Artifizielle Wachstumsprozesse Winfried Kurth Günter Barczik Reinhard Hemmerling Udo Bischof Lehrstuhl Grafische Systeme Lehrstuhl Entwerfen Bauen im Bestand 1. PARADIGMEN DER PROGRAMMIERUNG Paradigma: grundlegendes Prinzip, beispielorientierte Vorstellung, zwischen "Modell" und "Analogie" angesiedelt, teilweise exakt, mathematisch unterstützbar, anschaulich, auf virtuellem Niveau. Paradigmen der Programmierung (nach Floyd 1979): imperatives Paradigma objektorientiertes Paradigma Fallregel-Paradigma 1. Imperatives Paradigma (John von Neumann) liegt der klassischen imperativen Programmierung (BefehlsProgrammierung) zugrunde. Auch: "prozedurales Paradigma", "Kontrollfluss-Paradigma". Computer = Maschine zur Veränderung von Variablenwerten. Programm = Plan für den Berechnungsprozess mit Angabe der Befehle und des Kontrollflusses (z.B. Schleifen). Programmfindung: Elementare Einzelschritte finden und in flexible Reihenfolge bringen. Programmiersprachen: Fortran, Basic, Pascal, C, Teile von Java. Beispiel: x = 0; while (x < 100) x = x + 1; zählt den Inhalt der Variable x von 0 bis 100 hoch. Beachte: "=" ist hier nicht mathematisch als Gleichheit zu verstehen, sondern eine Zuweisung (etwas prozesshaftes)! 2. Objektorientiertes Paradigma Computer = Umgebung für virtuelle Objekte Programm = Auflistung von (Objekt-) Klassen, d.h. allgemeiner Spezifikationen von Objekten, die zur Laufzeit des Programms (ggf. mehrfach) erschaffen und wieder vernichtet werden können und miteinander kommunizieren. Programmfindung: Spezifikation der Klassen (Daten und Methoden), die Objektstruktur und -verhalten festlegen. Programmiersprachen: Smalltalk, Simula, C++, Delphi, Java (in den letzten 4 mit imperativen Konstrukten vermischt) Beispiel (in Java): public class Auto extends Fahrzeug { public String marke; public int plaetze; public void anzeigen() { System.out.println("Das Auto ist ein " + marke); System.out.println("Es hat " + plaetze + "Sitze."); } } Merke: Zu einer Klasse (class) können Daten (marke, plaetze) und Methoden (anzeigen) gehören. 3. Fallregel-Paradigma (van Wijngaarden, Lindenmayer) Computer = Transformationsmaschine für Strukturen oder für Zustände. Es gibt eine aktuelle Struktur, die solange transformiert wird, wie dies möglich ist. Arbeitsprozess: Such- und Anwendungsprozess. matching: Suchen einer passenden Regel, rewriting: Anwendung der Regel, um die Struktur umzuschreiben. Programm = Menge von Transformationsregeln. Programmfindung: Spezifikation der Regeln. Programmiersprachen: L-Systeme, XL, PROLOG, Intran, KISprachen. 2. L-SYSTEME (Lindenmayer-Systeme) analog zu Grammatiken für natürliche Sprachen in jedem Ableitungsschritt parallele Ersetzung aller Zeichen, auf die eine Regel anwendbar ist von A. Lindenmayer (Botaniker) 1968 zur Modellierung des Wachstums von fadenförmigen Algen eingeführt Grammatik für natürliche Sprache: Satz S P O S Max S Tina P lernt O Englisch O Französisch mögliche Ableitungen: Satz S Satz P O Max lernt Französisch S P O Tina lernt Englisch einfaches L-System: mathematisch: Ein L-System ist ein Tripel (, , R); darin ist: eine Menge von Zeichen, das Alphabet, eine Zeichenkette mit Zeichen aus , das Startwort (auch "Axiom"), R eine Menge von Regeln der Form Zeichen Zeichenkette; darin sind das Zeichen auf der linken Regelseite und die Zeichenkette aus entnommen. Ein Ableitungsschritt (rewriting) einer Zeichenkette besteht aus der Ersetzung aller Zeichen in , die in linken Regelseiten von R vorkommen, durch die entsprechenden rechten Regelseiten. Man vereinbart: Zeichen, auf die keine Regeln anwenbar sind, werden unverändert übernommen. Ergebnis zunächst nur: Ableitungskette von Wörtern, die sich durch wiederholte Anwendung des rewriting-Vorgangs aus dem Startwort ergeben. 1 2 3 .... Beispiel: Alphabet {A, B}, Startwort A Regelmenge R: AB B AB Ableitungskette: A B AB BAB ABBAB BABABBAB ABBABBABABBAB BABABBABABBABBABABBAB ... wie lang ist die n-te Zeichenkette in dieser Ableitung? was für die Modellierung von räumlichen Strukturen noch fehlt: eine geometrische Interpretation Füge also zur Def. eines L-Systems hinzu: eine Abbildung, die jeder Zeichenkette mit Zeichen aus eine Teilmenge des 3-dimensionalen Raumes zuordnet dann: "interpretierte" L-System-Abarbeitung 1 2 3 .... S1 S2 S3 .... S1, S2, S3, ... können als Entwicklungs- oder Entwurfsstufen eines Objekts interpretiert werden. Als Interpretationsabbildung wird meistens gewählt: Turtle geometry ("Schildkrötengeometrie") befehlsgesteuertes, lokales Navigieren im 2D- oder 3DRaum (Abelson & diSessa 1982; vgl. Programmiersprache "LOGO") "Turtle": Zeichen- oder Konstruktionsgerät (virtuell) - speichert (grafische und nicht-grafische) Informationen - mit einem Zustandsspeicher assoziiert (wichtig für Verzweigungen) - aktueller Zustand der Turtle enthält z.B. Information über aktuelle Liniendicke, Schrittweite, Farbe, weitere Eigenschaften des als nächstes zu konstruierenden Objekts Der Turtle-Befehlsvorrat wird zu einer Untermenge der Zeichenmenge des L-Systems. Symbole, die nicht TurtleBefehle sind, werden von der Turtle ignoriert. Befehle (Auswahl): F0 "Forward", mit Konstruktion eines Elements (Linienstück, Segment, Gebäudetrakt...), benutzt wird die aktuelle Schrittweite für die Länge (die Null steht für "keine explizite Längenfestlegung") M0 forward ohne Konstruktion (Move-Befehl) L(x) ändere die aktuelle Schrittweite (Länge) zu x LAdd(x) inkrementiere die aktuelle Schrittweite um x LMul(x) multipliziere die aktuelle Schrittweite mit x D(x), DAdd(x), DMul(x) analog für die aktuelle Dicke RU(45) Drehung der turtle um die "up"-Achse um 45° RL(...), RH(...) analog um "left" und "head"-Achse up-, left- und head-Achse bilden ein rechtwinkliges, räumliches Koordinatensystem, das von der turtle mit-geführt wird RV(x)Rotation "nach unten" mit durch x vorgegebener Stärke was ist das Ergebnis der Interpretation der Zeichenkette L(10) F0 RU(45) F0 RU(45) LMul(0.5) F0 M0 F0 ? Wiederholung von Abschnitten der Zeichenkette möglich mit dem Schlüsselwort "for" z.B. for ((1:3)) liefert ( A B C ) A B C A B C A B C was ist das Ergebnis der Interpretation von L(10) for ((1:6)) ( F0 RU(90) LMul(0.8) ) ? Verzweigungen: Realisierung mit Speicher-Befehlen [ lege aktuellen Zustand auf Speicher ("Ablage") ] nimm obersten Zustand von der Ablage und mache diesen zum aktuellen Zustand (damit: Ende der Verzweigung) Beispiel: Regeln a F0 [ RU(45) b ] a ; b F0 b ; Startwort L(10) a (in der Abbildung wurde F statt F0 geschrieben) (a und b werden normalerweise nicht geometrisch interpretiert.) was für eine Struktur liefert das L-System A [ LMul(0.25) RU(-45) F0 ] F0 B; B [ LMul(0.25) RU(45) F0 ] F0 A; mit Startwort L(10) A ? was für eine Struktur liefert das L-System A [ LMul(0.25) RU(-45) F0 ] F0 B; B [ LMul(0.25) RU(45) F0 ] F0 A; mit Startwort L(10) A ? äquivalente Regel: A [ LMul(0.25) RU(-45) F0 ] F0 RH(180) A; Weitere Beispiele: Koch'sche Kurve: L(50) RU(90) A F0; A A LMul(0.3333); /* Skalierung */ F0 F0 RU(-60) F0 RU(120) F0 RU(-60) F0; jedes Linienstück wird durch 4 neue Linienstücke ersetzt (3. Regel); Skalierung durch Hilfssymbol A, welches sich in jedem Schritt reproduziert und dabei jeweils einen zusätzlichen Faktor 1/3 erzeugt (2. Regel). Das Startwort ist hier " ". Ausgabe nach 6 Schritten: Sierpinski-Dreieck (Realisierung als geschlossene Kurve, Verwendung von Hilfssymbol X für Insertion des inneren Dreiecks): L(50) RU(90) B F0 X F0 RU(-120) F0 F0 RU(-120) F0 F0; F0 F0 F0; X RU(-120) F0 X F0 RU(120) F0 X F0 RU(120) F0 X F0 RU(-120); B B LMul(0.5); Verzweigungsbeispiel: F0 F0 [ RU(25.7) F0 ] F0 [ RU(-25.7) F0 ] F0 ; Ergebnis nach 7 Schritten: (Startwort L(10) F0) Verzweigung, alternierende Zweigstellung und Verkürzung: L(10) F0 A ; A LMul(0.5) [ RU(90) F0 ] F0 RH(180) A ; welche Struktur liefert F(10) A ; A [ RU(-60) F(6) RH(180) A Sphere(3) ] [ RU(40) F(10) RH(180) A Sphere(3) ]; Sphere Z; ? (F(n) liefert Linie der vorgegebenen Länge n, Sphere(n) eine Kugel mit Radius n) Erweiterung des Konzepts: Lasse reellwertige Parameter nicht nur bei Turtle-Kommandos wie "RU(45)" und "F(3)" zu, sondern bei allen Zeichen parametrische L-Systeme beliebig lange, endliche Parameterlisten Parameter werden bei Regel-Matching mit Werten belegt Beispiel: Regel A(x, y) F(7*x+10) B(y/2) vorliegendes Zeichen z.B.: nach der Regelanwendung: A(2, 6) F(24) B(3) Parameter können in Bedingungen abgeprüft werden (Bedingungen mit Java-Syntax): A(x, y) (x >= 17 && y != 0) .... Welche Struktur wird von folgendem L-System erzeugt? [ RU(90) M(1) RU(90) A(1) ] A(1); A(n) F(n) RU(90) A(n+1); Welche Struktur wird von folgendem L-System erzeugt? [ RU(90) M(1) RU(90) A(1) ] A(1); A(n) F(n) RU(90) A(n+1); Variante: in der zweiten Regel "RU(90)" etwa durch "RU(92)" ersetzen. Nachteil von L-Systemen: • in L-Systemen mit Verzweigungen (über Turtle-Kommandos) nur 2 mögliche Relationen zwischen Objekten: "direkter Nachfolger" und "Verzweigung" Erweiterungen: • Zulassen weiterer Relationstypen (beliebig wählbar) • Zulassen von Zyklen ( Graph-Grammatik) Ein Graph: • Grammatik modifiziert dann direkt den Graphen, Umweg über StringCodierung entfällt (bzw. wird nur noch für Regel-Input gebraucht) "relationale Wachstumsgrammatik" außerdem Nachteil der Turtle-Interpretation von L-Systemen: Segmente sind nur Zylinder, keine Objekte im Sinne der OOP Erweiterungen: • Knoten des Graphen können beliebige Objekte sein (auch Grafikobjekte) • Einbettung von Code einer höheren, imperativen oder objektorientierten Programmiersprache in die Regeln (für uns: Java) 3. RELATIONALE WACHSTUMSGRAMMATIKEN (RGG: Relational Growth Grammars) allgemeiner Aufbau einer Regel einer RGG: eine RGG-Regel und ihre Anwendung in grafischer Form: Regel: Anwendung: Regel in Textform: i -b-> j -a-> k -a-> i = => j Kanten-Markierungen repräsentieren verschiedene Arten von Relationen: • ist Nachbar von • enthält • trägt • codiert (genetisch) • ist gepaart mit • (...) auch möglich: Darstellung von multiskalierten Strukturen RGG als Verallgemeinerungen von L-Systemen: Zeichenketten entsprechen speziellen Graphen In Textform schreiben wir allgemeine Kanten als -kantensorte-> Kanten des speziellen Typs "Nachfolger" werden als Leerzeichen geschrieben (statt -successor->) Sonderformen von RGG-Regeln: Aktualisierungsregeln (Regelpfeil ::> ): es werden nur Parameter verändert Instanzierungsregeln: einzelne Zeichen werden in Substrukturen aufgelöst, ohne Einfluss auf den nächsten Entwicklungsschritt Realisierung in einer Programmiersprache: Sprache XL (eXtended L-system language) • RGG-Regeln in Blöcken organisiert Kontrolle der Reihenfolge der Regelanwendungen • Turtle-Kommandos als Knoten erlaubt • Knoten sind Java-Objekte • Sprache Java als Rahmen für die gesamte RGG Benutzer kann Konstanten, Variablen, Klassen... definieren XL wird "verstanden" von der interaktiven 3D-Plattform GroIMP (Growth-grammar related Interactive Modelling Platform) • GroIMP stellt Objekte für die 3D-Visualisierung bereit. Diese können in XL verwendet werden. • GroIMP ist ein open source-Projekt; siehe http://www.grogra.de. Beispiel eines mit GroIMP realisierten Pflanzenmodells (Gerste):