing a clear approx. 1.4 kb signal, none of the samples revealed a distinct signal. After stripping and rehybridisation with a canine GAPDH probe, all samples revealed signals corresponding to approx. 1.3 kb demonstrating intact RNA (Fig. 4). For verification, performed RT–PCR using the same RNA revealed, additionally to a clear lung signal, very weak signals in spleen and heart tissue (data not shown). These results are in accordance to the gene expression pattern seen in humans. However, as mentioned before, aberrant transcripts like those found in humans could not be detected by RT–PCR. Lately, deregulation of the RAGE gene had been associated with various cancers and diseases e.g. upregulation of the gene has been shown to be associated with prostate cancer development, human heart dysfunction, and inhibition of liver regeneration (Simm et al., 2004; Cataldegirmen et al., 2005; Ishiguro et al., 2005), while down-regulation of the RAGE gene has been shown to support non-small-cell lung carcinomas (Bartling et al., 2005). Additionally, RAGE gene expression has been associated with malignant potential of colorectal adenomas (Sasahira et al., 2005). As far as we know, in canine neoplasias, no RAGE expression analyses have been carried out. Considering the mentioned characteristics of canine neoplasias as model for human cancer, expression analyses done in canine tumours could be of significant value to further elucidate the role of RAGE in tumour and disease development. 4. Conclusions As reviewed lately by Khanna and Hunter (2005), the dog is significantly helping to reveal characteristics of human tumour biology especially of metastasis due to the described similarities of the naturally occurring malignancies in both species. Accordingly, the development of new therapeutic approaches in animal model systems will be facilitated by the ongoing characterisation of model species specific molecular targets. Especially in points of transferability, the newly gained knowledge will be of great value. Due to the significant role of the RAGE–HMGB1 protein complex in cancer metastasis and the described various other diseases, the complete characterisation of the canine RAGE–HMGB1 protein complex will serve as basis for future clinical studies. 7 References Bartling, B., Hofmann, H.S., Weigle, B., Silber, R.E., Simm, A., 2005. Downregulation of the receptor for advanced glycation end-products (RAGE) supports non-small cell lung carcinoma. Carcinogenesis 26 (2), 293–301. Breen, M., Thomas, R., Binns, M.M., Carter, N.P., Langford, C.F., 1999. Reciprocal chromosome painting reveals detailed regions of conserved synteny between the karyotypes of the domestic dog (Canis familiaris) and human. Genomics 61, 145–155. Cataldegirmen, G., et al., 2005. RAGE limits regeneration after massive liver injury by coordinated suppression of TNF-alpha and NF-kappaB. J. Exp. Med. 201 (3), 473–484. Fischer, P., Holmes, N., Dickens, H., Thomas, R., Binns, M., Nacheva, E., 1996. The application of FISH techniques for physical mapping in the dog (Canis familiaris). Mamm. Genome 7, 37–41. Goova, M.T., et al., 2001. Blockade of receptor for advanced glycation endproducts restores effective wound healing in diabetic mice. Am. J. Pathol. 159, 513–525. Hofmann, M.A., et al., 1999. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97, 889–901. Hofmann, M.A., et al., 2002. RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response. Genes Immun. 3, 123–135. Hudson, B.I., Stickland, M.H., Grant, P.J., 1998. Identification of polymorphisms in the receptor for advanced glycation end products (RAGE) gene: prevalence in type 2 diabetes and ethnic groups. Diabetes 47, 1155–1157. Hudson, B.I., Stickland, M.H., Futers, T.S., Grant, P.J., 2001. Effects of novel polymorphisms in the rage gene on transcriptional regulation and their association with diabetic retinopathy. Diabetes 50, 1505–1511. Huttunen, H.J., Rauvala, H., 2004. Amphoterin as an extracellular regulator of cell motility: from discovery to disease. Intern. Med. 255 (3), 351–366. Huttunen, H.J., Fages, C., Kuja-Panula, J., Ridley, A.J., Rauvala, H., 2002. Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res. 62, 4805–4811. Ishiguro, H., Nakaigawa, N., Miyoshi, Y., Fujinami, K., Kubota, Y., Uemura, H., 2005. Receptor for advanced glycation end products (RAGE) and its ligand, amphoterin are overexpressed and associated with prostate cancer development. Prostate 64 (1), 92–100 (Jun 15). Kankova, K., Vasku, A., Hajek, D., Zahejsky, J., Vasku, V., 1999. Association of G82S polymorphism in the RAGE gene with skin complications in type 2 diabetes. Diabetes Care 22, 1745. Kankova, K., et al., 2001. Polymorphisms 1704G/T and 2184A/G in the RAGE gene are associated with antioxidant status. Metabolism 50, 1152–1160. Khanna, C., Hunter, K., 2005. Modeling metastasis in vivo. Carcinogenesis 26 (3), 513–523. Knapp, D.W., Waters, D.J., 1997. Naturally occurring cancer in pet dogs: important models for developing improved cancer therapy for humans. Mol. Med. Today 3 (1), 8–11. Liu, L., Xiang, K., 1999. RAGE Gly82Ser polymorphism in diabetic microangiopathy. Diabetes Care 22, 646. Lue, L.F., et al., 2001. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Exp. Neurol. 171, 29–45. MacEwen, E.G., 1990. Spontaneous tumours in dogs and cats: models for the study of cancer biology and treatment. Cancer Metastasis Rev. 9, 125–136. Malherbe, P., et al., 1999. cDNA cloning of a novel secreted isoform of the human receptor for advanced glycation end products and characterization of cells co-expressing cell surface scavenger receptors and Swedish mutant amyloid precursor protein. Brain Res. Mol. Brain Res. 71, 159–170. Murua Escobar, H., et al., 2003. Molecular characterization of the canine HMGB1. Cytogenet. Genome Res. 101 (1), 33–38. Neeper, M., et al., 1992. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem. 267, 14998–15004. ARTICLE IN PRESS 8 H. Murua Escobar et al. / Gene xx (2005) xxx–xxx Park, L., et al., 1998. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat. Med. 4, 1025–1031. Patterson, D.F., Haskins, M.E., Jezyk, P.F., 1982. Models of human genetic disease in domestic animals. Adv. Hum. Genet. 12, 263–339. Poirier, O., et al., 2001. Polymorphism screening of four genes encoding advanced glycation end-product putative receptors. Association study with nephropathy in type 1 diabetic patients. Diabetes 50, 1214–1218. Reimann, N., et al., 1996. An extended nomenclature of the canine. Cytogenet. Cell Genet. 73, 140–144. Sasahira, T., Akama, Y., Fujii, K., Kuniyasu, H., 2005. Expression of receptor for advanced glycation end products and HMGB1/amphoterin in colorectal adenomas. Virchows Arch. 446 (4), 411–415. Schlueter, C., Hauke, S., Flohr, A.M., Rogalla, P., Bullerdiek, J., 2003. Tissuespecific expression patterns of the RAGE receptor and its soluble forms—a result of regulated alternative splicing? Biochim. Biophys. Acta 1630 (1), 1–6. Schmidt, A.M., 2002. RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response. Genes Immun. 3, 123–135. Schmidt, A.M., Yan, S.D., Yan, S.F., Stern, D.M., 2001. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J. Clin. Invest. 108, 949–955. Simm, A., Casselmann, C., Schubert, A., Hofmann, S., Reimann, A., Silber, R. E., 2004. Age associated changes of AGE-receptor expression: RAGE upregulation is associated with human heart dysfunction. Exp. Gerontol. 39 (3), 407–413. Taguchi, A., et al., 2000. Blockade of RAGE–amphoterin signalling suppresses tumour growth and metastases. Nature 405, 354–360. Vasku, V., et al., 2002. Gene polymorphisms (G82S, 1704G/T, 2184A/G and 2245G/A) of the receptor of advanced glycation end products (RAGE) in plaque psoriasis. Arch. Dermatol. Res. 294, 127–130 (JID-8000462). Withrow, S.J., MacEwen, E.G., 1989. Clinical Veterinary Oncology. J.B. Lippincott, Co. Withrow, S.J., MacEwen, E.G., 2001. Small Animal Clinical Oncology. W.B. Saunders Company. Yan, S.D., et al., 1997. Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 94, 5296–5301. Yang, F., et al., 1999. A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62, 189–202. X. Absence of ras-gene hot-spot mutations in canine fibrosarcomas and melanomas Murua Escobar H, Günther K, Richter A, Soller JT, Winkler S, Nolte I, Bullerdiek J. Anticancer Res. 2004 Sep-Oct;24(5A):3027-8. Eigenanteil: • Erstellen der caninen Gewebebank ANTICANCER RESEARCH 24: xxx-xxx (2004) No: 5085-E Please mark the appropriate section for this paper ■ Experimental ■ Clinical ■ Epidemiological Absence of Ras-gene Hot-spot Mutations in Canine Fibrosarcomas and Melanomas HUGO MURUA ESCOBAR1,2, KATHRIN GÜNTHER1, ANDREAS RICHTER1, JAN T. SOLLER1, SUSANNE WINKLER1, INGO NOLTE2 and JÖRN BULLERDIEK1 1Centre for Human Genetics, University of Bremen, Leobener Strasse ZHG, 28359 Bremen; 2Small Animal Clinic, School of Veterinary Medicine, Bischofsholer Damm 15, 30173 Hanover, Germany Abstract. Point mutations within ras proto-oncogenes, particularly within the mutational hot-spot codons 12, 13 and 61, are frequently detected in human malignancies and in different types of experimentally-induced tumours in animals. So far little is known about ras mutations in naturally occurring canine fibrosarcomas or K-ras mutations in canine melanomas. To elucidate whether ras mutations exist in these naturally occurring tumours in dogs, in the present study we screened 13 canine fibrosarcomas, 2 feline fibrosarcomas and 11 canine melanomas for point mutations, particularly within the mutational hot-spots, making this the first study to investigate a large number of canine fibrosarcomas. None of the samples showed a K- or N-ras hot spot mutation. Thus, our data strongly suggest that ras mutations at the hot-spot loci are very rare and do not play a major role in the pathogenesis of the spontaneously occurring canine tumours investigated. Dogs and humans often share the same genetic pathways in the development of cancer, as has been described in the literature. Point mutations affecting genes of the ras- family are assumed to be among the most important alterations in human tumourigenesis (1). Ras proteins play an important role as signal transmitters. The binding of growth factors activates the ras protein and thus initiates cell division. Mutations in ras genes are assumed to lead to enduring activation of pathways that stimulate cell growth, which results in uncontrolled cell division (2). Especially mutations in K-ras have been described in human pancreatic cancers and tumours of the gastrointestinal tract, as well as in tumours of the skin (3-5). K-ras screening for hot-spot point mutations in dogs has been described in different types of lung cancer, pancreatic cancer Correspondence to: Dr. J. Bullerdiek, Centre for Human Genetics, University of Bremen, Leobener Strasse ZHG, 28359 Bremen, Germany. Tel: +49-421-218 4239, Fax: +49-421-218 4239, e-mail: [email protected] Key Words: Canis familiaris, fibrosarcoma, hot-spot mutations, melanoma, ras genes. 0250-7005/2004 $2.00+.40 and breast cancer (6-12), showing that the canine gene is also affected by the typical ras mutations observed in humans but at a much lower ratio. Guerrero et al. (13) were able to induce fibrosarcomas in nude mice by subcutaneously injecting transfected fibroblasts with K-ras point mutations affecting codon 12. So far little is known about ras mutations in canine fibrosarcomas. Just one report of a ras mutation screening including three canine fibrosarcoma samples has been described (11). There is also a lack of studies about K-ras mutations in canine melanomas are missing. In canine melanomas virtually no hot-spot N-ras mutations were described with one exception: Mayr et al. (14) found 2 out of 16 melanomas to be affected by mutations in codon 61. In the present study, we screened 13 canine fibrosarcomas, 2 feline fibrosarcomas and 11 canine melanomas for point mutations, particularly within the mutational hot-spot codons of the K-ras and N-ras genes, to analyze whether these changes could be detected in these naturally occurring tumours. Materials and Methods The tissues used in this study were provided by the Small Animal Clinic, School of Veterinary Medicine, Hanover, Germany. Thirteen canine fibrosarcoma, 2 feline fibrosarcoma and 11 canine melanoma samples were taken and used for analyses. The breeds represented were German Shorthaired Pointer, Irish Terrier, Fox Terrier, Schnauzer, Kuvasz, Berger de Brie, German Shepherd, Standard Poodle, Irish Red Setter, Rottweiler, Cairn Terrier, Beagle and canine and feline crossbreed. The DNA of the twenty-six canine and feline fibrosarcoma and melanoma samples (10 - 25 mg each) was isolated using QIAamp DNA Kit (QIAGEN, Hilden, Germany) following the manufacturer’s tissue protocol. The two feline samples served as internal controls, since they show specific point mutations compared to dogs (15). The PCRs for the screening of the hot-spot exons were performed using the following primer pairs. K-ras: primer pair KEx1up / KEx1lo (5’ cgatataaggcctgctgaaa 3’ / 5’ tgtaggatcatattcatcca 3’) and primer pair KEx2up / KEx2lo (5’ caggattcctacaggaaaca 3’ / 5’ aacccacctataatggtgaa 3’). N-ras: primer pair NEx1up / NEx1lo (5’ gactgagtacaaactggtgg 3’ / 5’ gggcctcacctctatggtg 3’) and primer pair NEx2up / NEx2lo (5’ tcttaccgaaaacaggtggttatag 3’ / 5’ gtcctcatgtattggtctctcatggcac3’). The PCR products were directly sequenced in the forward and reverse 3 ANTICANCER RESEARCH 24: xxx-xxx (2004) Table I. Detected gene base substitutions in N-ras exon 1 und K-ras exons 1 and 2. Gene /Exon Sample Codon Substitution Amino Acid Exchange K-ras Exon 1 K-ras Exon 2 No AA exchange (Leu) Leu→Stop Gln→Leu Gly→Glu Gly→Glu Gln→Leu N-ras Exon 1 3 3 13 14 3 24 23 53 70 48 10 22 CTA→TTA TTG→TAG CAG→CTG GGA→GAA GGA→GAA CAG→CTG direction and additionally cloned in pGEM-T Easy Vector System (Promega, Madison, USA) and sequenced once more. The DNA sequences and the homology alignments were created with various sequences from the NCBI database (accession numbers CFU62093, X02751, U62094, S42999, M54968, S64261). In case of single nucleotide exchanges being present, the procedures were repeated for verification. Results Four of the twenty-six analysed samples showed nucleotide exchanges in the screened canine exons. None of the exchanges found affected the ras hot-spot codons 12, 13 and 61. One fibrosarcoma sample (Berger de Brie) showed three changes affecting K-ras exon 1 codon 23 (CTA→TTA, no amino acid exchange), exon 2 codon 53 (TTG→TAG, Leu→stop codon) and N-ras exon 1 codon 10 (GGA→GAA, Gly→Glu). Two other fibrosarcomas (Kuvasz and Poodle) each showed one nucleotide exchange in K-ras exon 2 affecting codon 48 (GGA→GAA, Gly→Glu) and codon 70 (CAG→CTG, Gln→Leu), respectively. N-ras exon 1 codon 22 (CAG→CTG, Gln→Leu) was affected in a melanoma sample (crossbreed) (Table I). The screening of N-ras exon 2 revealed no nucleotide exchanges among the canine sequences. The described nucleotide differences between the canine and feline sequences (15) in N-ras exon 2 and K-ras exon 2 were detected. Discussion Our data strongly suggest that K- and N-ras mutations at the hot-spot loci are very rare and do not play a major role in the pathogenesis of the spontaneously occurring canine tumours investigated. These results are in accordance with the sparse data available for canine melanomas (twenty-four samples) and fibrosarcomas (three samples) (11, 14). In both studies a total of three mutations at the hot-spot codons could be detected. Compared to the data obtained from different studies in humans that show up to 30% of lung tumours, 90% of pancreatic tumours and 50% of tumours of the gastrointestinal tract to be affected by specific point mutations in the ras gene hot-spot codons (16, 17), the data seen in dogs apparently indicate that ras mutations do not play a major role in the pathogenesis of these spontaneously occurring canine tumours. 4 References 1 Arber N: Janus faces of ras: anti or pro-apoptotic? Apoptosis 4(5): 383-388, 1999. 2 Park M: Genetic abnormalities of cell growth, In: Scriver et al: The Metabolic and Molecular Basis of Inherited Disease, 7 edn. New York: McGraw-Hill; 1995. 3 Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N and Perucho M: Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53(4): 549-554, 1988. 4 Belly RT, Rosenblatt JD, Steinmann M, Toner J, Sun J, Shehadi J, Peacock JL, Raubertas RF, Jani N and Ryan CK: Detection of mutated K12-ras in histologically negative lymph nodes as an indicator of poor prognosis in stage II colorectal cancer. Clin Colorectal Cancer 1(2): 110-116, 2001. 5 Shukla VK, Hughes DC, Hughes LE, McCormick F and Padua RA: ras mutations in human melanotic lesions: K-ras activation is a frequent and early event in melanoma development. Oncogene Res 5(2): 121-127, 1989. 6 Kraegel SA, Gumerlock PH, Dungworth DL, Oreffo VI and Madewell BR: K-ras activation in non-small cell lung cancer in the dog. Cancer Res 52(17): 4724-4727, 1992. 7 Castagnaro M: [Ras gene analysis in mammary tumors of dogs by means of PCR-SSCP and direct genomic analysis]. Ann Ist Super Sanita 31(3): 337-341, 1995. 8 Tierney LA, Hahn FF and Lechner JF: p53, erbB-2 and K-ras gene alterations are rare in spontaneous and plutonium-239-induced canine lung neoplasia. Radiat Res 145(2): 181-187, 1996. 9 Griffey SM, Kraegel SA and Madewell BR: Rapid detection of Kras gene mutations in canine lung cancer using single-strand conformational polymorphism analysis. Carcinogenesis 19(6): 959963, 1998. 10 Griffey SM, Kraegel SA, Weller RE, Watson CR and Madewell BR: K-ras mutations in 239PuO2 canine lung neoplasms. Cancer Lett 132(1-2): 1-5, 1998. 11 Watzinger F, Mayr B, Gamerith R, Vetter C and Lion T: Comparative analysis of ras proto-oncogene mutations in selected mammalian tumors. Mol Carcinog 2001, 30(4):190-198. 12 Mayr B, Schaffner G, Reifinger M: K-ras mutations in canine pancreatic cancers. Vet Rec 153(3): 87-89, 2003. 13 Guerrero S, Figueras A, Casanova I, Farre L, Lloveras B, Capella G, Trias M and Mangues R: Codon 12 and codon 13 mutations at the K-ras gene induce different soft tissue sarcoma types in nude mice. Faseb J 16(12): 1642-1644, 2002. 14 Mayr B, Schaffner G, Reifinger M, Zwetkoff S and Prodinger B: N-ras mutations in canine malignant melanomas. Vet J 165(2): 169-171, 2003. 15 Watzinger F, Mayr B, Haring E and Lion T: High sequence similarity within ras exons 1 and 2 in different mammalian species and phylogenetic divergence of the ras gene family. Mamm Genome 9(3): 214-219, 1998. 16 Knapp DW and Waters DJ: Naturally occurring cancer in pet dogs: important models for developing improved cancer therapy for humans. Mol Med Today 3(1): 8-11, 1997. 17 Bos JL: ras oncogenes in human cancer: a review. Cancer Res 49(17): 4682-4689, 1989. Received March 22, 2004 Accepted June 14, 2004 XI. Ras gene hot-spot mutations in canine neoplasias Richter A, Murua Escobar H, Gunther K, Soller JT, Winkler S, Nolte I,. Bullerdiek J. J Hered. 2005 Nov-Dec;96(7):764-5. Eigenanteil: • Erstellen der caninen Gewebebank Journal of Heredity 2005:96(7):764–765 doi:10.1093/jhered/esi121 Advance Access publication October 26, 2005 ª The American Genetic Association. 2005. All rights reserved. For permissions, please email: [email protected]. RAS Gene Hot-Spot Mutations in Canine Neoplasias A. RICHTER, H. MURUA ESCOBAR, K. GÜNTHER, J. T. SOLLER, S. WINKLER, I. NOLTE, J. BULLERDIEK AND From the Centre for Human Genetics, University of Bremen, Leobener Strasse ZHG, 28359 Bremen, Germany (Richter, Murua Escobar, Günther, Soller, Winkler, and Bullerdiek); and Small Animal Clinic, School of Veterinary Medicine, Bischofsholer Damm 15, 30173 Hanover, Germany (Murua Escobar and Nolte). Address correspondence to Dr. Jörn Bullerdiek at the address above, or e-mail: [email protected]. Abstract Point mutations in the cellular homologues HRAS, KRAS2, and NRAS of the viral Harvey and Kirsten rat sarcoma virus oncogenes are commonly involved in the onset of malignancies in humans and other species such as dog, mouse, and rat. Most often, three particular hot-spot codons are affected, with one amino acid exchange being sufficient for the induction of tumor growth. While RAS genes have been shown to play an important role in canine tumors such as non-small lung cell carcinomas, data about RAS mutations in canine fibrosarcomas as well as KRAS2 mutations in canine melanomas is sparse. To increase the number of tumors examined, we recently screened 13 canine fibrosarcomas and 11 canine melanomas for point mutations, particularly within the mutational hot spots. The results were compared to the already existing data from other studies about these tumors in dogs. A family of genes often involved in human tumors are the well-characterized RAS genes, which comprise HRAS, KRAS2, and NRAS, coding for closely related, small, 189 amino acid, 21 kDa, membrane-bound, intracellular proteins. The human cellular HRAS and KRAS2 genes were identified to be homologues of the Harvey and Kirsten rat sarcoma virus oncogenes v-Ha-ras and v-Ki-ras2, respectively (Der et al. 1982; Parada et al. 1982), with NRAS being only weakly homologous to both v-Ha-ras and v-Ki-ras2 (a v-N-ras gene has not been described) (Shimizu et al. 1983). Ras genes have been found in a variety of mammals, showing high sequence similarity across species, with sequence variation most often not affecting the amino acid sequence of the encoded proteins (Watzinger et al. 1998). The RAS proteins function in relaying mitogenic growth signals into the cytoplasm and nucleus, influencing proliferation, differentiation, transformation, and apoptosis of cells (Watzinger and Lion 1999). Regulation of RAS protein activity occurs through intrinsic GTPase activity in the wild-type RAS, which switches the protein from an active (guanosine triphosphate [GTP]-bound) to an inactive (guanosine diphosphate [GDP]-bound) state. Point mutations in a number of particular hot-spot codons in exon 1 (mostly codons 12 and 13) and exon 2 (mostly codon 61) lead to diminished GTPase activity, bringing about constant signal transduction and facilitating uncontrolled cell division and tumor growth (Park 1995). 764 Alterations in RAS genes are among the most important incidents in the onset of malignancies in humans (Arber 1999; Hahn et al. 1994), and have been described in dog, mouse, and rat, among others. Studies indicate that in man, up to 13% of brain tumors, 30% of lung tumors, 30% of liver tumors, 30% of acute myelogenous leukemia, 53% of follicular and 60% of undifferentiated papillary thyroid tumors, 50% of tumors of the gastrointestinal tract, and 90% of pancreatic tumors are affected by a mutation in the hot-spot codons of one of the three known RAS genes (Bos 1989; Knapp and Waters 1997; Spandidos et al. 2002; Tang et al. 2002). Studies about the involvement of RAS genes in canine tumors have been performed by a number of groups investigating several types of tumors. Gumerlock et al. (1989) described the formation of activated NRAS through the substitution of glycine by aspartartic acid at position 12 of the protein in a case of a gamma radiation-induced canine acute nonlymphocytic leukemia. KRAS2 activation was observed in non-small cell lung cancer of the dog (Kraegel et al. 1992). Out of 21 tumors, which included adenocarcinomas, adenosquamous carcinomas, and one large cell carcinoma, 5 were shown to be affected by mutations mostly of codon 12 of the KRAS2 gene, being similar to the overall frequency of KRAS2 involvement in non-small cell lung cancer in man (25%). This was confirmed by a later study investigating a wide range of Richter et al. RAS Gene Hot-Spot Mutations in Canine Neoplasias canine lung tumors where 19 out of 117 tumors (16%) showed KRAS2 alterations in the hot-spot codons (Griffey et al. 1998). On the other hand, NRAS was shown to be infrequently activated in canine malignant lymphomas, with only 1 from 28 examined cases showing an amino acid substitution from glycine to aspartate at position 13 (Edwards et al. 1993). Similar to malignant lymphomas, RAS gene mutations at the hot-spot loci were shown to be rarely or not involved in canine mammary tumors (Castagnaro 1995; Mayr et al. 1998). Furthermore, Watzinger et al. (1998) have shown in a variety of canine tumors that RAS genes are, compared to humans, rather infrequently involved in the onset of malignancies. In that study, only three fibrosarcomas were included, none of which showed RAS gene alterations. Since Guerrero et al. (2002) showed that fibrosarcomas can be induced in nude mice by subcutaneously injecting transfected fibroblasts with KRAS2 point mutations in codon 12, we recently screened a larger number of 13 canine fibrosarcomas for KRAS2 and NRAS mutations in the particular hot-spot codons. In addition, we also recently screened 11 canine melanomas for KRAS2 and NRAS mutations (Murua Escobar et al. 2004). However, none of the screened tumors showed the characteristic RAS alterations in the hot-spot codons. A low rate of NRAS involvement in canine melanomas has been shown before, with 2 of 16 tumors showing NRAS mutations (Mayr et al. 2003). In summary, the data from the available studies on canine fibrosarcomas and melanomas (Mayr et al. 2003; Murua Escobar et al. 2004; Watzinger et al. 2001) strongly indicate that KRAS2 and NRAS mutations at the hot-spot loci are essentially very rare in the investigated canine tumor entities. To the best of our knowledge, from the total number of 32 screened canine fibrosarcomas and 17 screened canine melanomas, only 2 melanoma samples have been found to have exon 61 of the NRAS gene affected. For KRAS2, no mutations in the hot-spot codons have been found. However, to allow for a comparison of these canine tumors with research results from, for example, man and mouse, with vast amounts of data being available, a larger number of canine tumors will have to be screened in the future, as it is still too early to draw conclusions from the relatively small number of canine tumors examined. genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci USA 79:3637–3640. Edwards MD, Pazzi KA, Gumerlock PH, and Madewell BR, 1993. c-N-ras is activated infrequently in canine malignant lymphoma. Toxicol Pathol 21:288–291. Griffey SM, Kraegel SA, and Madewell BR, 1998. Rapid detection of K-ras gene mutations in canine lung cancer using single-strand conformational polymorphism analysis. Carcinogenesis 19:959–963. Guerrero S, Figueras A, Casanova I, Farre L, Lloveras B, Capella G, Trias M, and Mangues R, 2002. Codon 12 and codon 13 mutations at the K-ras gene induce different soft tissue sarcoma types in nude mice. FASEB J 16: 1642–1644. Gumerlock PH, Meyers FJ, Foster BA, Kawakami TG, and deVere White RW, 1989. Activated c-N-ras in radiation-induced acute nonlymphocytic leukemia: twelfth codon aspartic acid. Radiat Res 117:198–206. Hahn KA, Bravo L, Adams WH, and Frazier DL, 1994. Naturally occurring tumors in dogs as comparative models for cancer therapy research. In Vivo 8:133–143. Knapp DW and Waters DJ, 1997. Naturally occurring cancer in pet dogs: important models for developing improved cancer therapy for humans. Mol Med Today 3:8–11. Kraegel SA, Gumerlock PH, Dungworth DL, Oreffo VI, and Madewell BR, 1992. K-ras activation in non-small cell lung cancer in the dog. Cancer Res 52:4724–4727. Mayr B, Dressler A, Reifinger M, and Feil C, 1998. Cytogenetic alterations in eight mammary tumors and tumor-suppressor gene p53 mutation in one mammary tumor from dogs. Am J Vet Res 59:69–78. Mayr B, Schaffner G, Reifinger M, Zwetkoff S, and Prodinger B, 2003. N-ras mutations in canine malignant melanomas. Vet J 165:169–171. Murua Escobar H, Gunther K, Richter A, Soller JT, Winkler S, Nolte I, and Bullerdiek J, 2004. Absence of ras-gene hot-spot mutations in canine fibrosarcomas and melanomas. Anticancer Res 24:3027–3028. Parada LF, Tabin CJ, Shih C, and Weinberg RA, 1982. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297:474–478. Park M, 1995. Genetic abnormalities of cell growth. In: The metabolic and molecular basis of inherited disease, 7th ed (Scriver CR, Beaudet AL, Sly WS, and Valle D, eds). New York: McGraw-Hill. Shimizu K, Goldfarb M, Suard Y, Perucho M, Li Y, Kamata T, Feramisco J, Stavnezer E, Fogh J, and Wigler MH, 1983. Three human transforming genes are related to the viral ras oncogenes. Proc Natl Acad Sci USA 80: 2112–2116. Acknowledgments Spandidos DA, Sourvinos G, Tsatsanis C, and Zafiropoulos A, 2002. Normal ras genes: their onco-suppressor and pro-apoptotic functions (review). Int J Oncol 21:237–241. This article was presented at the 2nd International Conference on the ‘‘Advances in Canine and Feline Genomics: Comparative Genome Anatomy and Genetic Disease,’’ Universiteit Utrecht, Utrecht, The Netherlands, October 14–16, 2004. Tang MS, Pfeifer GP, Denissenko MF, Feng Z, Hu W, Pao A, Zheng Y, Zheng JB, Li H, and Chen JX, 2002. Mapping polycyclic aromatic hydrocarbon and aromatic amine-induced DNA damage in cancer-related genes at the sequence level. Int J Hyg Environ Health 205:103–113. References Watzinger F and Lion T, 1999. RAS family. Atlas of Genetics and Cytogenetics in Oncology and Haematology (last modified March 1999) http:// www.infobiogen.fr/services/chromcancer/Deep/ras.html. Arber N, 1999. Janus faces of ras: anti or pro-apoptotic? Apoptosis 4:383–388. Bos JL, 1989. Ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689. Watzinger F, Mayr B, Gamerith R, Vetter C, and Lion T, 2001. Comparative analysis of ras proto-oncogene mutations in selected mammalian tumors. Mol Carcinog 30:190–198. Castagnaro M, 1995. [Ras gene analysis in mammary tumors of dogs by means of PCR-SSCP and direct genomic analysis]. Ann 1st Super Sanita 31:337–341. Watzinger F, Mayr B, Haring E, and Lion T, 1998. High sequence similarity within ras exons 1 and 2 in different mammalian species and phylogenetic divergence of the ras gene family. Mamm Genome 9:214–219. Der CJ, Krontiris TG, and Cooper GM, 1982. Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras Corresponding Editor: Elaine Ostrander 765 XII. Expression pattern of the HMGB1 gene in sarcomas of the dog. Meyer B, Murua Escobar H, Hauke S, Richter A, Winkler S, Rogalla P, Flohr AM, Bullerdiek J, Nolte I. Anticancer Res. 2004 Mar-Apr;24(2B):707-10. Eigenanteil: • Erstellen der caninen Gewebebank ANTICANCER RESEARCH 24: 707-710 (2004) Expression Pattern of the HMGB1 Gene in Sarcomas of the Dog BRITTA MEYER1, HUGO MURUA ESCOBAR2,3, SVEN HAUKE1, ANDREAS RICHTER1, SUSANNE WINKLER3, PIERE ROGALLA1, ALJOSCHA M. FLOHR3, JÖRN BULLERDIEK3 and INGO NOLTE2 1alcedo biotech GmbH, Leobener Strasse ZHG, D-28359 Bremen; for Small Animals, School of Veterinary Medicine, Bischofsholer Damm 15, D-30173 Hannover; 3Center for Human Genetics, University of Bremen, Leobener Strasse ZHG, D-28359 Bremen, Germany 2Clinic Abstract. Background: The human high mobility group protein B1 (HMGB1) has attracted considerable interest among oncologists because it sensitises cancer cells to the anticancer drug cisplatin by shielding cisplatin-DNA adducts from nucleotide excision repair. Materials and Methods: Since cisplatin is the cornerstone of adjuvant systemic therapy for osteosarcomas, in both humans and dogs, the expression pattern of the HMGB1 gene in seven canine sarcomas was investigated by Northern blot analysis and semi-quantitative RT-PCR. Results: A strong intertumoural variation of HMGB1 expression was detected by Northern blot analysis and confirmed by the semi-quantitative RT-PCR established herein. Conclusion: The observed variations of HMGB1 expression in canine sarcomas emphasises the role of HMGB1 as a potential marker of clinical interest as its expression level may predict the clinical outcome of therapies based on cisplatin. The semi-quantitative RT-PCR established allows a quick and convenient determination of the HMGB1 expression level as necessary for clinical applications. are chromatin-associated non-histone proteins characterised by low molecular weight, acid-solubility and a high content of charged amino acids. According to their molecular size, sequence and DNA binding capacity, three families have been distinguished: HMGB (formerly HMG1/2), HMGN (formerly HMG14/17) and HMGA (formerly HMGI(Y)) (2,3). The HMGB family, comprising HMGB1, HMGB2 and HMGB3, is characterised by its two DNA-binding domains called the "HMG-Box" (4,5). One of the best analysed members of the group of HMGBox proteins is HMGB1 (synonymously known as HMG1 or amphoterin). Both DNA-binding domains selectively bind with a very high affinity to major cisplatin-DNA adducts (68) and interaction between HMGB1 and cisplatin-damaged DNA contributes to its biological activity, as it sensitises cancer cells to cisplatin by shielding its major DNA adducts from nucleotide excision repair (9,10). Interestingly, HMGB1 gene expression can be induced by oestrogens in breast cancer cells probably due to an upregulation of the gene, so that HMGB1 itself can be considered an oestrogen-responsive gene (11). Recently, we were able to explain this observation by the identification of two oestrogen responsive elements within the first intron of HMGB1 (12). He et al. (10) have shown that, in oestrogen receptor-positive human breast cancer cells, oestrogen can significantly increase the effect of cisplatin by causing an overexpression of HMGB1. This finding has led to the conclusion that oestrogen treatment prior to cisplatin therapy may sensitise the cancer cells against that drug. Accordingly, a clinical trial for the treatment of gynaecological tumours with cisplatin has already been approved by the Food and Drug Administration (FDA) (10). On the other hand, the former experiment clearly shows that the quantitation of the intratumoural HMGB1 expression level may be of high impact for a cisplatin/carboplatin therapy for two reasons. Firstly, it may predict the clinical outcome of the therapy; secondly, it may influence the therapy protocol as, for example, tumours AR The related platinum compounds cisplatin and carboplatin are widely used antitumour drugs for the treatment of a number of malignancies. The main cytotoxic effect of cisplatin/carboplatin is the formation of cisplatin/carboplatinDNA adducts characterised by intrastrand cross-links and significantly bended and distorted DNA. Gel mobility shift assays revealed a selective affinity of high mobility group (HMG) proteins for cisplatin-DNA adducts (1). The recognition of cisplatin damage by HMG is assumed to mediate cisplatin cytotoxicity. HMG proteins Correspondence to: Prof. Dr. Ingo Nolte, Clinic for Small Animals, School of Veterinary Medicine, Bischofsholer Damm 15, D-30173 Hannover, Germany. Tel: +49-511-8567251, Fax: +49-5118567686, e-mail: [email protected] Key Words: Osteosarcoma, cisplatin, HMGB1 expression, semiquantitative RT-PCR. 0250-7005/2004 $2.00+.40 707 ANTICANCER RESEARCH 24: 707-710 (2004) Table I. Sarcoma samples analysed in this study. Sarcoma sample OS1 OS2 OS3 OS4 OS5 FS LMS 1n.r. Tumour Osteosarcoma Osteosarcoma Osteosarcoma Osteosarcoma Osteosarcoma Fibrosarcoma Leiomyosarcoma Breed Sex Rottweiler Crossbreed German Shepherd Crossbreed German Shepherd Bobtail Crossbreed f f m m m m f Age 1 yr 4 yrs 6 yrs 9 yrs n.r.1 5 yrs 10 yrs = not reported TCTTCCTCCTCCTCCTCATCC 3’). A 445 bp cDNA probe detecting the 1.3 kb transcript of the canine GAPDH gene was amplified by PCR with the primer set GAPDH2up (5’ GTGAAGGTCGGAGTCAAC 3’) and GAPDHdog5do (5’ AGGAGGCATTGCTGACAAT 3’). Probes were labelled with 50 ÌCi(·-32P)dCTP (Amersham Biosciences) using the Megaprime Labelling Kit (Amersham Biosciences) for random-primed labelling (14). Hybridisation was performed for 3 h at 68ÆC in 10 ml of PerfectHyb Plus Hybridisation Buffer (Sigma-Aldrich, Saint Louis, USA). The membranes were washed for 5 min with low stringency at RT in 2x SSC, 0.1% SDS and twice for 20 min with high stringency at 68ÆC in 0.5x SSC, 0.1% SDS. Signals were visualised using a Storm PhosphorImager (Molecular Dynamics, Sunnyvale, USA). Quantitation of the transcripts of HMGB1 and GAPDH was performed using the software program ImageQuant (Molecular Dynamics). showing a high HMGB1 expression level may be treated with a lower amount of this antitumour drug. Due to the close similarities of numerous canine diseases to their human counterparts, the role of the dog as a model organism for therapeutic approaches is justified. Furthermore, genes and proteins known to be of high diagnostic and therapeutic impact in man can also be considered to play an important role in the dog. Osteosarcomas and several types of carcinomas belong to the group of canine malignancies often treated with cisplatin or carboplatin. So far no data are available analysing the expression pattern of the HMGB1 gene in canine sarcomas. Thus, in this study we analysed the HMGB1 expression level in five canine osteosarcomas, one fibrosarcoma and one leiomyosarcoma by Northern blot experiments. Based on the observed strong intertumoural variation of HMGB1 expression, we further established a quick RT-PCR-based diagnostic system for future studies. Semi-quantitative RT-PCR. cDNA synthesis was performed using primer AP2 (5’ AAGGATCCGTCGACATCT(17) 3’) with 500 ng of mRNA with SuperScript Reverse Transcriptase (Invitrogen, Karlsruhe, Germany) according to the manufacturer’s instructions. In order to determine the expression of HMGB1 in relation to that of the housekeeping gene GAPDH, a duplex PCR was established using the primer sets ToastUP/Ex5lo and GAPDH2up/GAPDHdog5do (see above). PCR reactions were set up according to the "basic PCR protocol" of Taq DNA Polymerase (Invitrogen) using the following PCR program: initial denaturation for 5 min at 94ÆC, 28 cycles of denaturation for 30 sec at 94ÆC, primer annealing for 30 sec at 55ÆC and extension for 45 sec at 72ÆC, followed by a final extension for 10 min at 72ÆC. The appropriate number of cycles was previously determined so that for both PCR-products amplification was in the exponential range (data not shown). PCR-products were separated on a 1.2% agarose gel stained with VistraGreen (Amersham) and visualised using a Storm PhosphorImager (Molecular Dynamics). Quantitation of the PCR-fragments of HMGB1 and GAPDH was performed using the software program ImageQuant (Molecular Dynamics) measuring pixel intensities. Materials and Methods Results AR Tissue samples. All canine tumour samples used in this study (Table I) were provided by the Clinic for Small Animals, Hanover, Germany. Samples were taken during surgery, immediately frozen in liquid nitrogen and stored at -80ÆC. RNA isolation. Total RNA extraction of the canine sarcoma samples was performed according to the RNeasy midi protocol for isolation of total RNA from heart, muscle and skin tissue (Qiagen, Hilden, Germany) including a Proteinase K digest. Enrichment of poly A+ mRNA was carried out using the Oligotex mRNA kit (Qiagen). Northern blot hybridisation. For Northern blot analysis, 5 Ìg of mRNA from each sample were separated on a 1.2% denaturing agarose gel containing 0.65% formaldehyde. RNAs were transferred onto a Hybond-XL charged nylon membrane (Amersham Biosciences, Buckinghamshire, England) by capillary blot overnight. As a probe for hybridisation, a 603 bp cDNA fragment derived from the ORF (exon 2-5) of the canine HMGB1 gene was generated by PCR using the primer pair ToastUP (5’ GGGCAAAGGAGATCCTAAGAAG 3’) (13) and Ex5lo (5’ 708 Northern blot hybridisation on a series of 5 osteosarcomas, one fibrosarcoma and one leiomyosarcoma sample of the dog (Table I), using a cDNA probe derived from the ORF (Exon 2-5) of the canine HMGB1 gene, resulted in the detection of two HMGB1 mRNA transcripts of approximately 1.4 and 2.4 kb (Figure 1), which are similar to that observed in human tissues (15-17) and various canine tissues (18). In order to quantify the expression of HMGB1, the blot was rehybridised with a canine GAPDHspecific cDNA probe (Figure 1). Summing up the intensities of the 1.4 and 2.4 kb HMGB1 signals, the HMGB1-RNA / GAPDH-RNA ratios were calculated. As shown in Figure 1, the analysed canine sarcoma samples revealed a strong intertumoural variation in the relative expression of HMGB1. Values obtained by Northern blot analysis for the osteosarcoma samples varied between 0.52 and 1.31, while the fibrosarcoma and the leiomyosarcoma showed ratios of 0.73 and 0.24, respectively (Table II). Meyer et al: HMGB1 and Canine Sarcomas Figure 2. Semi-quantitative duplex RT-PCR products of HMGB1 (603 bp) and GAPDH (445 bp) using canine cDNAs of five osteosarcomas, one fibrosarcoma and one leiomyosarcoma after electrophoresis and VistraGreen staining (Amersham Biosciences). Lane 1: DNA molecular weight standard 1 Kb Plus DNA Ladder (Invitrogen). Lanes 2-6: osteosarcoma samples 1-5 (OS1-5). Lane 7: fibrosarcoma sample (FS). Lane 8: leiomyosarcoma sample (LMS). Lane 9: H2O, negative control. Figure 1. Northern blot analysis of five osteosarcomas (OS1-5), one fibrosarcoma (FS) and one leiomyosarcoma (LMS) of the dog hybridised with a HMGB1-specific cDNA probe detecting the two canine HMGB1 transcripts of approximately 1.4 and 2.4 kb (upper part). Co-hybridisation of the same membrane with a GAPDH-specific cDNA probe detecting a 1.3 kb transcript (lower part). obtained by the Northern blot hybridisation and RT-PCR analyses, mean values for each test series were calculated, set to one, and relative expression levels were determined (Table II, Figure 3). Statistical analysis using the Pearson’s Correlation Test revealed a significant correlation between the relative HMGB1 expression level obtained by Northern blot hybridisation and the level obtained by the established RT-PCR (r=0.8919, p=0.0071). Table II. Absolute and relative HMGB1-mRNA / GAPDH-mRNA ratios. Discussion Sarcoma sample Absolute HMGB1 / GAPDH-RNA ratios RT-PCR Northern blot Relative HMGB1 / GAPDH-RNA ratios1 RT-PCR Northern blot OS1 OS2 OS3 OS4 OS5 FS LMS 0.95 0.99 1.02 1.28 0.72 0.73 0.42 0.52 0.79 1.05 1.31 0.60 0.73 0.24 1.09 1.13 1.17 1.47 0.83 0.84 0.48 0.7 1.06 1.41 1.75 0.79 0.97 0.32 Mean value 0.87 0.75 1.0 1.0 1 Calculated with the mean values of the absolute HMGB1 / GAPDHRNA ratios set to one. In order to confirm the results and to develop a less timeand material-consuming technique, we established a semiquantitative duplex RT-PCR suitable for detecting intertumoural variation of HMGB1 expression in relation to expression of the house-keeping gene GAPDH (Figure 2). After quantitation of the signals obtained by RT-PCR, the HMGB1-RNA / GAPDH-RNA ratios were calculated. The values for the osteosarcoma samples varied between 0.72 and 1.28, while the ratios for the fibrosarcoma and the leiomyosarcoma were 0.73 and 0.42, respectively (Table II). In order to determine the comparability of the results Cisplatin and carboplatin are widely used anticancer drugs, manifesting their cytotoxicity to tumour cells by damaging DNA, generating a distorted DNA duplex. HMGB1 proteins selectively bind with high affinity to cisplatin or carboplatinDNA adducts and several investigations revealed that this interaction contributes to tumour death by blocking excision repair of the major cisplatin-DNA adducts (9,10). No features have been identified yet allowing clinicians to predict the response to cisplatin or carboplatin therapies in dogs with osteosarcomas at the time of diagnosis or during treatment (19). Hence, it was the aim of this study to analyse the expression level of HMGB1 in canine sarcomas. Based on Northern blot and RT-PCR analyses, we were able to show an intertumoural variation of HMGB1 expression levels among canine sarcomas. Very recently, comparable results were obtained for human breast cancer samples (17,20) and a clinical trial designed to increase HMGB1 expression by oestrogen treatment has been approved by the FDA (10). The observed intertumoural variances of HMGB1 expression in seven sarcomas analysed in this study may be of importance for therapeutic approaches based on cisplatin/carboplatin treatment as, for example, tumours showing a high HMGB1 expression level may be treated with a lower amount of this antitumour drug. However, future clinical studies including a greater number of tumours have to be performed to correlate the 709 ANTICANCER RESEARCH 24: 707-710 (2004) Figure 3. Variation of relative HMGB1 expression in five osteosarcomas (OS1-5), one fibrosarcoma (FS) and one leiomyosarcoma (LMS) of the dog as revealed by Northern blot analysis (dark grey bars) and semiquantitative RT-PCR (light grey bars). In order to compare the results obtained by the two methods, mean values for each test series were calculated, set to one and relative expression levels were determined. HMGB1 expression level with clinical outcome of cisplatin/carboplatin chemotherapy. The statistically significant correlation of the relative HMGB1 expression levels obtained by Northern blot analyses as well as duplex RT-PCR makes the established PCR approach a quick and convenient method to determine the intratumoural HMGB1 expression. References AR 1 Kartalou M and Essigmann JM: Recognition of cisplatin adducts by cellular proteins. Mutat Res 478: 1-21, 2001. 2 Bustin M, Lehn DA and Landsman D: Structural features of the HMG chromosomal proteins and their genes. Biochim Biophys Acta 1049: 231-243, 1990. 3 Bustin M and Reeves R: High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol 54: 35-100, 1996. 4 Jantzen HM, Admon A, Bell SP and Tjian R: Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature 344: 830-836, 1990. 5 Landsman D and Bustin M: A signature for the HMG-1 box DNA-binding proteins. Bioessays 15: 539-546, 1993. 6 Pil PM and Lippard SJ: Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science 256: 234-237, 1992. 7 Jung Y and Lippard SJ: Nature of full-length HMGB1 binding to cisplatin-modified DNA. Biochemistry 42: 2664-2671, 2003. 710 8 Kasparkova J, Delalande O, Stros M, Elizondo-Riojas M-A, Vojtiskova M, Kozelka J and Brabec V: Recognition of DNA interstrand cross-link of antitumor cisplatin by HMGB1 protein. Biochemistry 42: 1234-1244, 2003. 9 Zamble DB, Mu D, Reardon JT, Sancar A and Lippard SJ: Repair of cisplatin-DNA adducts by the mammalian excision nuclease. Biochemistry 35: 10004-10013, 1996. 10 He Q, Liang CH and Lippard SJ: Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc Natl Acad Sci USA 97: 57685772, 2000. 11 Chau KY, Lam HY and Lee KL: Estrogen treatment induces elevated expression of HMG1 in MCF-7 cells. Exp Cell Res 241: 269-272, 1998. 12 Borrmann L, Kim I, Schultheiss D, Rogalla P and Bullerdiek J: Regulation of the expression of HMG1, a co-activator of the oestrogen receptor. Anticancer Res 21: 301-305, 2001. 13 Jiang Z, Priat C and Galibert F: Traced orthologous amplified sequence tags (TOASTs) and mammalian comparative maps. Mamm Genome 9: 577-787, 1998. 14 Feinberg AP and Vogelstein B: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6-13, 1983. 15 Wen L, Huang JK, Johnson BH and Reeck GR: A human placental cDNA clone that encodes nonhistone chromosomal protein HMG-1. Nucleic Acid Res 17: 1197-1214, 1989. 16 Rogalla P, Kazmierczak B, Flohr AM, Hauke S and Bullerdiek J: Back to the roots of a new exon--the molecular archaeology of a SP100 splice variant. Genomics 63: 117-122, 2000. 17 Flohr AM, Rogalla P, Meiboom M, Borrmann L, Krohn M, Thode-Halle B and Bullerdiek J: Variation of HMGB1 expression in breast cancer. Anticancer Res 21: 3881-3885, 2001. 18 Murua Escobar H, Meyer B, Richter A, Becker K, Flohr AM, Bullerdiek J and Nolte I: Molecular characterization of the canine HMGB1. Cytogenet Genome Res 101: 33-38, 2003. 19 Hahn KA, Legendre AM and Talbott JR: The frequency of micronuclei in lymphocytes of dogs with osteosarcomas: a predictive variable for tumor response during cisplatin chemotherapy. Cancer Epidemiol Biomakers Prev 5: 653-656, 1996. 20 Brezniceanu M-L, Völp K, Bösse S, Solbach C, Lichter P, Joos S and Zörnig M: HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast cancer carcinoma. FASEB J 17: 1295-1297, 2003. Received July 9, 2003 Revised November 4, 2003 Accepted December 12, 2003 XIII. The canine HMGA1 Murua Escobar H, Soller JT, Richter A, Meyer B, Winkler S, Flohr AM, Nolte I, Bullerdiek J. Gene. 2004 Apr 14;330:93-9. Eigenanteil: • Erstellen der caninen Gewebebank Gene 330 (2004) 93 – 99 www.elsevier.com/locate/gene The canine HMGA1 Hugo Murua Escobar a,b, Jan T. Soller a, Andreas Richter a, Britta Meyer a, Susanne Winkler a, Aljoscha M. Flohr a, Ingo Nolte b, Jörn Bullerdiek a,* b a Centre for Human Genetics, University of Bremen, Leobener Strasse ZHG, D-28359 Bremen, Germany Small Animal Clinic, School of Veterinary Medicine, Bischofsholer Damm 15, D-30173 Hanover, Germany Received 28 October 2003; received in revised form 19 December 2003; accepted 15 January 2004 Received by D.A. Tagle Abstract Due to the emerging advantages of numerous canine diseases as a genetic model for their human orthologs, the dog could join the mouse as the species of choice to unravel genetic mechanisms, e.g. of cancer predisposition, development and progression. However, precondition for such studies is the characterisation of the corresponding canine genes. Human and murine HMGA1 non-histone proteins participate in a wide variety of cellular processes including regulation of inducible gene transcription, integration of retroviruses into chromosomes, and the induction of neoplastic transformation and promotion of metastatic progression of cancer cells. Chromosomal aberrations affecting the human HMGA1 gene at 6p21 were described in several tumours like pulmonary chondroid hamartomas, uterine leiomyomas, follicular thyroid adenomas and others. Over-expression of the proteins of HMGA1 is characteristic for various malignant tumours suggesting a relation between high titer of the protein and the neoplastic phenotype. In this study, we characterised the molecular structure of the canine HMGA1 cDNA, its splice variants and predicted proteins HMGA1a and HMGA1b. Furthermore, we compared the coding sequence(s) (CDS) of both splice variants for 12 different breeds, screened them for single nucleotide polymorphisms (SNPs) and characterised a basic expression pattern. D 2004 Elsevier B.V. All rights reserved. Keywords: High mobility group proteins; HMGA1; HMGA1a; HMGA1b; Comparative genomics 1. Introduction As witnessed by a number of recent articles (Kuska, 1996; Kingman, 2000; Ostrander et al., 2000; Vail and Abbreviations: A, adenosine; aa, amino acid(s); BAC, bacterial artificial chromosome; bp, base pair(s); cDNA, DNA complementary to RNA; CDS, coding sequence(s); CFA, Canis familiaris; Ci, Curie; D, Dalton; dCTP, deoxycytidine 5V-triphosphate; DNA, deoxy-ribonucleic acid; DNase, deoxyribonuclease; G, guanosine; GAPDH, glyceraldehyde3-phosphate dehydrogenase; HMG, high mobility group; HMGA1, high mobility group protein A1; HMGA2, high mobility group protein A2; HSA, Homo sapiens; M-MLV, Moloney murine leukemia virus; mRNA, messenger ribonucleic acid; NCBI, National Center for Biotechnology Information; ORF, open reading frame; PCR, polymerase chain reaction; RACE, rapid amplification of cDNA ends; RNA, ribonucleic acid; SDS, sodium dodecyl sulfate; SNP, single nucleotide polymorphism; UTR, untranslated region. * Corresponding author. Tel.: +49-421-2184239; fax: +49-4212184239. E-mail address: [email protected] (J. Bullerdiek). 0378-1119/$ - see front matter D 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.gene.2004.01.009 MacEwen, 2000), a growing number of scientists predict that human genetics will focus on the dog in this century (Kuska, 1996). Due to the emerging advantages of numerous canine diseases as a genetic model for their human counterparts, the dog could join the mouse as the species of choice to unravel genetic mechanisms, e.g. of cancer predisposition, development and progression. The proteins of the human HMGA1 gene HMGA1a and HMGA1b are associated with various human diseases including cancer. Due to the similarities of various human and canine cancer entities, the characterisation of the canine HMGA1 gene could open new fields for experimental and therapeutic approaches. Four human members of the HMGA protein family are presently known: the HMGA1a, HMGA1b, HMGA1c and HMGA2 proteins, which can modify chromatin structure by bending DNA, thus influencing the transcription of a number of target genes. The human HMGA1 gene on 6p21 encodes the well characterised 94 H. Murua Escobar et al. / Gene 330 (2004) 93–99 HMGA1a and HMGA1b proteins (formerly known as HMGI and HMGY) derived by alternative splicing and the barely characterised HMGA1c variant, while the HMGA2 protein is encoded by a separate gene on chromosome 12 (12q14 – 15) (for review, Reeves and Beckerbauer, 2001). Expression of HMGA1 is detectable only at very low levels or is even absent in adult tissues, whereas it is abundantly expressed in embryonic cells (Chiappetta et al., 1996). In humans, 6p21 is often affected by aberrations leading to an up-regulation of HMGA1 in benign mesenchymal tumours, e.g. lipomas, uterine leiomyomas, pulmonary chondroid hamartomas and endometrial polyps (Williams et al., 1997; Kazmierczak et al., 1998; Tallini et al., 2000). Transcriptional activation due to a chromosomal alteration of HMGA1 is probably an early and often even primary event of cancer development. In contrast, HMGA1 expression in malignant epithelial tumours seems to be a rather late event associated with an aggressive behaviour of the tumours. Thus, an overexpression of HMGA1 was reported for a number of malignancies including thyroid, prostatic, pancreatic, cervical and colorectal cancer (Tamimi et al., 1993; Chiappetta et al., 1995, 1998; Fedele et al., 1996; Bandiera et al., 1998; Abe et al., 1999, 2000). The correlation between HMGA expression and tumour aggressiveness in these malignancies has led to the conclusion that HMGA expression may present a powerful prognostic molecular marker. The causal role of HMGA1 expression in the progression of carcinomas has been elucidated by a set of in vitro experiments involving HMGA1 sense and antisense transfection assays (Reeves et al., 2001). An experimental approach aimed at the down-regulation of HMGA protein in tumours has been presented by Scala et al. (2000) who were able to show that an HMGA1 antisense strategy using an adenoviral vector treatment of tumours induced in athymic mice caused a drastic reduction in tumour size. Recently, the canine HMGA1 gene has been mapped to CFA 23. This cytogenetic assignment indicates that the canine HMGA1 gene does not map to a hotspot of chromosomal breakpoints seen in canine tumours (Becker et al., 2003). However, despite the emerging role of HMGA1 gene expression in malignancies, the molecular characterisation of the canine HMGA1 gene had not been carried out before. The characterisation of the molecular structure could permit new therapeutic approaches using the dog as model organism. In this study, we characterised the molecular structure of the canine HMGA1 gene on cDNA level, its splice variants and proteins HMGA1a and HMGA1b, and a basic expression pattern. Furthermore, for 12 different canine breeds the coding sequence(s) (CDS) of both splice variants were characterised and screened for SNPs to find out if changes at protein level exist between the different breeds. 2. Materials and methods 2.1. Tissues The tissues used in this study were provided by the Small Animal Clinic, Veterinary School, Hanover, Germany. The breeds represented were Alsatian, Bull Terrier, Collie, Dachshund, Doberman Pinscher, German Shorthaired Pointer, Golden Retriever, Jack Russell Terrier, Kangal, Munsterland, West Highland Terrier and Yorkshire Terrier. From each breed up to three samples of testis tissue were taken and used for analyses. 2.2. cDNA characterisation Total RNA was isolated from 150 mg canine testis tissue using TRIZOL LS (Invitrogen, Karlsruhe, Germany) following the manufacturer’s protocol. To avoid genomic DNA contamination a DNase digest of each sample was performed using DNA-free (Ambion, Huntingdon, Cambridgeshire, UK). cDNA was synthesised using 3V-RACE adaptor primer AP2 (AAGGATCCGTCGACATC(17)T), 5 Ag total RNA and M-MLV (Invitrogen) reverse transcriptase according to the manufacturer’s instructions. The polymerase chain reactions (PCRs) for the molecular cloning of the cDNA were done using the primer pairs Ex1up and Ex8lo (5V GCTCTTTTTAAGCTCCCCTGA 3V/5V CTGTCCAGTCCCAGAAGGAA 3V) and primer pair Ex8up and 3VUTRlo (5V AGGGCATCTCGCAGGAGTC 3V/5V ATTCAAGTAACTGCAAATAGGA 3V) which were derived from human cDNA sequences (accession no. X14957). The PCR products were separated on a 1.5% agarose gel, recovered with QIAEX II (QIAGEN, Hilden, Germany), cloned in pGEM-T Easy vector system (Promega, Madison, USA) and sequenced. The cDNA contig and the homology alignments were created with Lasergene software (DNAStar, Madison, USA) and various sequences from the NCBI database (GenBank accession nos. X14957, X14958, NM _ 002131, NM _ 145899, NM _ 145900, NM_145901, NM_145902, NM_145903, NM_145904, NM_145905). 2.3. Characterisation of splice variants The splice variants HMGA1a and HMGA1b were detected by amplifying a fragment spanning the CDS with primer pair Up (5V CATCCCAGCCATCACTC 3V) and Lo (5V GCGGCTGGTGTGCTGTGTAGTGTG 3V) using the canine testis cDNA samples as template. The primer pair was designed using the cDNA cloned as described in Section 2.2. The obtained PCR products were separated on a 4.0% agarose gel, recovered with QIAEX II (QIAGEN), cloned in pGEM-T Easy vector system (Promega) and sequenced. The contigs and the homology alignments were created with two sequences from the NCBI database (GenBank accession nos. X14957, X14958). H. Murua Escobar et al. / Gene 330 (2004) 93–99 2.4. CDS comparison between breeds The CDS of both splice variants were characterised for all breeds as described previously in Section 2.3. The contigs and the homology alignments were created using two sequences from the NCBI database (GenBank accession nos. X14957, X14958). In case of single nucleotide exchanges, the samples were sequenced again in both forward and reverse direction. Exchanges causing no amino acid (aa) substitution were not taken into account for further analyses. For all samples with aa substitutions the initial PCR was repeated and the exchange verified by sequencing the product in both forward and reverse direction. If possible, a restriction enzyme digestion was performed additionally. 2.5. Protein sequences The canine HMGA1a and HMGA1b protein sequences were derived from the open reading frames (ORFs) of the characterised cDNA sequences described previously in Section 2.2. The protein homology alignments were created with two sequences from the NCBI database (GenBank accession nos. X14957, X14958). 2.6. Northern blot Total RNAs were isolated from canine heart, lung, muscle, kidney and spleen tissue using RNeasy system (QIAGEN). An additional sample of total RNA was isolated from canine heart tissue by TRIZOL LS acid guanidine isothiocyanate – chloroform method (Invitrogen) in order to figure out whether this isolation method would lead to any difference in hybridisation. Further on poly A RNA was purified from canine spleen total RNA with OLIGOTEX (QIAGEN) and total RNA was prepared from human cultured fibroblasts by RNeasy system (QIAGEN). Spleen poly A RNA was placed on the blot in case that HMGA1 was not detectable in the total RNA samples. For Northern Blot hybridisation, 20 Ag of total RNA from each sample with the exception of 10 Ag of muscle and 3.6 Ag of spleen poly A RNA were separated on a 1.2% denaturing agarose gel containing 0.65% formaldehyde. RNAs were transferred onto Hybond-N+ positive nylon membrane (Amersham Pharmacia Biotech, Freiburg, Germany) by capillary blot. A 489-bp cDNA fragment derived from the canine HMGA1a sequence (exon 5/exon 8) served as a molecular probe for hybridisation. The probe was generated by PCR with the primer set Up and Lo (5V CATCCCAGCCATCACTC 3V/5V GCGGCTGGTGTGCTGTGTAGTGTG 3V) using the cloned cDNA described in Section 2.2. Probe labelling was performed by random primed labelling (Amersham Pharmacia Biotech) as described in the manufacturer’s protocol with 50 ACi(a32P)dCTP (Amersham Pharmacia Biotech). Purification of the labelled probe was performed 95 using Sephadex G-50 Nick Columns (Amersham Pharmacia Biotech) and the probe was stored at 20 jC before use. Using the PERFECTHYB PLUS hybridisation solution (Sigma-Aldrich, Saint Louis, MO, USA) prehybridisation was carried out for 30 min and hybridisation for 2.5 h at 68 jC. The membrane was washed for 5 min at room temperature in 2SSC/0.1% SDS, and twice for 20 min at 68 jC in 0.5SSC/0.1% SDS. Signals were visualised using a STORM phosphorimager (Molecular Dynamics, Sunnyvale, USA). 3. Results and discussion 3.1. The canine HMGA1 cDNA transcripts For the human HMGA1 gene various transcripts were described for both splicing variants (HMGA1a and HMGA1b) that differ in their 5V-UTR. The characterisation of the canine HMGA1 cDNAs revealed that the complete canine HMGA1 cDNA spans six exons and codes for two splicing variants HMGA1a with 1836 bp and HMGA1b with 1803 bp which are similar to the human transcripts (HMGA1a GenBank accession no. AY366390 and HMGA1b GenBank accession no. AY366392). The exon structure, the UTRs and the ORFs of both splice variants were defined and their homologies to their human counterparts analysed (Fig. 1, Table 1). The splicing variants showed the ‘‘typical’’ 33 bp gap which is conserved across various species such as human, mouse, hamster and rat (GenBank accession nos. BC013455, NM _ 016660, A7193763, NM_139327, A7511040). The homology of the canine cDNAs to their human counterparts is 80.6% for both splice variants. The 5V-UTR, CDS and the 3V-UTR showed homologies of 95.6%, 95.1% and 74,7%, respectively (Table 1). Homologies of the canine CDS with the CDS from mouse, hamster and rat on nucleotide level vary from 90.4% to 93.1%. The cDNA sequences were submitted to the NCBI database: HMGA1a, GenBank accession no. AY366390 and HMGA1b, GenBank accession no. AY366392. 3.2. The canine HMGA1a and HMGA1b proteins The canine HMGA1a and HMGA1b protein sequences were deduced from the respective cDNA sequences. The canine HMGA1a protein is a 107-amino acid molecule with a calculated weight of 11,674.97 D and HMGA1b a 96amino acid molecule with a calculated weight of 10,677.85 D (Fig. 2). Homology comparison to the human counterparts (GenBank accession nos. P17096, X14957) showed 100% homology of the molecules including the three ‘‘AThooks’’ and the acidic carboxy-terminal domain. Comparison of the canine and human HMGA1a and HMGA1b proteins with the described mouse, rat and hamster molecules showed aa changes in positions 5, 34, 96 H. Murua Escobar et al. / Gene 330 (2004) 93–99 Fig. 1. Structure of the canine HMGA1a and HMGA1b transcripts and partial genomic structure. 69, 75 and 78 of HMGA1a and positions 5, 34, 58, 64 and 67 of HMGA1b, respectively (Fig. 2) (Johnson et al., 1988, 1989; Friedmann et al., 1993; Aldrich et al., 1999; Sgarra et al., 2000; Strausberg et al., 2002; Sgarra et al., 2003). According to the definition of the AT-hooks (HMGA1a: I aa 21 – 31, II aa 53 –63, III aa 78– 89; HMGA1b: I aa 21– 31, II aa 42– 52, III aa 67 – 78) by Reeves and Nissen (1990) and Reeves (2000), none but the aa exchange at position 78 Table 1 Detailed analysis of the canine HMGA1a and HMGA1b cDNA Element of canine HMGA1 cDNAs Size in bp Homology to human counterpart in % Total cDNA HMGA1a Total cDNA HMGA1b 5V-UTR CDS HMGA1a CDS HMGA1b 3V-UTR Exon 1 Exon 2 Exon 5 HMGA1a Exon 5 HMGA1b Exon 6 Exon 7 Exon 8 1836 1803 231 324 291 1332 94 114 179 146 84 51 1386 80.6 80.6 95.6 95.1 95.1 74.7 97.8 96.5 93.9 93.9 96.4 94.1 75.4 Homology comparison of the cDNA elements of the canine HMGA1 to its human counterpart (characterisation of the UTRs, the ORF and the exon sizes). (HMGA1a) or 67 (HMGA1b), respectively, do affect the AT-hooks in either species. The exchange at position 78 leads to a difference in the third AT-hook of mouse and hamster when compared to the other species. According to the definition of the AT-hooks (HMGA1a: I aa 23– 31, II aa 55– 70, III aa 81– 89; HMGA1b: I aa 23 – 31, II aa 44– 59, III aa 70 – 78) by Huth et al. (1997), this aa exchange does not affect the third AT-hook. Following this definition, the second AT-hook is affected by the aa exchange at position 69 (HMGA1a) or 58 (HMGA1b), respectively. The canine protein sequences were submitted to the NCBI database with GenBank accession nos. HMGA1a AY366390 and HMGA1b AY366392. Due to the identical structure of the canine HMGA proteins to the respective human molecule, therapeutic approaches applied in dogs could be more suitable in terms of transferability for the development of human therapies than to approaches tested in other organisms. 3.3. HMGA1a and HMGA1b CDS comparison between canine breeds For twelve different canine breeds the splicing variants HMGA1a and HMGA1b were detected by amplification of a fragment spanning the CDS using the canine testis cDNA samples as template. The comparison of the characterised protein coding sequences for these twelve canine breeds H. Murua Escobar et al. / Gene 330 (2004) 93–99 97 Fig. 2. Comparison of the canine, human, mouse, rat and hamster HMGA1a and HMGA1b proteins. revealed one amino acid change in a single breed. Nucleotide exchanges causing no amino acid substitution were not taken into account in further analyses. Sample 2 (Teckel) showed in its HMGA1b transcript a nucleotide transition from A to G at the first base of codon 64 leading to an aa replacement from threonine to alanine and a new restriction recognition site for AluI causing four (58, 100, 158 and 176 bp) instead of three fragments (58, 100 and 334 bp) to appear in an AluI digest. (data not shown). The substitution was missing in the corresponding HMGA1a transcript of the dog suggesting a heterozygous genotype. A possible PCR artifact seems rather unlikely since the nucleotide transition was verified as described in Section 2.4. The CDS cDNA sequences of the twelve breeds were submitted to the NCBI database with GenBank accession nos. AY363606, AY 3 6 3 6 0 5 , AY 3 6 3 6 0 7 , AY 3 6 3 6 0 4 , AY 3 6 3 6 0 8 , AY 3 6 3 6 1 0 , AY 3 6 3 6 0 9 , AY 3 6 3 6 0 0 , AY 3 6 3 6 0 3 , AY 3 6 3 5 9 9 , AY 3 6 3 6 0 1 , AY 3 6 3 6 0 2 , AY 3 6 3 9 9 4 , AY 3 6 3 9 9 5 , AY 3 6 3 6 11 , AY 3 6 3 9 9 9 , AY 3 6 4 0 0 0 , AY 3 6 4 0 0 2 , AY 3 6 4 0 0 1 , AY 3 6 3 9 9 8 , AY 3 6 3 9 9 6 , AY363997, AY364003. probe. Except for the kidney total RNA and one of two heart samples (Trizol method) all total RNA samples showed a weak signal of approximately 1.8 kb (Fig. 3, Trizol sample not shown), while the poly A RNA spleen sample revealed a distinct signal. After stripping, rehybridisation with a canine GAPDH probe showed signals corresponding to approximately 1.3 kb in all but the Trizol method (data not shown) samples, indicating a degradation of the Trizol-prepared RNA. In humans, HMGA1 expression in malignant epithelial tumours seems to be associated with an aggressive behaviour of the tumours. Over-expression of HMGA1 was reported for a number of malignancies including thyroid, prostatic, pancreatic, uterus cervical and colorectal cancer (Tamimi et al., 1993; Chiappetta et al., 1995, 1998; Fedele et al., 1996; Bandiera et al., 1998; Abe et al., 1999, 2000). The correlation between HMGA expression and tumour 3.4. Canine HMGA1 expression analysis Expression of human HMGA1 is detectable at very low levels or is even absent in adult tissues whereas it is abundantly expressed in embryonic cells (Chiappetta et al., 1996). To elucidate a basic HMGA1 gene expression pattern in dogs, a canine Northern blot was generated containing total RNA from canine spleen, heart, lung, muscle and kidney tissue samples. In order to detect a possible low level expression of HMGA1 as reported in adult human tissues, a poly A RNA sample from canine spleen was additionally added to the blot. Hybridisation was performed with a a32P-labelled canine HMGA1a cDNA Fig. 3. Northern blot showing 1.8-kb HMGA1 and 1.3-kb GAPDH transcripts. Lanes: (1) canine kidney total RNA, (2) canine spleen total RNA, (3) canine spleen poly A RNA, (4) canine heart total RNA, (5) canine lung total RNA, (6) canine muscle total RNA and (7) human fibroblasts total RNA. 98 H. Murua Escobar et al. / Gene 330 (2004) 93–99 aggressiveness in some of these malignancies has led to the conclusion that HMGA expression may present a powerful prognostic molecular marker. So far no studies analysing the HMGA1 expression pattern in canine tumours have been carried out. Since these tumours occur spontaneously in dogs as well as in humans a canine in vivo analysing system could have significant value for research and drug development. The causal role of HMGA1 expression in the progression of carcinomas has been elucidated by a set of in vitro experiments involving HMGA1 sense and antisense transfection assays (Wood et al., 2000a,b; Reeves et al., 2001). A proof of concept for a therapy aimed at the down-regulation of HMGA protein in tumours has been presented by Scala et al. (2000) who were able to show that an HMGA1 antisense strategy using an adenoviral vector treatment of tumours induced in athymic mice caused a drastic reduction in tumour size. Due to the similarities of human and canine tumours, the transfer of such experimental approaches could benefit cancer research in either species. The comprehension of the canine HMGA1 gene and its gene products could be the precondition for future new experimental approaches and for evaluating the canine gene product as potential target for therapeutic strategies using the dog as model system. References Abe, N., Watanabe, T., Sugiyama, M., Uchimura, H., Chiappetta, G., Fusco, A., Atomi, Y., 1999. Determination of high mobility group I(Y) expression level in colorectal neoplasias: a potential diagnostic marker. Cancer Res. 59, 1169 – 1174. Abe, N., Watanabe, T., Masaki, T., Mori, T., Sugiyama, M., Uchimura, H., Fujioka, Y., Chiappetta, G., Fusco, A., Atomi, Y., 2000. Pancreatic duct cell carcinomas express high levels of high mobility group I(Y) proteins. Cancer Res. 60, 3117 – 3122. Aldrich, T.L., Reeves, R., Lee, C.C., Thomas, J.N., Morris, A.E., 1999. HMG-I (Y) proteins implicated in amplification of CHO cell DNA. Unpublished, GenBank Accession No. AF193763. Bandiera, A., Bonifacio, D., Manfioletti, G., Mantovani, F., Rustighi, A., Zanconati, F., Fusco, A., Di Bonito, L., Giancotti, V., 1998. Expression of HMGI (Y) proteins in squamous intraepithelial and invasive lesions of the uterine cervix. Cancer Res. 58, 426 – 431. Becker, K., Escobar, H.M., Richter, A., Meyer, B., Nolte, I., Bullerdiek, J., 2003. The canine HMGA1 gene maps to CFA 23. Anim. Genet. 34, 68 – 69. Chiappetta, G., Bandiera, A., Berlingieri, M.T., Visconti, R., Manfioletti, G., Battista, S., Martinez-Tello, F.J., Santoro, M., Giancotti, V., Fusco, A., 1995. The expression of the high mobility group HMGI (Y) proteins correlates with the malignant phenotype of human thyroid neoplasias. Oncogene 10, 1307 – 1314. Chiappetta, G., Avantaggiato, V., Visconti, R., Fedele, M., Battista, S., Trapasso, F., Merciai, B.M., Fidanza, V., Giancotti, V., Santoro, M., Simeone, A., Fusco, A., 1996. High level expression of the HMGI (Y) gene during embryonic development. Oncogene 13, 2439 – 2446. Chiappetta, G., Tallini, G., De Biasio, M.C., Manfioletti, G., MartinezTello, F.J., Pentimalli, F., de Nigris, F., Mastro, A., Botti, G., Fedele, M., Berger, N., Santoro, M., Giancotti, V., Fusco, A., 1998. Detection of high mobility group I HMGI (Y) protein in the diagnosis of thyroid tumors: HMGI (Y) expression represents a potential diagnostic indicator of carcinoma. Cancer Res. 58, 4193 – 4198. Fedele, M., Bandiera, A., Chiappetta, G., Battista, S., Viglietto, G., Manfioletti, G., Casamassimi, A., Santoro, M., Giancotti, V., Fusco, A., 1996. Human colorectal carcinomas express high levels of high mobility group HMGI (Y) proteins. Cancer Res. 56, 1896 – 1901. Friedmann, M., Holth, L.T., Zoghbi, H.Y., Reeves, R., 1993. Organization, inducible-expression and chromosome localization of the human HMGI (Y) nonhistone protein gene. Nucleic Acids Res. 21, 4259 – 4267. Huth, J.R., Bewley, C.A., Nissen, M.S., Evans, J.N., Reeves, R., Gronenborn, A.M., Clore, G.M., 1997. The solution structure of an HMG-I (Y)-DNA complex defines a new architectural minor groove binding motif. Nat. Struct. Biol. 4, 657 – 665. Johnson, K.R., Lehn, D.A., Elton, T.S., Barr, P.J., Reeves, R., 1988. Complete murine cDNA sequence, genomic structure, and tissue expression of the high mobility group protein HMG-I (Y). J. Biol. Chem. 263, 18338 – 18342. Johnson, K.R., Lehn, D.A., Reeves, R., 1989. Alternative processing of mRNAs encoding mammalian chromosomal high-mobility-group proteins HMG-I and HMG-Y. Mol. Cell. Biol. 9, 2114 – 2123. Kazmierczak, B., Dal Cin, P., Wanschura, S., Borrmann, L., Fusco, A., Van den Berghe, H., Bullerdiek, J., 1998. HMGIY is the target of 6p21.3 rearrangements in various benign mesenchymal tumors. Genes Chromosomes Cancer 23, 279 – 285. Kingman, S., 2000. Painting a brighter future for dogs and humans. Drug Discov. Today 5, 127 – 128. Kuska, B., 1996. Sit, DNA, sit: cancer genetics going to the dogs. J. Natl. Cancer Inst. 91, 204 – 206. Ostrander, E.A., Galibert, F., Patterson, D.F., 2000. Canine genetics comes of age. Trends Genet. 16, 117 – 124. Reeves, R., 2000. Structure and function of the HMGI (Y) family of architectural transcription factors. Environ. Health Perspect. 108 (Suppl. 5), 803 – 809. Reeves, R., Beckerbauer, L., 2001. HMGI (Y) proteins: flexible regulators of transcription and chromatin structure. Biochim. Biophys. Acta 1519, 13 – 29. Reeves, R., Nissen, M.S., 1990. The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J. Biol. Chem. 265, 8573 – 8582. Reeves, R., Edberg, D.D., Li, Y., 2001. Architectural transcription factor HMGI (Y) promotes tumor progression and mesenchymal transition of human epithelial cells. Mol. Cell. Biol. 21, 575 – 594. Scala, S., Portella, G., Fedele, M., Chiappetta, G., Fusco, A., 2000. Adenovirus-mediated suppression of HMGI (Y) protein synthesis as potential therapy of human malignant neoplasias. Proc. Natl. Acad. Sci. U. S. A. 97, 4256 – 4261. Sgarra, R., Diana, F., Bellarosa, C., Rustighi, A., Toller, M., Manfioletti, G., Giancotti, V., 2000: Increase of HMGA1a protein methylation is a distinctive characteristic of tumor cells induced to apoptosis. Unpublished, GenBank Accession No. AF511040. Sgarra, R., Diana, F., Bellarosa, C., Dekleva, V., Rustighi, A., Toller, M., Manfioletti, G., Giancotti, V., 2003. During apoptosis of tumor cells HMGA1a protein undergoes methylation: identification of the modification site by mass spectrometry. Biochemistry 42, 3575 – 3585. Strausberg, R.L., et al., 2002. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. U. S. A. 99, 16899 – 16903. Tallini, G., Vanni, R., Manfioletti, G., Kazmierczak, B., Faa, G., Pauwels, P., Bullerdiek, J., Giancotti, V., Van Den Berghe, H., Dal Cin, P., 2000. HMGI-C and HMGI (Y) immunoreactivity correlates with cytogenetic abnormalities in lipomas, pulmonary chondroid hamartomas, endometrial polyps, and uterine leiomyomas and is compatible with rearrangement of the HMGI-C and HMGI (Y) genes. Lab. Invest. 80, 359 – 369. Tamimi, Y., van der Poel, H.G., Denyn, M.M., Umbas, R., Karthaus, H.F., Debruyne, F.M., Schalken, J.A., 1993. Increased expression of high H. Murua Escobar et al. / Gene 330 (2004) 93–99 mobility group protein I(Y) in high grade prostatic cancer determined by in situ hybridization. Cancer Res. 53, 5512 – 5516. Vail, D.M., MacEwen, E.G., 2000. Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest. 18, 781 – 792. Williams, A.J., Powell, W.L., Collins, T., Morton, C.C., 1997. HMGI (Y) expression in human uterine leiomyomata. Involvement of another 99 high-mobility group architectural factor in a benign neoplasm. Am. J. Pathol. 150, 911 – 918. Wood, L.J., Maher, J.F., Bunton, T.E., Resar, L.M., 2000a. The oncogenic properties of the HMG-I gene family. Cancer Res. 60, 4256 – 4261. Wood, L.J., Mukherjee, M., Dolde, C.E., Xu, Y., Maher, J.F., Bunton, T.E., Williams, J.B., Resar, L.M., 2000b. HMG-I/Y, a new c-Myc target gene and potential oncogene. Mol. Cell. Biol. 20, 5490 – 5502. XIV. "Best Friends" sharing the HMGA1 gene: comparison of the human and canine HMGA1 to orthologous other species. Murua Escobar H, Soller JT, Richter A, Meyer B, Winkler S, Bullerdiek J, Nolte I. J Hered. 2005 Nov-Dec;96(7):777-81. Eigenanteil: • Erstellen der caninen Gewebebank Journal of Heredity 2005:96(7):777–781 doi:10.1093/jhered/esi083 Advance Access publication June 15, 2005 ª The American Genetic Association. 2005. All rights reserved. For Permissions, please email: [email protected]. ‘‘Best Friends’’ Sharing the HMGA1 Gene: Comparison of the Human and Canine HMGA1 to Orthologous Other Species H. MURUA ESCOBAR, J. T. SOLLER, A. RICHTER, B. MEYER, S. WINKLER, J. BULLERDIEK, AND I. NOLTE From the Small Animal Clinic, School of Veterinary Medicine, Bischofsholer Damm 15, 30137 Hanover, Germany (Murua Escobar, Soller, and Nolte), and Center for Human Genetics, University of Bremen, Leobener Str ZHG, 28359 Bremen, Germany (Meyer, Winkler, Richter, and Bullerdiek). Address correspondence to Ingo Nolte at the address above, or e-mail: [email protected]. Abstract HMGA1 nonhistone proteins are reported to participate in various cellular processes including regulation of inducible gene transcription, integration of retroviruses into chromosomes, and the induction of neoplastic transformation and promotion of metastatic progression of cancer cells. Overexpression of HMGA1 was shown to be characteristic for various malignant tumors, suggesting a relation between the neoplastic phenotype and a high titer of the protein. Also chromosomal aberrations affecting the human HMGA1 gene at 6p21 were described in several tumors, e.g., uterine leiomyomas, pulmonary chondroid hamartomas, and follicular thyroid adenomas. We characterize the molecular structure of the canine HMGA1 cDNA, its splice variants, and predicted proteins HMGA1a and HMGA1b. Furthermore, we compared the CDS of both splice variants for 12 different breeds, screened them for SNPs, characterised a basic expression pattern, and mapped the gene via FISH. Additionally, we compared the known human, canine, murine, rat, hamster, bovine, pig, Xenopus, and chicken HMGA1 transcripts. High mobility group proteins named according to their characteristic mobility in gel electrophoresis are small chromatin-associated nonhistone proteins, which can be subdivided into three families because of their functional sequence motives: the HMGA (functional motive ‘‘AThook’’), HMGB (functional motive ‘‘HMG-box’’), and HMGN (functional motive ‘‘nucleosomal binding domain’’) protein families (for review see Bustin 2001). By binding DNA with their functional motives, the HMG proteins induce DNA conformation changes influencing the binding of various transcription factors and thus taking indirect influence on transcription regulation as so-called architectural transcription factors (for detail see Bustin and Reeves 1996). The proteins HMGA1a, HMGA1b, and HMGA2 of the human HMGA genes are associated with various human diseases, including cancer. Members of the human HMGA1 protein family presently known are HMGA1a and HMGA1b, which by modifying chromatin structure take influence on transcription and up- and down-regulation of a number of target genes, for example, ATF2, IFN-b, NFjB, Interleukin-2 receptor, E-Selektin, Interleukin-4, Interfeone-A, ERCC1, and Cyclin A (Chuvpilo et al. 1993; Du and Maniatis 1994; Thanos and Maniatis 1992; Lewis et al. 1994; John et al. 1995, 1996; Klein-Hessling et al. 1996; Yie et al. 1997; Borrmann et al. 2003). The expression pattern of the HMGA genes in human adult tissues shows only very low levels or even absent expression, whereas it is abundantly expressed in embryonic cells (Rogalla et al. 1996; Chiappetta et al. 1996). In humans the HMGA1 gene is located on HSA 6p21, a region often affected by aberrations leading to an up-regulation of this gene in various benign mesenchymal tumors, for example, endometrial polyps, lipomas, pulmonary chondroid hamartomas, and uterine leiomyomas (Williams et al. 1997; Kazmierczak et al. 1998; Tallini et al. 2000). This suggests that transcriptional activation due to these chromosomal alterations is probably an early and often even primary event of cancer development. Recently, the canine HMGA1 gene has been mapped to CFA 23. This cytogenetic assignment 777 Journal of Heredity 2005:96(7) Figure 1. Species comparison of HMGA1a and HMGA1b transcripts. Exon 5 is enlarged by factor fife for better visualization. indicates that the canine HMGA1 gene does not map to a hotspot of chromosomal breakpoints seen in canine tumours (Becker et al. 2003). 778 HMGA1 expression in human malignant epithelial tumors is reported to be associated with an aggressive behavior of the tumors. Overexpression of HMGA1 was Murua Escobar et al. Human and Canine HMGA1 Gene detected in a number of malignancies, including thyroid, prostatic, pancreatic, uterine cervical, and colorectal cancer (Tamimi et al. 1993; Chiappetta et al. 1995; Fedele et al. 1996; Bandiera et al. 1998; Abe et al. 1999, 2000; Czyz et al. 2004; Takaha et al. 2004). The correlation between HMGA expression and tumor aggressiveness in some of these malignancies has led to the conclusion that HMGA expression may present a powerful diagnostic and prognostic molecular marker. Due to the similarities of various human and canine cancer entities, the characterization of the canine HMGA genes could open new fields for experimental and therapeutic approaches. We recently characterized the canine HMGA1a and HMGA1b transcripts, deduced their proteins, evaluated them as targets for therapeutic approaches, and characterized a basic expression pattern in healthy tissues (Murua Escobar et al. 2004). Sequence comparison showed a 100% identity between the human and canine protein molecules. Although both species showed the identical two proteins, the number of found cDNA transcripts varies. For the human HMGA1 seven different cDNA transcripts (Figure 1: SPV1–SPV7) were described (Johnson et al. 1988) of which SPV1 and SPV2 are the commonly found variants. The characterized dog variants showed the same composition structure as the mentioned human variants SPV1 and SPV2. Canine counterparts of the human transcript variants SPV3–SPV7 could not be detected using polymerase chain reaction (PCR) amplification approaches. Comparison of the human cDNAs to the known transcripts of other species shows that the dog is the only species showing similar transcripts to those commonly found in humans referring to exon structure and distribution. In detail, human and dog are the only known species showing the presence of exon one and two in both HMGA1a or HMGA1b transcripts, respectively (Figure 1). Both isoforms (HMGA1a and HMGA1b) were found in mouse (BC013455, NM_016660), hamster (AF1893762, AF193763), and rat (NM_139327, AF511040), of which for the last two species the described transcripts are limited to the protein coding sequences and the mouse transcripts show either exon one (HMGA1a) or exon two (HMGA1b) in the respective transcripts (Figure 1). For the HMGA1 transcripts of horse (CD535395), pig (AU296646), chicken (AY303673), bovine (CK951567), and Xenopus (BC084025), either the HMGA1a or the HMGA1b isoform are currently (2004) present at the NCBI database. For CDS (coding sequence) and protein identity analysis, we used the described sequences and deduced, if necessary, the corresponding parts for analyses. The in silico analyses were done using Lasergene software programs (DNASTAR, Madison). The coding sequence identities of the canine HMGA1 transcripts to the sequences from other species vary between 72.0% (chicken AY303673) and 95.7% (pig AU296646, horse CD535395) (Table 1). Identity comparison of the deduced proteins revealed similarities between 69.7% (chicken AY303673) and 100.0% (human: P17096, X14957, horse CD535395) (Table 1). The proteins of all species showed strong conservation in the functional AT-Hook DNA binding domains. Common for all species analysed is that the protein coding sequences are composed of four Table 1. HMGA1 identity comparison (CDS and protein) of various species to the canine transcripts and proteins Identity (%) to C. familiaris Species Isoform CDS Protein Human (H. sapiens) Human (H. sapiens) Mouse (M. musculus) Mouse (M. musculus) Rat (R. norvegicus) Rat (R. norvegicus) Hamster (C. griseus) Hamster (C. griseus) Pig (S. scrofa) Horse (E. caballus) Cattle (B. taurus) Chicken (G. gallus) African clawed frog (X. laevis) HMGA1a HMGA1b HMGA1a HMGA1b HMGA1a HMGA1b HMGA1a HMGA1b HMGA1a HMGA1b HMGA1b HMGA1b 95.1 95.1 90.1 90.1 90.4 90.4 92.6 92.6 95.7 95.7 94.4 72.0 100.0 100.0 96.3 96.9 96.3 95.8 98.1 97.9 99.1 100.0 99.0 69.7 HMGA1a 90.4 97.2 exons (Figure 1). The described proteins of the different species are composed of 107 amino acids and 96 amino acids, respectively, for HMGA1a and HMGA1b. Also common for those species where both protein isoforms were described is that the difference between the splicing variants is the ‘‘typical’’ 33-bp deletion in the HMGA1b transcripts resulting in the lack of 11 amino acids. Previous results describing the comparison of the protein coding sequences in 12 canine breeds revealed that the mentioned deletion is also conserved in the analyzed breeds. SNP screening in these breeds resulted in detection of oneamino-acid change in a single breed. A Teckel showed a nucleotide transition from A to G at the first base of codon 64 in its HMGA1b transcript leading to an amino acid replacement from threonine to alanine (Murua Escobar et al. 2004). As far as we know, no other canine HMGA1 polymorphisms have been described. Summarizing the HMGA1 transcript and protein comparison data emphasizes the relevance of the canine species as a model organism for the research and development of therapeutic approaches for human disorders. Due to the mentioned properties of the HMGA1 gene, its proteins HMGA1a/HMGA1b, and its reported role in development of cancer, future studies targeting HMGA1 proteins could be of significant value. Acknowledgments This paper was delivered at the 2nd International Conference on the ‘‘Advances in Canine and Feline Genomics: Comparative Genome Anatomy and Genetic Disease,’’ Universiteit Utrecht, Utrecht, The Netherlands, October 14–16, 2004. References Abe N, Watanabe T, Masaki T, Mori T, Sugiyama M, Uchimura H, Fujioka Y, Chiappetta G, Fusco A, and Atomi Y, 2000. Pancreatic duct cell carcinomas express high levels of high mobility group I(Y) proteins. Cancer Res 60: 3117–3122. 779 Journal of Heredity 2005:96(7) Abe N, Watanabe T, Sugiyama M, Uchimura H, Chiappetta G, Fusco A, and Atomi Y, 1999. Determination of high mobility group I(Y) expression level in colorectal neoplasias: a potential diagnostic marker. Cancer Res 59:1169–1174. John S, Robbins CM, and Leonard WJ, 1996. An IL-2 response element in the human IL-2 receptor alpha chain promoter is a composite element that binds Stat5, Elf-1, HMG-I(Y) and a GATA family protein. EMBO J 15:5627–5635. Aldrich TL, Reeves R, Lee CC, Thomas JN, and Morris AE, 1999. HMG-I(Y) proteins implicated in amplification of CHO cell DNA. Sequence at NCBI AF193763. Unpublished manuscript. Johnson KR, Lehn DA, Elton TS, Barr PJ, and Reeves R, 1988. Complete murine cDNA sequence, genomic structure, and tissue expression of the high mobility group protein HMG-I(Y). J Biol Chem 263(34): 18338–18342. Bandiera A, Bonifacio D, Manfioletti G, Mantovani F, Rustighi A, Zanconati F, Fusco A, Di Bonito L, and Giancotti V, 1998. Expression of HMGI(Y) proteins in squamous intraepithelial and invasive lesions of the uterine cervix. Cancer Res 58:426–431. Becker K, Murua Escobar H, Richter A, Meyer B, Nolte I, and Bullerdiek J, 2003. The canine HMGA1 gene maps to CFA 23. Anim Genet 34(1): 68–69. Beitzel B and Bushman F, 2003. Construction and analysis of cells lacking the HMGA gene family. Nucleic Acids Res 31(17):5025–5032. Borrmann L, Schwanbeck R, Heyduk T, Seebeck B, Rogalla P, Bullerdiek J, and Wisniewski JR, 2003. High mobility group A2 protein and its derivatives bind a specific region of the promoter of DNA repair gene ERCC1 and modulate its activity. Nucleic Acids Res 31:6841–6851. Bustin M, 2001. Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem Sci 26(3):152–153. Bustin M and Reeves R, 1996. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol 54:35–100. Chiappetta G, Bandiera A, Berlingieri MT, Visconti R, Manfioletti G, Battista S, Martinez-Tello FJ, Santoro M, Giancotti V, and Fusco A, 1995. The expression of the high mobility group HMGI (Y) proteins correlates with the malignant phenotype of human thyroid neoplasias. Oncogene 10:1307–1314. Chiappetta G, Avantaggiato V, Visconti R, Fedele M, Battista S, Trapasso F, Merciai BM, Fidanza V, Giancotti V, Santoro M, Simeone A, and Fusco A, 1996. High level expression of the HMGI (Y) gene during embryonic development. Oncogene 13:2439–2446. Chuvpilo S, Schomberg C, Gerwig R, Heinfling A, Reeves R, Grummt F, and Serfling E, 1993. Multiple closely-linked NFAT/octamer and HMG I(Y) binding sites are part of the interleukin-4 promoter. Nucleic Acids Res 21(24):5694–5704. Czyz W, Balcerczak E, Jakubiak M, Pasieka Z, Kuzdak K, and Mirowski M, 2004. HMGI(Y) gene expression as a potential marker of thyroid follicular carcinoma. Langenbecks Arch Surg 389(3):193–197. Du W and Maniatis T, 1994. The high mobility group protein HMG I(Y) can stimulate or inhibit DNA binding of distinct transcription factor ATF-2 isoforms. Proc Natl Acad Sci USA 91:11318–11322. Fedele M, Bandiera A, Chiappetta G, Battista S, Viglietto G, Manfioletti G, Casamassimi A, Santoro M, Giancotti V, and Fusco A, 1996. Human colorectal carcinomas express high levels of high mobility group HMGI(Y) proteins. Cancer Res 56:1896–1901. Johnson KR, Lehn DA, and Reeves R, 1989. Alternative processing of mRNAs encoding mammalian chromosomal high-mobility-group proteins HMG-I and HMG-Y. Mol Cell Biol 9(5):2114–2123. Kazmierczak B, Dal Cin P, Wanschura S, Borrmann L, Fusco A, Van den Berghe H, and Bullerdiek J, 1998. HMGIY is the target of 6p21.3 rearrangements in various benign mesenchymal tumors. Genes Chromosomes Cancer 23:279–285. Klein SL, Strausberg RL, Wagner L, Pontius J, Clifton SW, and Richardson P, 2002. Genetic and genomic tools for Xenopus research: the NIH Xenopus initiative. Dev Dyn 225(4):384–391. Klein-Hessling S, Schneider G, Heinfling A, Chuvpilo S, and Serfling E, 1996. HMG I(Y) interferes with the DNA binding of NF-AT factors and the induction of the interleukin 4 promoter in T cells. Proc Natl Acad Sci USA 93:15311–15316. Lewis H, Kaszubska W, DeLamarter JF, and Whelan J, 1994. Cooperativity between two NF-kappa B complexes, mediated by high-mobility-group protein I(Y), is essential for cytokine-induced expression of the E-selectin promoter. Mol Cell Biol 14:5701–5709. Murua Escobar H, Soller JT, Richter A, Meyer B, Winkler S, Flohr AM, Nolte I, and Bullerdiek J, 2004. The canine HMGA1. Gene 14(330): 93–99. Reeves R, Edberg DD, and Li Y, 2001. Architectural transcription factor HMGI(Y) promotes tumor progression and mesenchymal transition of human epithelial cells. Mol Cell Biol 21:575–594. Rogalla P, Drechsler K, Frey G, Hennig Y, Helmke B, Bonk U, and Bullerdiek J, 1996. HMGI-C expression patterns in human tissues. Implications for the genesis of frequent mesenchymal tumors. Am J Pathol 149(3):775–779. Sgarra R, Diana F, Bellarosa C, Rustighi A, Toller M, Manfioletti G, and Giancotti V, 2002. Increase of HMGA1a protein methylation is a distinctive characteristic of tumor cells induced to apoptosis. Sequence at NCBI AF511040. Unpublished manuscript. Sgarra R, Diana F, Bellarosa C, Dekleva V, Rustighi A, Toller M, Manfioletti G, and Giancotti V, 2003. During apoptosis of tumor cells HMGA1a protein undergoes methylation: identification of the modification site by mass spectrometry. Biochemistry 42(12):3575–3585. Sonstegard TS, Van Tassell CP, Matukumalli LK, Harhay GP, Bosak S, Rubenfield M, and Gasbarre LC, 2004. Production of EST from cDNA libraries derived from immunologically activated bovine gut. Sequence at NCBI CK951567. Unpublished manuscript. Friedmann M, Holth LT, Zoghbi HY, and Reeves R, 1993. Organization, inducible-expression and chromosome localization of the human HMG-I(Y) nonhistone protein gene. Nucleic Acids Res 21(18):4259–4267. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, and others, 2002. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99(26): 16899–16903. Fujisaki S, Hiraiwa H, Eguchi T, Watanabe Y, Honma D, Saitou T, and Yasue H, 2003. Construction of a full-length library of swine olfactory bulb and its preliminary characterization. Sequence at NCBI AU296646. Unpublished manuscript. Takaha N, Resar LM, Vindivich D, and Coffey DS, 2004. High mobility group protein HMGI(Y) enhances tumor cell growth, invasion, and matrix metalloproteinase-2 expression in prostate cancer cells. Prostate 60(2): 160–167. John S, Reeves RB, Lin JX, Child R, Leiden JM, Thompson CB, and Leonard WJ, 1995. Regulation of cell-type-specific interleukin-2 receptor alpha-chain gene expression: potential role of physical interactions between Elf-1, HMG-I(Y), and NF-kappa B family proteins. Mol Cell Biol 15: 1786–1796. Tallini G, Vanni R, Manfioletti G, Kazmierczak B, Faa G, Pauwels P, Bullerdiek J, Giancotti V, Van Den Berghe H, and Dal Cin P, 2000. HMGI-C and HMGI(Y) immunoreactivity correlates with cytogenetic abnormalities in lipomas, pulmonary chondroid hamartomas, endometrial polyps, and uterine leiomyomas and is compatible with 780 Murua Escobar et al. Human and Canine HMGA1 Gene rearrangement of the HMGI-C and HMGI(Y) genes. Lab Invest 80: 359–369. from equine (Equus caballus) unstimulated peripheral blood leukocytes. Sequence at NCBI CD535395. Unpublished manuscript. Tamimi Y, van der Poel HG, Denyn MM, Umbas R, Karthaus HF, Debruyne FM, and Schalken JA, 1993. Increased expression of high mobility group protein I(Y) in high grade prostatic cancer determined by in situ hybridization. Cancer Res 53:5512–5516. Williams AJ, Powell WL, Collins T, and Morton CC, 1997. HMGI(Y) expression in human uterine leiomyomata. Involvement of another highmobility group architectural factor in a benign neoplasm. Am J Pathol 150:911–918. Thanos D and Maniatis T, 1992. The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell 71:777–789. Yie J, Liang S, Merika M, and Thanos D, 1997. Intra- and intermolecular cooperative binding of high-mobility-group protein I(Y) to the betainterferon promoter. Mol Cell Biol 17:3649–3662. Vandenplas M, Cordonnier-Pratt MM, Suzuki Y, Sugano S, Moore JN, Liang C, Sun F, Sullivan R, Shah M, and Pratt LH, 2003. An EST database Corresponding Editor: Francis Galibert 781 XV. HMGA2 expression in a canine model of prostate cancer Winkler S, Murua Escobar H, Meyer B, Simon D, Eberle N, Baumgartner W, Loeschke S, Nolte I, Bullerdiek J. Zur Veröffentlichung angenommen Eigentanteil: • Erstellen der caninen Gewebebank • RNA-Isolierung, cDNA-Synthese, DNAse Verdau • Real Time PCR • Verfassen des Artikels HMGA2 Expression in a Canine Model of Prostate Cancer Susanne Winkler1,2, Hugo Murua Escobar2, Britta Meyer1, Daniela Simon2, Nina Eberle2, Wolfgang Baumgartner3, Siegfried Loeschke1, Ingo Nolte2 and Jörn Bullerdiek1 1 Centre for Human Genetics, University of Bremen, Leobener Strasse ZHG, 28359 Bremen, Germany 2 Small Animal Clinic, University of Veterinary Medicine, Bischofsholer Damm 15, 30173 Hannover, Germany 3 Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany Correspondence to: Prof. Dr. Jörn Bullerdiek: Center for Human Genetics, University of Bremen, Leobener Strasse ZHG, D-28359 Bremen, Germany, Phone:+49-(0)421-218-4239, Fax: +49-(0)421-218-4239, Email: [email protected] 1 Abstract: Prostate cancer is the most prevalent cancer in western countries, being the third leading cause of male cancer death. To check its possible significance as a prognostic marker, allowing a better prognosis of the tumor, we analyzed the High-Mobility-Group-Protein-A2 gene (HMGA2) expression level because HMGA2 overexpression has been shown to correlate with malignant potential of various neoplasias. As the dog is beside men the only mammalian species showing spontaneously occurring prostate carcinomas with striking similarities to prostate cancer growth and progression in man it is an adequate animal model for this neoplasia. We used real-time quantitative RT-PCR for HMGA2 expression analyses in a subset of canine prostate tissue samples. Our investigations revealed that HMGA2 expression levels in all carcinomas were higher than those of any of the non-malignant tissues. Thus, canine prostate cancer represents a spontaneously occurring model to test therapeutic effects due to a reduced expression of HMGA2. Introduction: According to a recent study of the World Health Organisation (WHO), prostate cancer is the most prevalent cancer in western countries and is the third leading cause of male cancer death [1]. Prostate cancer most commonly affects men over the age of 50 years. Thus, considering the worldwide trend towards an ageing population, the number of prostate cancer deaths even can be expected to increase. There have been 220,900 new prostate cancer cases in the US in 2003, increasing to 234,460 new prostate cancer cases in the US in 2006. By the year 2020 393,000 prostate cancer-related deaths are expected worldwide [1-3]. Therefore, research into that tumor is a major challenge for future management of the disease. Of particular relevance are parameters allowing a better prediction of the course of the disease, because based on the histology of the lesions alone it is often not possible to recognize sufficiently the malignant potential of the tumor in terms of e.g. local invasiveness and metastatic spread. Nevertheless 2 the latter is a prerequisite for appropriate therapy management. Even more challenging is the field of “theragnostics”. To address these questions, animals models are of valuable help. Of these, the dog will be increasingly important in the future. Beside humans the dog is the only mammalian species that spontaneously develops prostate cancer with a considerably high frequency [4]. In addition, both species show striking similarities in the development and clinical course of the disease. The average age in which prostate carcinomas appear in dogs is ten years, closely resembling the situation in men, where prostate carcinoma most commonly appears in older patients [1, 2, 5]. In both species, adenocarcinomas of the prostate represent a locally invasive disease. Also in both species, the tumors tend to metastasize to the same distant regions [6] and akin to their human counterparts canine prostatic cancers vary over a broad range with respect to their clinical behavior. Currently, there is no widely accepted grading for canine prostate cancer. In human prostate carcinomas overexpression of HMGA1 has been described to correlate with more aggressive disease [7]. The similar protein HMGA2 is encoded by a separate gene, mapping to 12q14-15 [8]. All HMGA proteins show a high amino acid sequence homology in particular among their three highly conserved AT-hooks, representing the DNA-binding domains [9]. HMGA proteins are abundantly expressed during embryogenesis and expressed at very low levels in most normal adult tissues [10, 11]. However, HMGA2 is frequently involved in chromosomal translocations occurring in benign human tumors, such as lipomas, uterine leiomyomas, lung hamartomas, and fibroadenomas and adenolipomas of the breast [12-18]. It has been demonstrated, that truncated transcripts are able to induce cell transformation [19]. Because the dog is the only animal model for spontaneously occurring prostate cancers. We have addressed the present study to the potential role of HMGA2 Expression in canine prostate tumors and non-malignant tissues. If it turns out that overexpression of HMGA2 plays a role in these tumors they constitute a suitable model to study therapeutic effects aimed at a reduced expression of HMGA2. 3 Materials and Methods: Canine tissue samples: All canine tissues samples used in this study were taken from dogs of different breeds admitted to the Small Animal Clinic, University of Veterinary Medicine, Hannover due to different medical conditions. All samples were taken during surgery or autopsy and immediately frozen in liquid nitrogen and stored at –80°C for RNA isolation. Additionally, pathohistological examination was carried out by hematoxylin an eosin staining of paraffin embedded specimens, showing four non-neoplastic tissues, three hyperplasias, three cysts, one anaplastic carcinoma and five adenocarcinomas (Table 1). Examples of two adenocarcinomas are given in Figure 2. RNA isolation: Total RNA extraction of all tumor specimens was performed according to the RNeasy midi protocol for isolation of total RNA from animal tissues (Qiagen, Hilden, Germany), following the manufacturer’s instructions. cDNA-synthesis: 250 ng of total RNA of each sample were reverse transcribed using MMLV-Reverse Transcriptase and RNase Out (Invitrogen, Karlsruhe, Germany) with HMGA2dog Reverse Primer (5’GCCATTTCCTAGGTCTGCCTC3’) and 10 mM dNTPs. Each sample was prepared in triplicate for real-time quantitative RT-PCR. Negative controls were prepared by adding distilled water instead of RNA. Standard curves: mRNA levels were measured using an “absolute” quantification method, which is relative to amplicon specific standard curves. The standard curve resulted from seven dilution steps from 102 to 108 copies, each dilution step was measured in triplicate. The sequence for this standard was (5’ to 3’): AGAGTCCCTCCAAAGCAGCTCAAAAGAAAGC AGAAGCCAATGGAGAAAAACGGCCAAGAGGCAGACCTAGGAAATGGCCA. Copy numbers were normalized relative to total RNA concentration and expressed as copy numbers/250ng RNA. 4 Real-time quantitative RT-PCR: For quantitative analysis of canine HMGA2 expression levels 2µl of each of the cDNA triplicates were subjected to real time RT-PCR, using the ABI Prism 7000 Sequence Detection System (Applied Bioystems, Warrington, UK). To minimize the risk of false positives, the dilutions for the standard curve were dispensed after the samples of interest had been dispensed and sealed. An additional negative control was prepared using water with the PCR-reaction mix. Nucleotide sequences for the canine primers and probe were designed according to Gross et al. [20] with slight modifications of the lower primer: HMGA2dog up (5’ to 3’): AGTCCCTCCAAAGCAGCTCAAAAG, HMGA2dog lo (5’ to 3’): GCCATTTCCTAGGTCTGCCTC, HMGA2 probe (5’ to 3’): 6FAM-GAAGCCACTGG AGAAAAACGGCCA-TAMRA. PCR-conditions were as follows: 50°C for 2 minutes, initial denaturation at 95°C for ten minutes, followed by 45 cycles at 95 °C for 15 seconds and 60°C for 1 minute. Statistical Analysis: An exact chi-square (χ2) test was used to assess diagnostic efficiency. Results: Real-time quantitative RT-PCR: The mean quantities of all samples investigated are listed in Table 1. The expression levels of all carcinomas were significantly higher than those of any of the non malignant tissues. All ten non malignant prostatic tissues showed quantities lower than 50,000 transcripts per 250 ng total RNA. One prostatic tissue (sample No. 16) designated as a carcinoma showed a mean quantity below this amount, too, but pathohistological examination of this tissue shows that the tumor consisted of large areas of non-tumorigenic connective tissue. Thus, it seems possible, that the sample used for preparation of total RNA consisted mostly of this non-malignant tissue, explaining the low expression of HMGA2. Additionally, the integrity of the cDNA was tested by PCR for the house-keeping gene FUT6 (data not shown). Different from all other tissue samples investigated in this study, there was no visible band for the gene product in tissue sample 16. Thus, the actual HMGA2 transcript level 5 of this tumor may be higher than revealed by our investigations. The mean quantities among the investigated tissue samples, as indicated in Figure 1, showed a broad range from 127 transcripts per 250 ng RNA for the lowest level in non-neoplastic tissues and 4,239,000 transcripts per 250 ng RNA as the highest level observed in an adenocarcinoma. There was also some variation observed between tissues with the same pathohistological findings: nonneoplastic tissues showed transcript levels from 127 per 250 ng RNA to 1,433 per 250 ng RNA whereas benign lesions presented transcript levels from 963 per 250 ng RNA to 20,755 per 250 ng RNA. Adenocarcinomas exhibited a much broader span than the non-neoplastic tissues and benign lesions from 27,215 transcripts per 250 ng RNA to 4,239,000 transcripts per 250 ng RNA. Nevertheless, even when comparing the highest transcript level of nonneoplastic tissues to the lowest transcript level of adenocarcinomas, there is a nearly 19-fold increase of expression of HMGA2. Statistical Analysis: The HMGA2 level may be used to separate malign from benign cases. Assuming a logarithmic normal distribution of the HMGA2 values, the optimal limit to separate these categories is 23086 transcripts/250 ng RNA (smaller values indicate a benign situation). Using this limit, all cases can be classified as malign or benign, respectively, without error, i.e. with sensitivity = specificity = diagnostic efficiency = 100%. An exact chi-square test shows that this is not a random result (p < 0.001). Discussion: Compared to the situation in man, overexpression of genes in canine cancer compared to nonmalignant tissues has been studied rarely. As to a comparison between humans and dogs, Walker-Daniels et al. have described a specific tyrosine kinase, EphA2 showing overexpression in humans as well as in canine prostate cancer [21]. Herein we report that another gene, namely HMGA2 is overexpressed in canine prostatic cancer compared to non-neoplastic tissues. It has been demonstrated previously that overexpres6 sion of proteins of the HMGA family is associated with tumor progression in a variety of human tumors as e.g. colon cancer, squamous cell carcinoma of the oral cavity, breast, and lung cancer [22-26]. The expression of an embryonic protein in tumors of adults, as demonstrated in this study, suggests that HMGA2 is associated with the malignant potential in the oncogenic process [27]. Presumably, the neoplastic transformation of cells expressing high levels of HMGA proteins takes part in a multi-step process; resulting in the aberrant expression of factors able to induce the continuous expression of HMGA proteins. These elevated levels of HMGA proteins then contribute to neoplastic transformation of the cells [28]. Because of the correlation between elevated levels of HMGA and the malignant and metastatic potential of tumors the overexpression of HMGA proteins can be used as a diagnostic and prognostic marker [23, 29]. Thus, some efforts have been made to establish HMGA2 expression as a tool to classify subsets of malignant tumors with poor prognosis [30]. Herein we report on HMGA2 expression in canine prostate cancer, a disease in a companion animal which closely resembles the situation in men. Our data clearly show that expression of HMGA2 is low in non-neoplastic tissues, rises in benign lesions with intermediate values for cysts and hyperplasia and increases at least 19 fold in carcinomas (Figure 1). In our study, all malignant neoplasias showed expression levels beyond a quantity of 50,000 transcripts per 250ng total RNA, whereas none of the non-malignant tissues showed expression levels exceeding that value. Most likely, the broad intertumoral range of transcript levels reflects differences of the aggressive behavior of the tumors. In summary, our investigations show that in canine prostate cancer HMGA2 Expression seems to play an important role. Therefore, canine prostate cancer not only represents a valuable animal model for that frequent type of human cancer, but is also an interesting model with respect to therapeutic intervention aimed at reducing HMGA2 Expression. 7 Table 1: Pathohistological findings of the canine tissue samples examined. Additionally, information about breed and age of the related dogs is given as well as the Mean Quantity of transcription levels obtained by Real-Time Quantitative RT- PCR. Sample Breed No. Age Microscopic (years) Findings 1 4 Non-neoplastic 2 Golden Retriever Engl. Setter 9 3 Mixed breed 11 4 Mixed breed 14 5 6 Golden Re- 11 triever Hovavart 10 7 8 Munsterlander 10 Briard 10 9 10 11 12 13 14 Rottweiler Mixed breed Mixed breed Mixed breed Pinsher Mixed breed 8 10 11 13 7 9 15 16 Mixed breed Mixed breed 16 10 Anisokaryosis of cells, cytoplasm poorly definable, Adenocarcinoma Anisokaryosis of cells, invasive growth, Adenocarcinoma Moderately cystic hyperplasia Multifocal, low-grade hyperplasia Anisokaryosis of cells, large nucleus with multiple nucleoli, Anapl. Carcinoma Non-neoplastic Highly malignant adenocarcinoma Moderately hyperplasia Non-neoplastic Cyst Cyst Cyst Pleomorphic cells, several anaplastic cells, Adenocarcinoma Non-neoplastic large areas of connective tissue, invasive growth, Adenocarcinoma Metastatic behavior Mean Quantity (Copy Number/ 250ng/RNA 127 Bone meta- 85,587 stases Infiltration of 1,233,000 blood vessels - 963 - 20,755 Lymph node metastases 1,116,000 Mesentery metastases Not tested 213 4,239,000 Not tested 466 27,215 7,603 1,433 4,188 10,923 9,710 56,984 8 Figures Figure 1: HMGA2 Expression in canine prostatic tissues: white bars: non-neoplastic tissues; spotted bars: hyperplasias; grey bars: cysts; black bars: carcinomas. Figure 2: a) Sample No 8: poorly differentiated adenocarcinoma of the canine prostate with mucus filled atypical glands on the left and several mitoses. b) Sample No 14: moderately to poorly differentiated adenocarcinoma of the canine prostate. 9 References: [1] Brundtland GH, World Health Organization, Geneva 2001. [2] Mettlin CJ, Murphy GP, Rosenthal DS, Menck HR. The National Cancer Data Base report on prostate carcinoma after the peak in incidence rates in the U.S. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer 1998; 83: 1679-1684. [3] American Cancer Society 2007, http://www.cancer.org/docroot/stt/stt_0.asp. [4] Boutemmine D, Bouchard N, Boerboom D, Jones HE, Goff AK, Dore M, Sirois J. Molecular characterization of canine prostaglandin G/H synthase-2 and regulation in prostatic adenocarcinoma cells in vitro. Endocrinology 2002; 143: 1134-1143. [5] Nolte I, Nolte M. Praxis der Onkologie bei Hund und Katze. Enke, Stuttgart, 2000. [6] MacEwen EG. Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment. Cancer Metastasis Rev 1990; 9: 125-136. [7] Tamimi Y, van der Poel HG, Denyn MM, Umbas R, Karthaus HF, Debruyne FM, Schalken JA. Increased expression of high mobility group protein I(Y) in high grade prostatic cancer determined by in situ hybridization. Cancer Res 1993; 53: 5512-5516. [8] Wanschura S, Kazmierczak B, Schoenmakers E, Meyen E, Bartnitzke S, Van de Ven W, Bullerdiek J, Schloot W. Regional fine mapping of the multiple-aberration region involved in uterine leiomyoma, lipoma, and pleomorphic adenoma of the salivary gland to 12q15. Genes Chromosomes Cancer 1995; 14: 68-70. [9] Wisniewski JR, Schwanbeck R. High mobility group I/Y: multifunctional chromoso- mal proteins causally involved in tumor progression and malignant transformation (review). Int J Mol Med 2000; 6: 409-419. [10] Pentimalli F, Dentice M, Fedele M, Pierantoni GM, Cito L, Pallante P, Santoro M, Viglietto G, Dal Cin P, Fusco A. Suppression of HMGA2 protein synthesis could be a tool for the therapy of well differentiated liposarcomas overexpressing HMGA2. Cancer Res 2003; 63: 7423-7427. [11] Rogalla P, Drechsler K, Frey G, Hennig Y, Helmke B, Bonk U, Bullerdiek J. HMGI-C expression patterns in human tissues. Implications for the genesis of frequent mesenchymal tumors. Am J Pathol 1996; 149: 775-779. [12] Ashar HR, Fejzo MS, Tkachenko A, Zhou X, Fletcher JA, Weremowicz S, Morton CC, Chada K. Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell 1995; 82: 57-65. 10 [13] Bullerdiek J, Wobst G, Meyer-Bolte K, Chilla R, Haubrich J, Thode B, Bartnitzke S. Cytogenetic subtyping of 220 salivary gland pleomorphic adenomas: correlation to occurrence, histological subtype, and in vitro cellular behavior. Cancer Genet Cytogenet 1993; 65: 27-31. [14] Hennig Y, Deichert U, Bonk U, Thode B, Bartnitzke S, Bullerdiek J. Chromosomal translocations affecting 12q14-15 but not deletions of the long arm of chromosome 7 associated with a growth advantage of uterine smooth muscle cells. Mol Hum Reprod 1999; 5: 1150-1154. [15] Hennig Y, Wanschura S, Deichert U, Bartnitzke S, Bullerdiek J. Rearrangements of the high mobility group protein family genes and the molecular genetic origin of uterine leiomyomas and endometrial polyps. Mol Hum Reprod 1996; 2: 277-283. [16] Kazmierczak B, Hennig Y, Wanschura S, Rogalla P, Bartnitzke S, Van de Ven W, Bullerdiek J. Description of a novel fusion transcript between HMGI-C, a gene encoding for a member of the high mobility group proteins, and the mitochondrial aldehyde dehydrogenase gene. Cancer Res 1995; 55: 6038-6039. [17] Kazmierczak B, Wanschura S, Rosigkeit J, Meyer-Bolte K, Uschinsky K, Haupt R, Schoenmakers EF, Bartnitzke S, Van de Ven WJ, Bullerdiek J. Molecular characterization of 12q14-15 rearrangements in three pulmonary chondroid hamartomas. Cancer Res 1995; 55: 2497-2499. [18] Schoenmakers EF, Wanschura S, Mols R, Bullerdiek J, Van den Berghe H, Van de Ven WJ. Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nat Genet 1995; 10: 436-444. [19] Battista S, Fidanza V, Fedele M, Klein-Szanto AJ, Outwater E, Brunner H, Santoro M, Croce CM, Fusco A. The expression of a truncated HMGI-C gene induces gigantism associated with lipomatosis. Cancer Res 1999; 59: 4793-4797. [20] Gross KL, Neskey DM, Manchanda N, Weremowicz S, Kleinman MS, Nowak RA, Ligon AH, Rogalla P, Drechsler K, Bullerdiek J, Morton CC. HMGA2 expression in uterine leiomyomata and myometrium: quantitative analysis and tissue culture studies. Genes Chromosomes Cancer 2003; 38: 68-79. [21] Walker-Daniels J, Coffman K, Azimi M, Rhim JS, Bostwick DG, Snyder P, Kerns BJ, Waters DJ, Kinch MS. Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate 1999; 41: 275-280. 11 [22] Miyazawa J, Mitoro A, Kawashiri S, Chada KK, Imai K. Expression of mesenchyme- specific gene HMGA2 in squamous cell carcinomas of the oral cavity. Cancer Res 2004; 64: 2024-2029. [23] Rogalla P, Drechsler K, Kazmierczak B, Rippe V, Bonk U, Bullerdiek J. Expression of HMGI-C, a member of the high mobility group protein family, in a subset of breast cancers: relationship to histologic grade. Mol Carcinog 1997; 19: 153-156. [24] Meyer B, Loeschke S, Schultze A, Weigel T, Sandkamp M, Goldmann T, Vollmer E, Bullerdiek J. HMGA2 Overexpression in Non-Small Cell Lung Cancer. Molecular Carcinogenesis in press. [25] Abe N, Watanabe T, Sugiyama M, Uchimura H, Chiappetta G, Fusco A, Atomi Y. Determination of high mobility group I(Y) expression level in colorectal neoplasias: a potential diagnostic marker. Cancer Res 1999; 59: 1169-1174. [26] Sarhadi V, Wikman H, Salmenkivi K, Kuosma E, Sioris T, Salo J, Karjalainen A, Knuutila S, Anttila S. Increased expression of high mobility group A proteins in lung cancer. J Pathol 2006. [27] Goodwin G. The high mobility group protein, HMGI-C. Int J Biochem Cell Biol 1998; 30: 761-766. [28] Reeves R. Molecular biology of HMGA proteins: hubs of nuclear function. Gene 2001; 277: 63-81. [29] Reeves R. Structure and function of the HMGI(Y) family of architectural transcription factors. Environ Health Perspect 2000; 108 Suppl 5: 803-809. [30] Rogalla P, Drechsler K, Schroder-Babo W, Eberhardt K, Bullerdiek J. HMGIC ex- pression patterns in non-small lung cancer and surrounding tissue. Anticancer Res 1998; 18: 3327-3330. 12 XVI. Inhibitory effect of antisense HMGA AAV-mediated delivery suppresses cell proliferation in canine carcinoma cell line Soller JT, Murua Escobar H, Winkler S, Fork M, Pöhler C, Bünger S, Sterenczak KA, Willenbrock S, Nolte I, Bullerdiek J. In Vorbereitung Eigenanteil: • Bereitstellung der Zell-Linie • Zellkultur für die Produktion der Viren • Hilfestellung bei der Transfektion zur Virusproduktion • Hilfestellung bei der Durchführung des Proliferationsassays Inhibitory effect of antisense HMGA AAV-mediated delivery suppresses cell proliferation in canine carcinoma cell line J T Soller1,2, H Murua Escobar1,2, S Winkler1, M Fork2, C Pöhler1, S Bünger1, K A Sterenczak1,2, S Willenbrock1,2, I Nolte2 and J Bullerdiek1 1 Centre for Human Genetics, University of Bremen, Leobener Strasse ZHG, 28359 Bremen, Germany 2 Small Animal Clinic, University of Veterinary Medicine, Bischofsholer Damm 15, 30173 Hannover, Germany Correspondence to: Jörn Bullerdiek Center for Human Genetics University of Bremen, Leobener Strasse ZHG D-28359 Bremen, Germany, Phone:+49-(0)421-218-4239, Fax: +49-(0)421-218-4239, Email: [email protected] 1 Abstract Carcinomas of the prostate are the most common malignancy with a high cause for tumor related deaths in men. The dog is the only mammalian species which shows a predisposition for spontaneously developing cancer of the prostate and suitable as a genetic model organism for human prostate cancer considering the similarities between both species in metastatic behavior, histopathology, age, as well as the clinical course of carcinomas of the prostate gland. In humans overexpression of high mobility group A (HMGA1 and HMGA2) proteins has been observed in a variety of cancers. Aberrant HMGA protein expression has been reported to correlate with an appearance of a malignant phenotype of tumors and the metastasis of tumor cells, often associated with an unfavorable prognosis. Herein we report that adeno-associated virus (AAV)-2 particles carrying the mRNA of HMGA1 or HMGA2 in antisense orientation induce an inhibition of proliferation of canine prostate carcinoma cells in vitro, whereas a control AAV-2 carrying the lacZ mRNA did not inhibit the growth of the tumor-cells. Contribute to our results a suppression of HMGA expression mediated by recombinant AAV-2 carrying HMGA genes in antisense orientation presents a method in a potential treatment of prostate carcinomas. Introduction In Europe prostate cancer is a leading cause of death among men with over 56,000 deaths in the European Union 19981. Worldwide the incidence of registered prostate cancer accounts for 193,000 in 1993, which is strongly related to Western lifestyle and an increasing risk of developing the disease at middle age (> 50 years). For men the risk o get prostate cancer is about 10 % in lifetime with a mortality rate of 3 %2. Additionally the risk of developing prostate cancer shows an ethnical predisposition within the human population. People of African origin appear to be at greater risk for prostate cancer than Caucasian people, whereas Asian people develop prostate cancer less than the latter3. In terms of animal models dogs are most suitable to elucidate the mechanisms of pathogenesis of human prostate carcinomas. First of all dogs are the only known mammalian species which frequently develop carcinomas of the prostate comparable to humans4. As abundantly described in the literature over the last ten years, in many cases dogs and humans share the genetic pathways for developing neoplastic 2 diseases, including cancer predisposition, progression and histological findings5, 6. Additionally canine tumor entities allow a better comparability to human tumor diseases than rodent tumors in terms of patient size and cell kinetics. Also, canine cancer diseases are characterized by a spontaneous development of neoplasias without experimental induction by carcinogen, transplantation and artificially acquired immunodeficiency, respectively7. It is known that dogs develop cancer twice as often as humans together with a higher progression of tumors allowing a better monitoring of the tumor process8. Canine prostate carcinomas akin to human prostate adenocarcinomas constitute as a local invasiveness of growth and metastasize to the same organs e.g. lung and bones by bloodstream or lymph4. In case of age distribution older individuals are prevalently affected by developing prostate cancer with an average age of 65 years in men9 which means a comparable age of 10 years in dogs10. In numerous human malignant tumors high mobility group A proteins are highly expressed while the expression of HMGA is relatively low in non-dividing well differentiated adult tissues11-13. An overexpression of HMGA is highly associated with neoplastic transformation and correlated with bad prognosis for the patient. It is proposed to recognize high levels of HMGA as suitable prognostic markers for malignancies14-17. The HMGA protein group consists of three members HMGA1a, HMGA1b and HMGA2. HMGA proteins are characterized by three highly conserved DNA binding domains called the “AT-hooks”18. The proteins HMGA1a and HMGA1b are isoforms coded by the same gene for alternative splicing variants. HMGA1 is located on human chromosome region 6p2119, 20. The closely related HMGA2 protein is encoded by a different gene, which is located on chromosome region 12q14-152123 . These non-histone proteins are small secondary structured polypeptides which preferably bind to the minor groove of AT-rich B-form DNA and are defined as architectural nuclear factors, which are involved in chromatin dynamics24, 25. HMGA1 proteins influence the expression by modifying chromatin structure of a large number of genes, for example ATF2, IFN-β, NFκB, Interleukin-2 receptor, Interleukin-4 26-31 HMGA2 as a transcription factor regulates the genes of cyclin A, pRB and ERCC1 . 32- 35 . Overexpression of HMGA1 is reported in a diversity of human cancers, as for example breast cancer, cervical cancer, colorectal cancer, thyroid cancer and prostate cancer15, 16, 36, 37, whereas high levels of HMGA2 expression are observed in 3 breast cancer, leukemia, non-small cell lung cancer and pancreatic cancer38-42. In case of prostate malignancies HMGA2 expression is suggested to be a powerful prognostic marker tool in clinical practice in diagnosis and progression of prostate carcinomas. It is also proposed that not even an overexpression of HMGA proteins is sufficient for tumor progression but also their posttranslational modifications can be used as a potent tool in tumor grading 43. Due to the similarities of human and canine prostate cancer the characterization of the nucleotide and amino acid sequences of HMGA is of significant value. For HMGA1 we recently characterized the canine HMGA1a and HMGA1b transcripts and deduced their protein sequence, which showed a 100 % identity to its human counterpart whereas the coding sequence shows a 95 % identity in both splice variants44. To the best of our knowledge the canine HMGA2 transcript was not characterized so far. In order to construct antisense HMGA2 AAV Vectors for the experimental studies presented herein we characterized the coding sequence which contains the full sequence of the AT-hooks. Recently a new cell line was established from a canine prostate carcinoma45, which joins the existing well-known human prostate carcinoma cell lines available for cancer research. Due to the similarities between human and canine prostate cancer entities, this new canine cell line provides a valuable tool in experimental cancer gene therapy. An important aspect of the canine carcinoma cell line as well as the original tumor from which the cell line is derived from is the observation of high level expression of HMGA genes. The overexpression of HMGA genes in the canine cell line strongly correlates to the described malignancy of the carcinoma46. The aim of this study was to construct recombinant adeno-associated viruses encoding HMGA1 and HMGA2 antisense RNA and to analyze the proliferative effects of canine carcinoma cells infected with the virus. AAV mediated gene therapy experiments show many advantages to deliver antitumor drugs compared to the most prominent gene therapy tool of adenoviral vectors, which induce host immune response to the target cells. Recombinant AAVs demonstrate long-term transgene expression and a minimal immune response.47 Previous studies have shown that AAV vectors can successfully be used for the delivery of gene expression in sense and antisense orientation for up- and down regulation of target genes 48-51. In terms of suppression of HMGA expression other studies used adenoviral virus systems to deliver anti sense HMGA cDNA in order to induce inhibitory effects of tumor cell 4 proliferation, malignant transformation and engrafted tumor sizes52, 53 . In our study, we demonstrate the inhibition of cell proliferation in a canine prostate carcinoma cell line mediated by antisense HMGA mRNA recombinant AAVs (rAAV-asHMGA1, rAAV-asHMGA2). Material and methods Cell lines: The canine carcinoma cell line (CT1258)45 (Centre for Human Genetics, University of Bremen, Bremen, Germany) was cultured in sterile flasks containing 5 ml of medium 199 with Earle’s salts (Gibco, Invitrogen, Karlsruhe, Germany) with 20% heat inactivated and filtrated fetal bovine serum (FBS). 12 hours prior to infection with recombinant AAVs, 2500 CT1258 cells per well were seeded into 96 multiwell dishes and cultivated in 10 % FBS 199 medium. For AAV production HEK-293 cells (AAV-293) were obtained from Stratagene’s AAVHelper-Free System. According to the manufacture’s protocol the cells were cultured in 10 % FBS D-MEM Medium (Biochrom AG, Berlin, Germany). All cell lines were cultivated in a 37°C incubator with 5 % CO2 saturation. AAV plasmids: The vector plasmid for generating the recombinant AAVs was obtained from Stratagene’s AAV-Helper-Free System (Stratagene, La Jolla, USA). The kit includes the pAAV-MCS (AF396260) plasmid containing the ITR sequences, multiple cloning site (MCS), the CMV promoter and hGH poly A tail. The system also includes the pAAV-RC (AF369963) for AAV replication and the capsid genes, the pHelper (AF396965) which provides adenoviral helper function by coding for E2A, E4, and VA RNA genes; the pAAV-LacZ (AF369964) contains the CMV promoter, the ORF for the reporter gene lacZ and ITR sequences (Figure 1). For all transfection and clonal production of the plasmids ultra competent the XL-10-Gold E. coli were used (Stratagene, La Jolla, USA). The AAV plasmids were harvested and purified with the EndoFree Plasmid Purification Kit (Qiagen, Hilden Germany). Cloning of canine HMGA cDNA and construction of antisense RNA plasmid vectors: Total RNA was isolated from CT1258 canine carcinoma cell line using RNeasy Mini Kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol. In order to prevent genomic DNA contamination DNAse I digestion was performed using RNaseFree DNase Set (Qiagen, Hilden, Germany). cDNA was synthesized using 3’RACE adapter primer AP2 (seq), 5µg of total RNA, and SuperScript II reverse transcriptase (Invitogen, Karlsruhe, Germany) according to the manufacturer’s instructions. The 5 RT-PCRs for the molecular cloning the canine cDNA fragments of HMGA1a (515 bp) and HMGA2 (326 bp) were done using BamHI and EcoRI adapter primer pairs. For HMGA1, BamHI-IYup (enzyme sites in minuscule) (5’-CGggatccCTCGCGGCATCCCAGCCATCACTC-3’), (5’-CGgaattcGCGGCTGGTGTGCTGTGTAGTGTG-3’) EcoRI-IYlo and for HMGA2, BamHI-ICup (5’-CGggatccGTGAGGGCGCGGGGCAGCCGTCCACTTC-3’), EcoRIIClo (5’-CGgaattcCTCTTCGGCAGACTCTTGTGAGGATGTCT-3’) were used. A 1.5 % agarose gel electrophoresis was performed to separate the PCR products, the fragments were recovered with QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany) The PCR products were cloned in the pGEM-T Easy Vector and sequenced in forward and reverse direction (MWG-Biotech AG, Ebersberg, Germany). The vector plasmid containing the HMGA (HMGA1a or HMGA2) cDNA was afterwards double-digested with BamHI and EcoRI (Fermentas GmbH, St.LeonRot, Germany), and separated in a 1.5 % agarose gel, and the HMGA fragment was purified with QIAquick Gel Extraction Kit. In a separate preparation the pAAV-MCS plasmid was correspondently digested with BamHI and EcoRI endonuclease enzyme and the assay was purified with QIAquick Nucleotide Removal Kit (Qiagen, Hilden, Germany). The HMGA fragment was ligated with T4-DNA Ligase (Fermentas GmbH, St Leon-Rot, Germany) at 25 °C for 12 h into the EcoRI/BamHI sites of the linearized pAAV-MCS plasmid to generate pAAV-HMGA plasmids in anti sense orientation relative to the CMV promoter (pAAV-asHMGA1a, pAAV-asHMGA2) (Figure 1). For validation the constructed pAAV-asHMGA vectors were confirmed by sequencing and restriction enzyme digestion. 6 pAAV-LacZ CMV-P β-Globin intron lacZ CDS hGH pA L-ITR R-ITR pAAV-MCS CMV-P β-Globin intron MCS hGH pA L-ITR R-ITR pAAV-asHMGA1 CMV-P β-Globin intron canine asHMGA1 cDNA hGH pA L-ITR R-ITR pAAV-asHMGA2 CMV-P β-Globin intron canine asHMGA2 cDNA L-ITR Figure 1 hGH pA R-ITR Overview of the rAAV vector plasmids rAAV vector construction, purification and titer measurement Recombinant AAVs serotype 2 (AAV-2) were generated by transient transfection with CaCl2/HBS buffer of AAV-293 cells with 10 µg of each of the three plasmids (pAAVRC, pAAV-Helper, pAAV-asHMGA or pAAV-LacZ, respectively) according to the manufacturer’s protocol (Stratagene, AAV-Helper-Free System). The AAV-2 primary stocks were purified using ViraKit AAV Purification Kit (Virapur LLC, San Diego, USA) and stored in aliquot at -20°C. The virus genome titer (vg/ml) was determined by CMV promoter specific quantitative RT-PCR (qRT-PCR) as mentioned by previously described methods54, 55 For absolute quantification of vg/ml the qRT-PCR amplification was carried out using the Applied Biosystem 7300 Real-Time PCR System (Applied Biosystem, Darmstadt, Germany). The following primers were used in the qRT-PCR reactions: GAGGTCTATATAAGCAGAGCTCGTTTAGT 7 forward 3’), reverse pAAV pAAV (5’ (5’ GGTGTCTTCTATGGAGGTCAAAACA 3’) and the fluorogenic probe pAAV (5’ 6FAM-CAGATCGCCTGGAGACGCCATCC-TAMRA). Cell proliferation assay: 2500 CT1258 cells per well were vertically seeded into a 96 multi well plate in eight different wells in medium 199 (20 % FBS) at incubated for 24 h, 37°C and 5 % CO2. The following day the medium was removed and replaced by 2 % FBS 199 medium. Subsequently, the CT1258 cells were divided into two different groups: group A, infected cells with a combination of 50 rAAV-asHMGA virus genomes per cell (vg/cell) (25/25 vg/cell of rAAV-asHMGA1a/rAAV-asHMGA2) and an untreated control, group B with 50 vg/cell of rAAV-LacZ infected cells and untreated control. In order to prevent cross-contamination each assay was performed on a separate multi well plate. After 90 min 18 % FBS 199 medium was added to the treated and untreated cells. BrdU was added after 60 h for an incubation time of 12 h. After 72 h of rAAV infection the incubation was stopped and prepared for cell proliferation assay as noted in the manufacture’s instruction. The quantification of the cell proliferation was performed by ELISA, BrdU colorimetric assay (Roche Diagnostics, Penzberg, Germany). The measurement of absorbance of the samples was done with the Synergy HT multititer plate reader (Biotek Inc., Winooski, USA) at 370 nm (reference wavelength 492 nm). Statistical analysis: Statistical significance was tested using an unpaired Student’s ttest. A P-value less than 0.01 was considered to be statistically significant. Results The incorporation of BrdU as a synthetic analog of thymidine into newly synthesized DNA of replicating cells of the S-phase is used for the measurement of proliferation. The cells were either served as a control or treated with 50 vg/cell of rAAV-LacZ. For antisense HMGA AAV treatment the cells were infected with 50 vg/cell of rAAVasHMGA in a combination (50:50 ratios) of both asHMGA1a and asHMGA2. For comparability the absorbance values were presented as percentage of proliferation. The proliferation rate of untreated cells was presumed to be 100 % meaningthat the quotient of the mean values from treated and untreated cells are expressed as the percentage of proliferation rates of cells exposed to rAAV vectors. Both rAAV-LacZ and rAAV-asHMGA vectors showed a decrease in proliferation of the CT1285 cells (Figure 2). Whereas the effect of 50 rAAV-LacZ vg/cells is a decrease of 21.5 % compared to the untreated control, the P-value is 0.02, which 8 means the decline of proliferation seems to be out of significance. A decrease in proliferation is shown for the CT1258 cells treated with the rAAV-asHMGA vector combination. The inhibitory effect of proliferation is about 95.5 % compared to the control. Statistical analyses using an unpaired Student’s t-test showed a high significance of decreasing cell proliferation with P<0.0001. (Figure 2). Inhibition of CT1258 cell proliferation induced by rAAV 140 120 Absorbance (norm alized to %) * 100 80 60 40 20 ** 0 LacZ control LacZ (50 vg/cell) asHMGA control asHMGA (50 vg/cell) Figure 2 Effect of cell proliferation inhibition by the addition of rAVV at 50 vg/cell (white: control, gray: rAAV) *P = 0.02 rAAV-LacZ, **P < 0.001 rAAV-asHMGA (A1a/A2) Discussion In many tumors mostly in benign mesemchymal tumors there seems to be a transcriptional reactivation of HMGA genes because of chromosomal rearrangements, as for example in uterine leiomyomas, lipomas and pulmonary chrondroid harmatomas22, 56, 57 . In case of HMGA2 transcriptional reactivation are often been detected in these benign tumor entities. Translocations generate a fusion transcript, which contains the three AT-hooks and ectopic sequences from other 9 genes58, whereas in malign tumors a reactivation of HMGA transcription is caused by disordered promoter and enhancer regions affecting the gene regulation mechanism59. Furthermore it is proposed that a translocation event within the HMGA2 gene locus can remove its recognition sites for its corresponding miRNA let760. A high level of HMGA protein expression is an important aspect in neoplasias concerning their malignant transformation as well as the progress for the development of metastasis. An overexpression of HMGA1 and HMGA2 genes seems to be characteristic for many different malign tumors in particular of thyroid, breast, lung and prostate cancer. Previous in-vitro and in-vivo studies have shown that antisense HMGA vector transcripts induced by adenoviral vectors were able to prevent a significant protein synthesis of HMGA, which led to decreasing tumor growth and proliferation in transfected cancer cells and tissues of the thyroid52. In the present study the in-vitro infection of canine prostate carcinoma cells by combination of recombinant antisense HMGA1 and HMGA2 AAV-vectors also show an inhibition of cell proliferation. The incorporation of BrdU into newly synthesized DNA indicates the cell division and can be used as tool for indicating cell proliferation. The infection of canine prostate carcinoma cells with rAAVasHMGA viruses led to a decreased assembly of BrdU by the means of only 4.5% of the cells showed a proliferation compared to the untreated control. An inhibitory effect of 21.5 % of rAAV-LacZ can be estimated but the P-value shows 0.02 and is slightly out of significance. A possible inhibitory effect of rAAV-LacZ infection accounts to the genetic expression of the external lacZ gene. References 1. 2. 3. 4. 5. 6. 10 Davidson P, Gabbay J. Should mass screening for prostate cancer be introduced at the national level? WHO Regional Office for Europe’s Health Evidence Network (HEN). 2004:1-12. Brundtland G. Men, ageing and health - achieving health across the life span. Geneva: World Health Organisation; 2001. WHO. Global cancer rates could increase by 50% to 15 million by 2020. World Health Organization. Available at: http://www.who.int/mediacentre/news/releases/2003/pr27/en/. 2007. Boutemmine D, Bouchard N, Boerboom D, et al. Molecular characterization of canine prostaglandin G/H synthase-2 and regulation in prostatic adenocarcinoma cells in vitro. Endocrinology. Mar 2002;143(3):1134-1143. Khanna C, Hunter K. Modeling metastasis in vivo. Carcinogenesis. Mar 2005;26(3):513-523. Ostrander EA, Wayne RK. The canine genome. Genome Res. Dec 2005;15(12):1706-1716. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 11 Vail DM, MacEwen EG. Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest. 2000;18(8):781-792. MacEwen EG. Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment. Cancer Metastasis Rev. Sep 1990;9(2):125136. ACS. Detailed Guide: Prostate Cancer. American Cancer Society. 07/26/2006. Available at: http://www.cancer.org/docroot/CRI/content/CRI_2_4_2X_What_are_the_risk_f actors_for_prostate_cancer_36.asp?sitearea=. 2007. Withrow SJ, MacEwen EG, eds. Small Animal Clinical Oncology. 3 ed.; 2001. Chiappetta G, Avantaggiato V, Visconti R, et al. High level expression of the HMGI (Y) gene during embryonic development. Oncogene. Dec 5 1996;13(11):2439-2446. Rogalla P, Drechsler K, Frey G, et al. HMGI-C expression patterns in human tissues. Implications for the genesis of frequent mesenchymal tumors. Am J Pathol. Sep 1996;149(3):775-779. Hirning-Folz U, Wilda M, Rippe V, Bullerdiek J, Hameister H. The expression pattern of the Hmgic gene during development. Genes Chromosomes Cancer. Dec 1998;23(4):350-357. Chiappetta G, Bandiera A, Berlingieri MT, et al. The expression of the high mobility group HMGI (Y) proteins correlates with the malignant phenotype of human thyroid neoplasias. Oncogene. Apr 6 1995;10(7):1307-1314. Chiappetta G, Tallini G, De Biasio MC, et al. Detection of high mobility group I HMGI(Y) protein in the diagnosis of thyroid tumors: HMGI(Y) expression represents a potential diagnostic indicator of carcinoma. Cancer Res. Sep 15 1998;58(18):4193-4198. Flohr AM, Rogalla P, Bonk U, et al. High mobility group protein HMGA1 expression in breast cancer reveals a positive correlation with tumour grade. Histol Histopathol. Oct 2003;18(4):999-1004. Miyazawa J, Mitoro A, Kawashiri S, Chada KK, Imai K. Expression of mesenchyme-specific gene HMGA2 in squamous cell carcinomas of the oral cavity. Cancer Res. Mar 15 2004;64(6):2024-2029. Reeves R, Nissen MS. The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J Biol Chem. May 25 1990;265(15):8573-8582. Friedmann M, Holth LT, Zoghbi HY, Reeves R. Organization, inducibleexpression and chromosome localization of the human HMG-I(Y) nonhistone protein gene. Nucleic Acids Res. Sep 11 1993;21(18):4259-4267. Johnson KR, Lehn DA, Reeves R. Alternative processing of mRNAs encoding mammalian chromosomal high-mobility-group proteins HMG-I and HMG-Y. Mol Cell Biol. May 1989;9(5):2114-2123. Manfioletti G, Giancotti V, Bandiera A, et al. cDNA cloning of the HMGI-C phosphoprotein, a nuclear protein associated with neoplastic and undifferentiated phenotypes. Nucleic Acids Res. Dec 25 1991;19(24):67936797. Schoenmakers EF, Wanschura S, Mols R, Bullerdiek J, Van den Berghe H, Van de Ven WJ. Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nat Genet. Aug 1995;10(4):436-444. Chau KY, Patel UA, Lee KL, Lam HY, Crane-Robinson C. The gene for the human architectural transcription factor HMGI-C consists of five exons each 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 12 coding for a distinct functional element. Nucleic Acids Res. Nov 11 1995;23(21):4262-4266. Bustin M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol. Aug 1999;19(8):5237-5246. Bustin M, Reeves R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol. 1996;54:35-100. Chuvpilo S, Schomberg C, Gerwig R, et al. Multiple closely-linked NFAT/octamer and HMG I(Y) binding sites are part of the interleukin-4 promoter. Nucleic Acids Res. Dec 11 1993;21(24):5694-5704. Du W, Maniatis T. The high mobility group protein HMG I(Y) can stimulate or inhibit DNA binding of distinct transcription factor ATF-2 isoforms. Proc Natl Acad Sci U S A. Nov 22 1994;91(24):11318-11322. Thanos D, Maniatis T. The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell. Nov 27 1992;71(5):777-789. Lewis H, Kaszubska W, DeLamarter JF, Whelan J. Cooperativity between two NF-kappa B complexes, mediated by high-mobility-group protein I(Y), is essential for cytokine-induced expression of the E-selectin promoter. Mol Cell Biol. Sep 1994;14(9):5701-5709. John S, Reeves RB, Lin JX, et al. Regulation of cell-type-specific interleukin-2 receptor alpha-chain gene expression: potential role of physical interactions between Elf-1, HMG-I(Y), and NF-kappa B family proteins. Mol Cell Biol. Mar 1995;15(3):1786-1796. Yie J, Merika M, Munshi N, Chen G, Thanos D. The role of HMG I(Y) in the assembly and function of the IFN-beta enhanceosome. Embo J. Jun 1 1999;18(11):3074-3089. Cattaruzzi G, Altamura S, Tessari MA, et al. The second AT-hook of the architectural transcription factor HMGA2 is determinant for nuclear localization and function. Nucleic Acids Res. 2007;35(6):1751-1760. Fedele M, Visone R, De Martino I, et al. HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell. Jun 2006;9(6):459471. Tessari MA, Gostissa M, Altamura S, et al. Transcriptional activation of the cyclin A gene by the architectural transcription factor HMGA2. Mol Cell Biol. Dec 2003;23(24):9104-9116. Borrmann L, Schwanbeck R, Heyduk T, et al. High mobility group A2 protein and its derivatives bind a specific region of the promoter of DNA repair gene ERCC1 and modulate its activity. Nucleic Acids Res. Dec 1 2003;31(23):68416851. Bandiera A, Bonifacio D, Manfioletti G, et al. Expression of HMGI(Y) proteins in squamous intraepithelial and invasive lesions of the uterine cervix. Cancer Res. Feb 1 1998;58(3):426-431. Bussemakers MJ, van de Ven WJ, Debruyne FM, Schalken JA. Identification of high mobility group protein I(Y) as potential progression marker for prostate cancer by differential hybridization analysis. Cancer Res. Jan 15 1991;51(2):606-611. Rogalla P, Drechsler K, Kazmierczak B, Rippe V, Bonk U, Bullerdiek J. Expression of HMGI-C, a member of the high mobility group protein family, in 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 13 a subset of breast cancers: relationship to histologic grade. Mol Carcinog. Jul 1997;19(3):153-156. Rommel B, Rogalla P, Jox A, et al. HMGI-C, a member of the high mobility group family of proteins, is expressed in hematopoietic stem cells and in leukemic cells. Leuk Lymphoma. Aug 1997;26(5-6):603-607. Rogalla P, Drechsler K, Schroder-Babo W, Eberhardt K, Bullerdiek J. HMGIC expression patterns in non-small lung cancer and surrounding tissue. Anticancer Res. Sep-Oct 1998;18(5A):3327-3330. Abe N, Watanabe T, Masaki T, et al. Pancreatic duct cell carcinomas express high levels of high mobility group I(Y) proteins. Cancer Res. Jun 15 2000;60(12):3117-3122. Meyer B, Loeschke S, Schultze A, et al. HMGA2 overexpression in non-small cell lung cancer. Mol Carcinog. May 3 2007. Diana F, Di Bernardo J, Sgarra R, et al. Differential HMGA expression and post-translational modifications in prostatic tumor cells. Int J Oncol. Feb 2005;26(2):515-520. Murua Escobar H, Soller JT, Richter A, et al. The canine HMGA1. Gene. Apr 14 2004;330:93-99. Winkler S, Murua Escobar H, Eberle N, Reimann-Berg N, Nolte I, Bullerdiek J. Establishment of a cell line derived from a canine prostate carcinoma with a highly rearranged karyotype. J Hered. 2005;96(7):782-785. Winkler S, Murua Escobar H, Meyer B, et al. HMGA2 expression in canine Model of Prostate Cancer. 2007 (submitted). Kaplitt MG, Leone P, Samulski RJ, et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet. Oct 1994;8(2):148-154. Scallan CD, Lillicrap D, Jiang H, et al. Sustained phenotypic correction of canine hemophilia A using an adeno-associated viral vector. Blood. Sep 15 2003;102(6):2031-2037. Streck CJ, Dickson PV, Ng CY, et al. Antitumor efficacy of AAV-mediated systemic delivery of interferon-beta. Cancer Gene Ther. Jan 1 2006;13(1):99106. Ponnazhagan S, Nallari ML, Srivastava A. Suppression of human alpha-globin gene expression mediated by the recombinant adeno-associated virus 2based antisense vectors. J Exp Med. Feb 1 1994;179(2):733-738. Li J, Hu SJ, Sun J, et al. Construction of phospholamban antisense RNA recombinant adeno-associated virus vector and its effects in rat cardiomyocytes. Acta Pharmacol Sin. Jan 2005;26(1):51-55. Berlingieri MT, Manfioletti G, Santoro M, et al. Inhibition of HMGI-C protein synthesis suppresses retrovirally induced neoplastic transformation of rat thyroid cells. Mol Cell Biol. Mar 1995;15(3):1545-1553. Scala S, Portella G, Fedele M, Chiappetta G, Fusco A. Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias. Proc Natl Acad Sci U S A. Apr 11 2000;97(8):42564261. Rohr UP, Wulf MA, Stahn S, Steidl U, Haas R, Kronenwett R. Fast and reliable titration of recombinant adeno-associated virus type-2 using quantitative realtime PCR. J Virol Methods. Oct 2002;106(1):81-88. Veldwijk MR, Topaly J, Laufs S, et al. Development and optimization of a realtime quantitative PCR-based method for the titration of AAV-2 vector stocks. Mol Ther. Aug 2002;6(2):272-278. 56. 57. 58. 59. 60. 14 Gattas GJ, Quade BJ, Nowak RA, Morton CC. HMGIC expression in human adult and fetal tissues and in uterine leiomyomata. Genes Chromosomes Cancer. Aug 1999;25(4):316-322. Kazmierczak B, Meyer-Bolte K, Tran KH, et al. A high frequency of tumors with rearrangements of genes of the HMGI(Y) family in a series of 191 pulmonary chondroid hamartomas. Genes Chromosomes Cancer. Oct 1999;26(2):125133. Arlotta P, Tai AK, Manfioletti G, Clifford C, Jay G, Ono SJ. Transgenic mice expressing a truncated form of the high mobility group I-C protein develop adiposity and an abnormally high prevalence of lipomas. J Biol Chem. May 12 2000;275(19):14394-14400. Wood LJ, Mukherjee M, Dolde CE, et al. HMG-I/Y, a new c-Myc target gene and potential oncogene. Mol Cell Biol. Aug 2000;20(15):5490-5502. Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. May 1 2007;21(9):1025-1030. XVII. DNA sequence, polymorphism, and mapping of luteinizing hormone receptor fragment (LHCGR) gene in Great Dane dogs Santos SE, Murua Escobar H, Sider LH, Winkler S, Aoki SM, Milazzotto MP, Campagnari F, Vannucchi CI, Bullerdiek J, Nolte I, Garcia JF. Anim Genet. 2004 Feb;35(1):74-5. Eigenanteil: • Durchführung der FISH • Erstellen der caninen Karyogramme