Sinus und Kosinus aus Wikipedia, der freien Enzyklopädie Wechseln zu: Navigation, Suche Sinus, Kosinus und Cosinus sind Weiterleitungen auf diesen Artikel. Zu weiteren Bedeutungen siehe Sinus (Begriffsklärung), Kosinus (Begriffsklärung) und Cosinus (Begriffsklärung). Sinus- und Kosinusfunktion (auch Cosinusfunktion) sind elementare mathematische Funktionen. Vor Tangens und Kotangens, Sekans und Kosekans bilden sie die wichtigsten trigonometrischen Funktionen. Sinus und Kosinus werden unter anderem in der Geometrie für Dreiecksberechnungen in der ebenen und sphärischen Trigonometrie benötigt. Auch in der Analysis sind sie wichtig. Wellen wie Schallwellen, Wasserwellen und elektromagnetische Wellen lassen sich als aus Sinus- und Kosinuswellen zusammengesetzt beschreiben, sodass die Funktionen auch in der Physik als harmonische Schwingungen allgegenwärtig sind. Graphen der Sinusfunktion (rot) und der Kosinusfunktion (blau). Beide Funktionen sind 2πperiodisch und nehmen Werte von −1 bis 1 an. Inhaltsverzeichnis 1 Herkunft des Namens 2 Geometrische Definition o 2.1 Definition am rechtwinkligen Dreieck o 2.2 Definition am Einheitskreis 3 Analytische Definition o 3.1 Motivation durch Taylorreihen o 3.2 Reihenentwicklung in der Analysis o 3.3 Beziehung zur Exponentialfunktion o 3.4 Definition über analytische Berechnung der Bogenlänge o 3.5 Definition als Lösung einer Funktionalgleichung o 3.6 Produktentwicklung 4 Wertebereich und spezielle Funktionswerte o 4.1 Zusammenhang zwischen Sinus und Kosinus o o o o o o 4.2 Verlauf des Sinus in den vier Quadranten 4.3 Verlauf des Kosinus in den vier Quadranten 4.4 Komplexes Argument 4.5 Wichtige Funktionswerte 4.6 Weitere mit Quadratwurzeln angebbare Funktionswerte 4.7 Fixpunkte 5 Berechnung 6 Umkehrfunktion 7 Zusammenhang mit dem Skalarprodukt 8 Zusammenhang mit dem Kreuzprodukt 9 Additionstheoreme 10 Ableitung und Integration von Sinus und Kosinus o 10.1 Ableitung o 10.2 Stammfunktion 11 Anwendungen o 11.1 Geometrische Anwendungen o 11.2 Fourierreihen o 11.3 Physikalische Anwendungen o 11.4 Elektrotechnische Anwendungen 12 Siehe auch 13 Literatur 14 Weblinks 15 Einzelnachweise Herkunft des Namens[Bearbeiten | Quelltext bearbeiten] Die lateinische Bezeichnung „Sinus“ „Bogen, Krümmung, Busen“ für diesen mathematischen Begriff wählte Gerhard von Cremona 1175[1] als Übersetzung der arabischen Bezeichnung „gaib oder jiba“ („ )ج يبTasche, Kleiderfalte“, selbst entlehnt von Sanskrit „jiva“ „Bogensehne“ indischer Mathematiker. Die Bezeichnung „Cosinus“ ergibt sich aus complementi sinus, also Sinus des Komplementärwinkels. Diese Bezeichnung wurde zuerst in den umfangreichen trigonometrischen Tabellen verwendet, die von Georg von Peuerbach und seinem Schüler Regiomontanus erstellt wurden.[2] Geometrische Definition[Bearbeiten | Quelltext bearbeiten] Definition am rechtwinkligen Dreieck[Bearbeiten | Quelltext bearbeiten] Dreieck mit einem rechten Winkel in C. (Benennung von An- und Gegenkathete unter der Annahme, dass α der betrachtete Winkel ist.) Alle ebenen, zueinander ähnlichen Dreiecke haben gleiche Winkel und gleiche Längenverhältnisse der Seiten. Diese Eigenschaft wird benutzt, um Berechnungen am rechtwinkligen Dreieck durchzuführen. Sind nämlich die Längenverhältnisse im rechtwinkligen Dreieck bekannt, lassen sich die Maße von Winkeln und die Längen von Seiten berechnen. Deshalb haben die Längenverhältnisse im rechtwinkligen Dreieck auch besondere Namen. Die Längenverhältnisse der drei Seiten im rechtwinkligen Dreieck sind nur abhängig vom Maß der beiden spitzen Winkel. Da aber das Maß eines dieser Winkel das Maß des anderen Winkels bereits festlegt (die Winkelsumme der beiden spitzen Winkel im rechtwinkligen Dreieck beträgt stets 90°), hängen die Längenverhältnisse im rechtwinkligen Dreieck nur vom Maß eines der beiden spitzen Winkel ab. Deshalb werden die Längenverhältnisse in Abhängigkeit eines der beiden spitzen Winkel wie folgt definiert: Der Sinus eines Winkels ist das Verhältnis der Länge der Gegenkathete (Kathete, die dem Winkel gegenüberliegt) zur Länge der Hypotenuse (Seite gegenüber dem rechten Winkel). Der Kosinus ist das Verhältnis der Länge der Ankathete (das ist jene Kathete, die einen Schenkel des Winkels bildet) zur Länge der Hypotenuse. Bei den für Dreiecke üblichen Bezeichnungen der Größen (siehe Abb.) gilt hier: rechtwinkliges Dreieck ABC Da die Hypotenuse die längste Seite eines Dreiecks bezeichnet (denn sie liegt dem größten Winkel, also dem rechten Winkel, gegenüber), bestehen die Ungleichungen und . Wird statt von α von dem gegenüberliegenden Winkel β ausgegangen, so wechseln beide Katheten ihre Rolle, die Ankathete von α wird zur Gegenkathete von β und die Gegenkathete von α bildet nun die Ankathete von β und es gilt und Da im rechtwinkligen Dreieck gilt, folgt und . Auf dieser Beziehung beruht auch die Bezeichnung Kosinus als Sinus des Komplementärwinkels. Aus dem Satz des Pythagoras lässt sich die Beziehung („trigonometrischer Pythagoras“) ableiten: . Im rechtwinkligen Dreieck sind Sinus und Kosinus nur für Winkel zwischen 0 und 90 Grad definiert. Für beliebige Winkel wird der Wert der Sinus-Funktion als y-Koordinate und der der Kosinus-Funktion als x-Koordinate eines Punktes am Einheitskreis (siehe unten) benutzt. Hier ist es üblich, den Wert, auf den die Funktion angewendet wird (hier: den Winkel), als Argument zu bezeichnen. Dies betrifft insbesondere die Winkelfunktionen und die komplexe Exponentialfunktion (siehe unten). Definition am Einheitskreis[Bearbeiten | Quelltext bearbeiten] Definition des Sinus und Kosinus am Einheitskreis Trigonometrische Funktionen am Einheitskreis im ersten Quadranten Im rechtwinkligen Dreieck ist der Winkel zwischen Hypotenuse und Kathete nur für Werte von 0 bis 90 Grad definiert. Für eine allgemeine Definition wird ein Punkt auf dem Einheitskreis betrachtet, hier gilt -Achse einen Winkel Achse und der Punkt . Der Ortsvektor von ein. Der Koordinatenursprung schließt mit der , der Punkt auf der bilden ein rechtwinkliges Dreieck. Die Länge der Hypotenuse beträgt . Die Ankathete des Winkels die Länge mit den Koordinaten bezeichnet die Strecke zwischen und und hat . Damit gilt: . Die Gegenkathete des Winkels ist die Strecke zwischen und und hat die Länge . Somit ist: . Daraus folgt durch den Strahlensatz die Definition des Tangens: Dieser entspricht der Strecke von Die bis in der Zeichnung rechts. -Koordinate eines Punktes im ersten Quadranten des Einheitskreises entspricht also dem Sinus des Winkels zwischen seinem Ortsvektor und der -Achse, während die Koordinate dem Kosinus des Winkels entspricht. Die Fortsetzung über den ersten Quadranten hinaus ergibt eine Definition von Sinus und Kosinus für beliebige Winkel. Die Umkehrung der Sinus-/Kosinusfunktion ist nicht eindeutig. Zu jeder Zahl zwischen −1 und 1 ( ) gibt es schon zwischen 0° und 360° ( ) immer genau zwei Winkel. Symmetrien der Winkelfunktionen erkennt man an folgenden Beziehungen: Punktsymmetrien: - und , Achsensymmetrien: und . Der Sinus ist also eine ungerade Funktion, der Kosinus eine gerade. Sinus und Kosinus sind periodische Funktionen mit der Periode 360 Grad. (Man kann einen Winkel von beispielsweise 365° nicht von einem Winkel von 5° unterscheiden. Aber der eine beschreibt eine Drehbewegung von reichlich einer Umdrehung, der andere eine sehr kleine Drehbewegung ‒ nur eine zweiundsiebzigstel Umdrehung.) Also gilt auch sowie , wobei eine beliebige Ganze Zahl ist. Es gibt also nicht nur die Symmetrien zu bzw. (sin) und zu (sin) bzw. Symmetriezentren für beide Funktionen. (cos) (cos), sondern unendlich viele Symmetrieachsen und Die Entstehung der Sinus- und Kosinusfunktion aus der Drehbewegung eines Winkelschenkels beginnend bei der -Achse veranschaulicht folgende Animation. Der Winkel wird in der Bogenlänge gemessen. Hier entspricht dem der Winkel der Bogenlänge : Analytische Definition[Bearbeiten | Quelltext bearbeiten] Graph der Sinusfunktion x→sinx Graph der Kosinusfunktion x→cosx Die geometrischen Überlegungen zum Sinus und Kosinus sind eher heuristischer Natur. Sinus und Kosinus können auch auf einer axiomatischen Basis behandelt werden; dieser formalere Zugang spielt auch in der Analysis eine Rolle. Die analytische Definition erlaubt zusätzlich die Erweiterung auf komplexe Argumente. Sinus und Kosinus als komplexwertige Funktion aufgefasst sind holomorph und surjektiv. Motivation durch Taylorreihen[Bearbeiten | Quelltext bearbeiten] zusammen mit den ersten Taylorpolynomen Diese Animation illustriert die Definition der Sinusfunktion durch eine Reihe. Je höher die Zahl ist, desto mehr Summanden werden in der Reihendefinition verwendet. So ist bei neben der Sinusfunktion zusätzlich das kubische Polynom eingezeichnet. Durch den Übergang vom Winkelmaß zum Bogenmaß können Sinus und Cosinus als Funktionen von nach erklärt werden. Es kann nachgewiesen werden, dass sie beliebig oft differenzierbar sind. Für die Ableitungen im Nullpunkt gilt: . Die Wahl des Bogenmaßes führt dazu, dass hier die Werte ergebenden Taylorreihen stellen die Funktionen und auftreten. Die sich daraus dar, das heißt: Reihenentwicklung in der Analysis[Bearbeiten | Quelltext bearbeiten] In der Analysis geht man von einer Reihenentwicklung aus und leitet umgekehrt daraus alles her, indem die Funktionen sin und cos durch die oben angegebenen Potenzreihen erklärt werden. Mit dem Quotientenkriterium lässt sich zeigen, dass diese Potenzreihen für jede komplexe Zahl absolut und in jeder beschränkten Teilmenge der komplexen Zahlen gleichmäßig konvergieren. Diese unendlichen Reihen verallgemeinern die Definition des Sinus und des Kosinus von reellen auf komplexe Argumente. Auch wird dort üblicherweise nicht geometrisch, sondern beispielsweise über die cos-Reihe und die Beziehung als das Doppelte der kleinsten positiven Nullstelle der Kosinusfunktion definiert. Damit ist eine präzise analytische Definition von gegeben. Für kleine Werte zeigen diese Reihen ein sehr gutes Konvergenzverhalten. Zur numerischen Berechnung lassen sich daher die Periodizität und Symmetrie der Funktionen ausnutzen und den -Wert bis auf den Bereich bis reduzieren. Danach sind für eine geforderte Genauigkeit nur noch wenige Glieder der Reihe zu berechnen. Das Taylorpolynom der Kosinusfunktion bis zur vierten Potenz z. B. hat im Intervall einen relativen Fehler von unter 0,05 %. Im Artikel Taylor-Formel sind einige dieser so genannten Taylorpolynome grafisch dargestellt und eine Näherungsformel mit Genauigkeitsangabe angegeben. Zu beachten ist allerdings, dass die Teilsummen der Taylorpolynome nicht die bestmögliche numerische Approximation darstellen; beispielsweise in Abramowitz-Stegun finden sich Näherungspolynome mit noch kleinerem Approximationsfehler.[3] Beziehung zur Exponentialfunktion[Bearbeiten | Quelltext bearbeiten] Der Realteil von ist und der Imaginärteil ist . Die trigonometrischen Funktionen sind eng mit der Exponentialfunktion verbunden, wie folgende Rechnung zeigt: Dabei wurde verwendet sowie Beziehung zwischen Sinus, Kosinus und Exponentialfunktion Somit ergibt sich die sogenannte Eulerformel . Für eine reelle Zahl ist also der Realteil und der Imaginärteil der komplexen Zahl . Durch Ersetzung von durch ergibt sich: . Diese und die vorangegangenen Gleichungen lassen sich nach den trigonometrischen Funktionen auflösen. Es folgt: und . Diese Gleichung gilt nicht nur für reelle Argumente, sondern für beliebige komplexe Zahlen. Somit ergibt sich eine alternative Definition für die Sinus- und Kosinusfunktion. Durch Einsetzen der Exponentialreihe leiten sich die oben vorgestellten Potenzreihen ab. Ausgehend von dieser Definition lassen sich viele Eigenschaften, wie zum Beispiel die Additionstheoreme des Sinus und Kosinus, nachweisen. Definition über analytische Berechnung der Bogenlänge[Bearbeiten | Quelltext bearbeiten] Die Definition des Sinus und Kosinus als Potenzreihe liefert einen sehr bequemen Zugang, da die Differenzierbarkeit durch die Definition als konvergente Potenzreihe automatisch gegeben ist. Die Eulerformel ist ebenfalls eine einfache Konsequenz aus den Reihendefinitionen, da sich die Reihen für und ganz offenbar zur Exponentialfunktion zusammenfügen, wie oben gezeigt wurde. Durch Betrachtung der Funktion , die das Intervall abbildet, ergibt sich die Beziehung zur Geometrie, denn Real- bzw. Imaginärteil von Koordinatenachsen. Neben und auf die Kreislinie sind nichts weiter als der , das heißt die Projektion dieses Punktes auf die gibt es auch andere sinnvolle Parametrisierungen des Einheitskreises, etwa Geht man von dieser Formel aus, erhält man einen alternativen Zugang. Die Länge dieser Kurve wird auch als Bogenlänge bezeichnet und berechnet sich als Wie leicht zu zeigen ist, ist ungerade, stetig, streng monoton wachsend und beschränkt. Da die gesamte Bogenlänge dem Kreisumfang entspricht, folgt, dass das Supremum von ist; wird bei dieser Vorgangsweise analytisch als Supremum von definiert. Die Funktion ist auch differenzierbar: . Weil sie stetig und streng monoton wachsend ist, ist sie auch invertierbar, und für die Umkehrfunktion gleich gilt . Mit Hilfe dieser Umkehrfunktion Komponente von lassen sich nun Sinus und Kosinus als - und - analytisch definieren: sowie . Bei dieser Definition des Sinus und Kosinus über die analytische Berechnung der Bogenlänge werden die geometrischen Begriffe sauber formalisiert. Sie hat allerdings den Nachteil, dass im didaktischen Aufbau der Analysis der Begriff der Bogenlänge erst sehr spät formal eingeführt wird und daher Sinus und Kosinus erst relativ spät verwendet werden können. Definition als Lösung einer Funktionalgleichung[Bearbeiten | Quelltext bearbeiten] Ein anderer analytischer Zugang ist, Sinus und Kosinus als Lösung einer Funktionalgleichung zu definieren, die im Wesentlichen aus den Additionstheoremen besteht: Gesucht ist ein Paar stetiger Funktionen , das für alle die Gleichungen und erfüllt. Die Lösung definiert dann den Sinus, die Lösung den Kosinus. Um Eindeutigkeit zu erreichen, sind einige Zusatzbedingungen zu erfüllen. In Heuser, Lehrbuch der Analysis, Teil 1 wird zusätzlich gefordert, dass eine ungerade Funktion, eine gerade Funktion, und ist. Bei diesem Zugang wird offensichtlich die Differenzierbarkeit des Sinus in 0 vorausgesetzt; wird in weiterer Folge analytisch als das doppelte der kleinsten positiven Nullstelle des Kosinus definiert. Verwendet man den Zugang von Leopold Vietoris[4] und berechnet die Ableitung des Sinus aus den Additionstheoremen, so ist es zweckmäßiger, auf geeignete Weise analytisch (beispielsweise als Hälfte des Grenzwerts des Umfangs des dem Einheitskreis eingeschriebenen -Ecks) zu definieren und dann die Differenzierbarkeit der Lösung dieser Funktionalgleichung zu beweisen. Als Zusatzbedingung zu den Additionstheoremen fordert man dann beispielsweise , , und für alle . Unter den gewählten Voraussetzungen ist die Eindeutigkeit der Lösung der Funktionalgleichung relativ einfach zu zeigen; die geometrisch definierten Funktionen Sinus und Kosinus lösen auch die Funktionalgleichung. Die Existenz einer Lösung lässt sich analytisch beispielsweise durch die Taylorreihen von Sinus und Kosinus oder eine andere der oben verwendeten analytischen Darstellungen von Sinus und Kosinus die Funktionalgleichung nachweisen und tatsächlich lösen. Produktentwicklung[Bearbeiten | Quelltext bearbeiten] ist dabei im Bogenmaß anzugeben. Wertebereich und spezielle Funktionswerte[Bearbeiten | Quelltext bearbeiten] Zusammenhang zwischen Sinus und Kosinus[Bearbeiten | Quelltext bearbeiten] (Gradmaß) (Bogenmaß) („trigonometrischer Pythagoras“) Insbesondere folgt daraus Argumente annehmen. und . Diese Ungleichungen gelten aber nur für reelle ; für komplexe Argumente können Sinus und Kosinus beliebige Werte Verlauf des Sinus in den vier Quadranten[Bearbeiten | Quelltext bearbeiten] In den vier Quadranten ist der Verlauf der Sinusfunktion folgendermaßen: Quadrant Gradmaß Bogenmaß Bildmenge Monotonie Konvexität 0 1. Quadrant 0 positiv: steigend konkav 1 2. Quadrant positiv: Maximum fallend konkav Nullstelle, Wendepunkt 0 3. Quadrant negativ: Punkttyp Nullstelle, Wendepunkt fallend konvex Minimum 4. Quadrant negativ: steigend konvex Für Argumente außerhalb dieses Bereiches ergibt sich der Wert des Sinus daraus, dass der Sinus periodisch mit der Periode 360° (bzw. 2π rad) ist, d. h. etc. . . Außerdem gilt , , Verlauf des Kosinus in den vier Quadranten[Bearbeiten | Quelltext bearbeiten] Der Kosinus stellt einen um 90° (bzw. π/2 rad) phasenverschobenen Sinus dar und es gilt . In den vier Quadranten ist der Verlauf der Kosinusfunktion daher folgendermaßen: Quadrant Gradmaß Bogenmaß Bildmenge Monotonie Konvexität 0 1. Quadrant 1 positiv: Maximum fallend konkav Nullstelle, Wendepunkt 0 2. Quadrant Punkttyp negativ: fallend konvex Minimum 3. Quadrant negativ: steigend konvex Nullstelle, Wendepunkt 4. Quadrant positiv: steigend konkav Für Argumente außerhalb dieses Bereiches lässt sich der Wert des Kosinus – so wie der des Sinus – periodisch mit der Periode 360° (bzw. 2π rad) bestimmen, d. h. . Komplexes Argument[Bearbeiten | Quelltext bearbeiten] Graph der komplexen Sinusfunktion . Außerdem gilt Graph der komplexen Kosinusfunktion Farbfunktion, die für die beiden obigen Bilder verwendet wurde. Für komplexe Argumente gilt und , wie aus den Additionstheoremen und den Zusammenhängen Hyperbelfunktionen ersichtlich ist. sowie Während der reelle Sinus (Kosinus) stets auf Werte aus dem Intervall Sinus und Kosinus auf mit den beschränkt ist, sind unbeschränkt; dies folgt aus dem Satz von Liouville. Sinus und Kosinus können für komplexe Argumente sogar beliebige reelle oder komplexe Werte annehmen. Zum Beispiel ist Für reelle nimmt diesen Wert aber nie an. In den Bildern auf der rechten Seite gibt die Farbe den Winkel des Arguments an, die Farbintensität den Betrag, wobei volle Intensität für kleine Werte steht und bei großen Beträgen ein Übergang zu weiß stattfindet. Die genaue Zuordnung ergibt sich aus nebenstehendem Bild, das jeder komplexen Zahl eine Farbe und eine Intensität zuordnet. An den Bildern zu Sinus und Kosinus ist erkennbar, dass auch im Komplexen Periodizität in -Richtung vorliegt (nicht aber in -Richtung) und dass Sinus und Kosinus durch eine Verschiebung um auseinander hervorgehen. Wichtige Funktionswerte[Bearbeiten | Quelltext bearbeiten] Da Sinus und Kosinus periodische Funktionen mit der Periode (entspricht im Gradmaß ) sind, reicht es, die Funktionswerte der beiden trigonometrischen Funktionen für den Bereich (entspricht dem Bereich bis ) zu kennen. Funktionswerte außerhalb dieses Bereichs können also aufgrund der Periodizität durch den Zusammenhang bestimmt werden. In Gradmaß lautet der Zusammenhang analog Hierbei bezeichnet eine ganze Zahl. Die folgende Tabelle listet die wichtigsten Funktionswerte der beiden trigonometrischen Funktionen auf. Weitere Funktionswerte können auf einer im Abschnitt Weblinks aufgeführten Seite gefunden werden. Winkel (Grad) Bogenmaß Sinus Kosinus Beweisskizzen: , da das rechtwinklige Dreieck im Einheitskreis (mit der Hypotenuse 1) dann gleichschenklig ist, und nach Pythagoras gilt . , da das rechtwinklige Dreieck im Einheitskreis (mit der Hypotenuse 1) gespiegelt an der x-Achse dann gleichseitig ist (mit Seitenlänge 1), und somit die Gegenkathete (Sinus) die halbe Seitenlänge beträgt. , da für das rechtwinklige Dreieck im Einheitskreis (mit der Hypotenuse 1) wegen für den Cosinus nach Pythagoras gilt . Weitere mit Quadratwurzeln angebbare Funktionswerte[Bearbeiten | Quelltext bearbeiten] Über die Berechnung der fünften Einheitswurzeln mittels einer quadratischen Gleichung ergibt sich . Mit Hilfe der Additionstheoreme lassen sich viele weitere solche Ausdrücke berechnen wie beispielsweise die Seitenlänge eines regulären Fünfecks über und , woraus folgt . Aus und lassen sich dann z. B. und dann rekursiv auch alle , ermitteln. Generell gilt, dass und genau dann explizit mit den vier Grundrechenarten und Quadratwurzeln darstellbar sind, wenn der Winkel insbesondere also wenn ist, wobei von , ist mit Zirkel und Lineal konstruierbar ist, von der Gestalt und die für Fermatsche Primzahlen sind.[5] In obigem Beispiel und der Nenner gleich Fixpunkte[Bearbeiten | Quelltext bearbeiten] Fixpunkt der Kosinusfunktion Die Fixpunktgleichung besitzt als einzige reelle Lösung. Die Gleichung hat als einzige reelle Lösung (Folge A003957 in OEIS). Die Lösung dieser Fixpunktgleichung wurde bereits 1748 von Leonhard Euler untersucht.[6] Sie ist ein einfaches Beispiel für einen nichttrivialen global attraktiven Fixpunkt, das heißt die Fixpunktiteration konvergiert für jeden Startwert gegen die Lösung. Mit dem Satz von Lindemann-Weierstraß kann nachgewiesen werden, dass es sich dabei um eine transzendente Zahl handelt. Diese mathematische Konstante wird im englischen Sprachraum auch als Dottie number bezeichnet und mit dem armenischen Buchstaben ա (Ayb) abgekürzt.[7] Berechnung[Bearbeiten | Quelltext bearbeiten] Zur Berechnung von Sinus und Cosinus gibt es mehrere Verfahren. Die Wahl des Berechnungsverfahrens richtet sich nach Kriterien wie Genauigkeit, Geschwindigkeit der Berechnung und Leistungsfähigkeit der verwendeten Hardware wie zum Beispiel Mikrocontroller: Tabellierung aller benötigten Funktionswerte Tabellierung von Funktionswerten zusammen mit Interpolationsverfahren Berechnung mit dem CORDIC-Algorithmus Verwendung der Taylor-Reihe schnelle, aber grob genäherte Abschätzung mit Hilfe der Zwölftel-Regel Die Tabellierung aller Werte ist angezeigt bei geschwindigkeitskritischen Echtzeitsystemen, wenn diese nur eine recht kleine Winkelauflösung benötigen. CORDIC ist i.d.R. effizienter umsetzbar als die Taylor-Reihe und zudem besser konditioniert. Umkehrfunktion[Bearbeiten | Quelltext bearbeiten] → Hauptartikel: Arkussinus und Arkuskosinus Da sich zu einem gegebenen Wert ein passender Winkel im ersten oder vierten Quadranten und zu einem gegebenen Wert ein passender Winkel im ersten oder zweiten Quadranten konstruieren lässt, folgt aus diesen geometrischen Überlegungen, dass die Funktionen Umkehrfunktionen besitzen. Die Umkehrfunktionen werden Arkussinus bzw. Arkuskosinus genannt. Der Name rührt daher, dass sich deren Wert nicht nur als Winkel, sondern auch als Länge eines Kreisbogens (Arcus bedeutet Bogen) interpretieren lässt. In der Analysis ist die Verwendung des Bogenmaßes erforderlich, da die Winkelfunktionen dort für das Bogenmaß definiert sind. Die Sinusfunktion und die Kosinusfunktion sind auf den angegebenen Definitionsbereichen streng monoton, surjektiv und daher invertierbar. Die Umkehrfunktionen sind Eine andere Interpretation des Wertes als doppelter Flächeninhalt des dazugehörigen Kreissektors am Einheitskreis ist ebenfalls möglich; diese Interpretation ist insbesondere für die Analogie zwischen Kreis- und Hyperbelfunktionen nützlich. Zusammenhang mit dem Skalarprodukt[Bearbeiten | Quelltext bearbeiten] Der Kosinus steht in enger Beziehung mit dem Standardskalarprodukt zweier Vektoren und : das Skalarprodukt ist also die Länge der Vektoren multipliziert mit dem Kosinus des eingeschlossenen Winkels. In endlichdimensionalen Räumen lässt sich diese Beziehung aus dem Kosinussatz ableiten. In abstrakten Skalarprodukträumen wird über diese Beziehung der Winkel zwischen Vektoren definiert. Zusammenhang mit dem Kreuzprodukt[Bearbeiten | Quelltext bearbeiten] → Hauptartikel: Kreuzprodukt Der Sinus steht in enger Beziehung mit dem Kreuzprodukt zweier dreidimensionaler Vektoren und : Additionstheoreme[Bearbeiten | Quelltext bearbeiten] → Hauptartikel: Additionstheoreme (Trigonometrie) Die Additionstheoreme der trigonometrischen Funktionen lauten Ableitung und Integration von Sinus und Kosinus[Bearbeiten | Quelltext bearbeiten] Ableitung[Bearbeiten | Quelltext bearbeiten] Wird Aus im Bogenmaß angegeben, so gilt für die Ableitung der Sinusfunktion[8] und der Kettenregel erhält man die Ableitung des Kosinus: und daraus schließlich auch alle höheren Ableitungen von Sinus und Kosinus Wird der Winkel in Grad gemessen, so kommt nach der Kettenregel bei jeder Ableitung ein Faktor dazu, also beispielsweise . Um diese störenden Faktoren zu vermeiden, wird in der Analysis der Winkel ausschließlich im Bogenmaß angegeben. Stammfunktion[Bearbeiten | Quelltext bearbeiten] Aus den Ergebnissen über die Ableitung ergibt sich unmittelbar die Stammfunktion von Sinus und Kosinus im Bogenmaß: Anwendungen[Bearbeiten | Quelltext bearbeiten] Geometrische Anwendungen[Bearbeiten | Quelltext bearbeiten] Skizze zum Beispiel Mit der Definition des Sinus können auch im nicht rechtwinkligen Dreieck Größen, speziell die Höhen, berechnet werden; ein Beispiel ist die Berechnung von gegebener Länge und Winkel im Dreieck ABC bei : Andere wichtige Anwendungen sind der Sinussatz und der Kosinussatz. Fourierreihen[Bearbeiten | Quelltext bearbeiten] Im Hilbertraum der auf dem Intervall bezüglich des Lebesgue-Maßes quadratisch integrierbaren Funktionen bilden die Funktionen ein vollständiges Orthogonalsystem, das sogenannte trigonometrische System. Daher lassen sich alle Funktionen als Fourierreihe darstellen, wobei die Funktionenfolge in der L2-Norm gegen konvergiert. Physikalische Anwendungen[Bearbeiten | Quelltext bearbeiten] In der Physik werden Sinus- und Kosinusfunktion zur Beschreibung von Schwingungen verwendet. Insbesondere lassen sich durch die oben erwähnten Fourierreihen beliebige periodische Signale als Summe von Sinus- und Kosinusfunktionen darstellen, siehe Fourieranalyse. Elektrotechnische Anwendungen[Bearbeiten | Quelltext bearbeiten] Leistungszeigerdiagramm und Phasenverschiebungswinkel bei sinusförmigen Spannungen und Strömen in der komplexen Ebene In der Elektrotechnik sind häufig elektrische Stromstärke I und Spannung U sinusförmig. Wenn sie sich um einen Phasenverschiebungswinkel φ unterscheiden, dann unterscheidet sich die aus Stromstärke und Spannung gebildete Scheinleistung S von der Wirkleistung P. Bei nicht sinusförmigen Größen (z. B. bei einem Netzteil mit herkömmlichem Brückengleichrichter am Eingang) entstehen Oberschwingungen, bei denen sich kein einheitlicher Phasenverschiebungswinkel angeben lässt. Dann lässt sich zwar noch ein Leistungsfaktor angeben dieser Leistungsfaktor λ darf aber mit cos φ nicht verwechselt werden. Siehe auch[Bearbeiten | Quelltext bearbeiten] Kreis- und Hyperbelfunktionen Formelsammlung Trigonometrie Sinuston Literatur[Bearbeiten | Quelltext bearbeiten] I. N. Bronstein, K. A. Semendjajew: Taschenbuch der Mathematik. 19. Auflage. B. G. Teubner Verlagsgesellschaft, Leipzig, 1979. Kurt Endl, Wolfgang Luh: Analysis I. Eine integrierte Darstellung. 7. Auflage. AulaVerlag, Wiesbaden 1989. Harro Heuser: Lehrbuch der Analysis – Teil 1. 6. Auflage. Teubner, 1989. Weblinks[Bearbeiten | Quelltext bearbeiten] Wikibooks: Mathe für Nicht-Freaks: Sinus und Kosinus – Lern- und Lehrmaterialien Wikiversity: Sinus und Kosinus – Kursmaterialien, Forschungsprojekte und wissenschaftlicher Austausch Wiktionary: Kosinus – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen Wiktionary: Sinus – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen Interaktive Animation zur Definition von Sinus, Kosinus und Tangens am Einheitskreis Weitere Funktionswerte von Joachim Mohr Einzelnachweise[Bearbeiten | Quelltext bearbeiten] 1. ↑ J. Ruska: Zur Geschichte des „Sinus“. In: Zeitschrift für Mathematik und Physik. Teubner, Leipzig 1895. S. 126ff. Auch online zugänglich: Digitalisierungszentrum der Universität Göttingen 2. ↑ Josef Laub (Hrsg.) Lehrbuch der Mathematik für die Oberstufe der allgemeinbildenden höheren Schulen. 2. Band. 2. Auflage. Hölder-Pichler-Tempsky, Wien 1977, ISBN 3209-00159-6. S. 207. 3. ↑ Milton Abramowitz, Irene Stegun: Handbook of Mathematical Functions. Dover Publications, New York 1964. ISBN 0-486-61272-4 (4.3.96–4.3.99) 4. ↑ Leopold Vietoris: Vom Grenzwert . In: Elemente der Mathematik. Band 12, 1957 5. ↑ Emil Artin: Galoissche Theorie. Verlag Harri Deutsch, Zürich 1973, ISBN 3-87144167-8, S. 85. 6. ↑ Leonhard Euler: Introductio in analysin infinitorum. Band 2. Marc Michel Bousquet, Lausanne 1748, S. 306–308. 7. ↑ Eric W. Weisstein: Dottie number. In: MathWorld (englisch). 8. ↑ Wikibooks: Beweisarchiv: Analysis: Differentialrechnung: Differentiation der Sinusfunktion Trigonometrische Funktion Primäre trigonometrische Funktionen Sinus und Kosinus | Tangens und Kotangens | Sekans und Kosekans Umkehrfunktionen (Arkusfunktionen) Arkussinus und Arkuskosinus | Arkustangens und Arkuskotangens | Arkussekans und Arkuskosekans Hyperbelfunktionen Sinus Hyperbolicus und Kosinus Hyperbolicus | Tangens Hyperbolicus und Kotangens Hyperbolicus | Sekans Hyperbolicus und Kosekans Hyperbolicus Areafunktionen Areasinus Hyperbolicus und Areakosinus Hyperbolicus | Areatangens Hyperbolicus und Areakotangens Hyperbolicus | Areasekans Hyperbolicus und Areakosekans Hyperbolicus Abgerufen von „https://de.wikipedia.org/w/index.php?title=Sinus_und_Kosinus&oldid=164103154“ Kategorie: Trigonometrische Funktion Wartungskategorie: Wikipedia:Wikidata P2812 fehlt Navigationsmenü Meine Werkzeuge Nicht angemeldet Diskussionsseite Beiträge Benutzerkonto erstellen Anmelden Namensräume Artikel Diskussion Varianten Ansichten Mehr Lesen Bearbeiten Quelltext bearbeiten Versionsgeschichte Suche Volltext Artikel Navigation Hauptseite Themenportale Von A bis Z Zufälliger Artikel Mitmachen Artikel verbessern Neuen Artikel anlegen Autorenportal Hilfe Letzte Änderungen Kontakt Spenden Werkzeuge Links auf diese Seite Änderungen an verlinkten Seiten Spezialseiten Permanenter Link Seiteninformationen Wikidata-Datenobjekt Artikel zitieren Drucken/exportieren Buch erstellen Als PDF herunterladen Druckversion In anderen Projekten Wikibooks In anderen Sprachen Nederlands Links bearbeiten Diese Seite wurde zuletzt am 30. März 2017 um 23:27 Uhr geändert. Abrufstatistik Der Text ist unter der Lizenz „Creative Commons Attribution/Share Alike“ verfügbar; Informationen zu den Urhebern und zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können im Regelfall durch Anklicken dieser abgerufen werden. Möglicherweise unterliegen die Inhalte jeweils zusätzlichen Bedingungen. Durch die Nutzung dieser Website erklären Sie sich mit den Nutzungsbedingungen und der Datenschutzrichtlinie einverstanden. Wikipedia® ist eine eingetragene Marke der Wikimedia Foundation Inc. Datenschutz Über Wikipedia Impressum Entwickler Stellungnahme zu Cookies Mobile Ansicht