Analytische Plattformen von IBM, Microsoft, Oracle, SAP und SAS im

Werbung
BARC T2: Analytische Plattformen von IBM,
Microsoft, Oracle, SAP und SAS im Vergleich
München, 23.06.2015
Otto Görlich, Senior Analyst
Timm Grosser, Senior Analyst
Business Application Research Center (BARC)
B
A
140 Mitarbeiter, davon 80 Analysten an 17 Standorten in acht Ländern
R
Portfolio aus Research, Beratung und Weiterbildung
C
29.06.2015
Europas führendes IT-Analysten- und -Beratungshaus für Business Software und IT Services
(Analystengruppe CXP / PAC / BARC)
Themen: Business Intelligence, Big Data, Datenmanagement, Customer Relationship Management,
Enterprise Content Management, IT-Management, HR, Finance, ERP, IT Sourcing und IT Services
© BARC 2015
2
BARC: Expertise für datengetriebene Unternehmen
Beratung
Strategie & Organisation
Prozesse & ITArchitektur
Softwareauswahl
Data Science
Weiterbildung
Konferenzen
Seminare
Kamingespräche
Expertenworkshops
29.06.2015
Datengetriebene
Unternehmen
Research
Produktvergleiche
Marktforschung
BI Manager
© BARC 2015
3
Was BARC von Systemintegratoren unterscheidet
•
•
•
•
•
•
•
Wir sind Experten für die Nutzung von Daten und Analytik zugunsten
optimierter Kerngeschäfts- und Entscheidungsprozesse in Unternehmen.
Die Synergie unserer betriebswirtschaftlichen und technologischen
Erfahrungen befähigt uns in besonderem Maße, die Zusammenarbeit
zwischen Fachbereichen und IT zu unterstützen und zu fördern.
Unsere Architekturempfehlungen setzen auf Ihre konkreten,
unternehmensindividuellen Anforderungen auf und folgen nicht
dogmatischen Philosophien.
Wir haben kein Interesse an Implementierungsprojekten, sondern
konzentrieren uns auf Strategie- und Technologiearchitekturfragen.
Wir arbeiten mit absolut technologieneutralen Methoden und Best
Practices, die Unabhängigkeit von einzelnen Herstellern und Werkzeugen
ihren Vorgehensweisen/Experten sicherstellen.
Allein im BI & DM Markt kennen wir 250 Anbieter mit 600 Werkzeugen und
aggregieren Erfahrungen von mehr als 1000 Anwendern.
Unser Coaching-Ansatz vermittelt Hilfe zur Selbsthilfe anstatt ServiceAbhängigkeit.
29.06.2015
© BARC 2015
5
Agenda
Analytische Plattformen im Vergleich
•
Marktentwicklung und -segmentierung
•
Analytische Plattformen im Vergleich
Marktzahlen BI und
Datenmanagement
29.06.2015
Hadoop-Survey: www.barc.de/umfrage
© BARC 2015
7
BI-Angebot in Deutschland
Anzahl Anbieter und Produkte auf dem deutschen BI-Markt
600
500
Anzahl
400
Produkte
Anbieter
300
200
100
0
2007
2008
2009
2010
Jahr
2011
2012
2013
Quelle: BARC Guide BI 2013/2014
29.06.2015
© BARC 2014
8
Marktwachstum
Umsatz in Millionen Euro
Marktvolumen Business Intelligence Software
Deutschland 2006-2013
+ 11 %
CAGR
+ 11%/Jahr
+ 13 %
+ 11 %
+9%
+ 15 %
807
+8%
+ 10 %
1455
1314
1164
1051
963
874
703
2006
2007
2008
2009
2010
2011
2012
2013
Quelle: BARC, Der Markt für Business Intelligence in Deutschland 2013
29.06.2015
© BARC 2014
9
Verteilung Backend-Frontend
Lizenz- und Wartungsumsätze in Mio. €
DatenmanagementWerkzeuge
722
733
(50%)
(50%)
Anwenderwerkzeuge
Quelle: BARC, Der Markt für Business Intelligence in Deutschland 2013
29.06.2015
© BARC 2014
10
Durchschnittliches Wachstum 2012-2013
Durchschnittliches Wachstum
(pro Anbieter, nicht auf Umsatz gewichtet)
25%
20%
Durchschnittl. ungew. Wachstum der Top 60
Anbieter: 16%
15%
19,6%
19,8%
Top 21 - 30
Top 31 - 60
16,8%
10%
5%
7,9%
9,2%
0%
Top 5
Top 6 - 10
Top 11 - 20
Anbieter
Quelle: BARC, Der Markt für Business Intelligence in Deutschland 2013
29.06.2015
© BARC 2014
11
Marktstruktur
16%
12%
261 Anbieter
201
66%
50
5
Gesamtumsatz BI Software 2013: 1,46
Mrd. €
6%
Kleinanbieter (Platz 61-261)
Mittelfeld (Platz 11-60)
Herausforderer (Platz 6-10)
Top 5 Anbieter
5
Anzahl Anbieter
Umsatz in %
Quelle: BARC, Der Markt für Business Intelligence in Deutschland 2013
29.06.2015
© BARC 2014
12
Marktkonzentration Top 5 und Top 10
67%
Marktanteil
62%
55%
70%
58%
74%
76%
75%
78%
75%
66%
60%
61%
60%
61%
42%
Top 10 Anbieter
Top 5 Anbieter
2006
2007
2008
2009
2010
2011
2012
2013
Quelle: BARC, Der Markt für Business Intelligence in Deutschland 2013
29.06.2015
© BARC 2014
13
Business-Intelligence-Gesamtmarkt Anbieter
Deutschland 2013 Platz 1-10
Rang
Firma
BI & DM
SoftwareUmsatz 2013
(in Mio. €)
Veränderung
zu 2012
Marktanteil
in Prozent
1
SAP
371,0
22%
25,5%
2
Oracle
180,0
6%
12,4%
3
Microsoft
154,2
16%
10,6%
4
IBM
142,2
5%
9,8%
5
SAS
109,5
-10%
7,5%
6
Informatica
51,0
13%
3,5%
7
Qlik
35,0
19%
2,4%
8
MicroStrategy
34,0
3%
2,3%
9
Teradata
30,1
-5%
2,1%
10
Software AG/ IDS Scheer
19,2
16%
1,3%
Quelle: BARC, Der Markt für Business Intelligence in Deutschland 2013
Der Softwaremarkt für Datenmanagement
Die guten, alten Zeiten…
vielversprechende Anbieter tauchen auf….
und gut subventionierte und schnell wachsende Herausforderer.
15
© BARC 2014
15
Date
Investments im Markt
für BI und DM
Investments in Mio. US$
2013
2014
BI
BI SaaS
Advanced Analytics
CPM
474
75
87
102
300
40
187
163
Big Data Analytics
BI total
39
776
50
739
NoSQL
Hadoop
Data Integration/DM
213
104
113
166
438
103
ADB
DM total
13
443
35
742
1,219
1,481
BI/Big Data Invest
29.06.2015
2015
2-2015
1-2015
2014
12-2014
12-2014
12-2014
11-2014
11-2014
10-2014
10-2014
10-2014
9-2014
5-2014
9-2014
8-2014
8-2014
8-2014
8-2014
7-2014
7-2014
7-2014
6-2014
6-2014
6-2014
6-2014
6-2014
6-2014
5-2014
5-2014
5-2014
5-2014
5-2014
5-2014
4-2014
4-2014
4-2014
3-2014
3-2014
3-2014
3-2014
3-2014
2-2014
2-2014
2-2014
1-2014
1-2014
1-2014
Company
Invest (M US$)
Total Segment
Invest
Action
Country
20.0
RapidMiner
Neo Technologies
Blue Yonder
Predictix
Metric Insight
HostAnalytics
InsightSquared
SnapLogic
Map-D
Alteryx
DataStax
Context Relevant
GoodData
Guavus
Splice Machine
Glassbeam
ICharts
Hortonworks
SnapLogic
Tagetik
MapR
Couchbase
ThougthSpot
Visier
Concurrent
SiSense
Trifacta
Tamr
Anaplan
Sumo Logic
Context Relevant
App Annie
Rosslyn Analytics
Decisyon
SnapLogic
Cirro
Cloudera
Cloudera
ClearStory Data
Hortonworks
WhereScape
Splice Machine
Domo
Chartio
MemSQL
Contiamo
15.0
20.0
1,480.5
75.0
15.0
21.0
25.0
13.5
20.0
1.5
60.0
106.0
13.5
25.7
20.0
3.0
2.0
4.3
50.0
2.0
38.0
110.0
60.0
30.0
25.5
10.0
30.0
25.0
16.0
100.0
30.0
21.0
17.0
16.8
22.0
2.0
1.0
740
160.0
21.0
100.0
10.0
15.0
125.0
2.2
35.0
0.5
20AA
VC
44.1NoSQL VC
75AA
15AA
21BI
86CPM
27BI
59DI
1.5BI
78AA
190NoSQL
44.3AA
101.2BI SaaS
99BDA
22Hadoop
5AA
10.8BI
248Hadoop
39DI
CPM
174Hadoop
115NoSQL
40.7BI
46.5BI
14.9DM
44BI
41.3DI
16DI
144CPM
75BDA
30.8AA
39BI
21.6DI
45BI
37DI
9DI
1,040Hadoop
300Hadoop
30BI
198Hadoop
DM
19Hadoop
249BI
7BI
45ADB
1BISaaS
PE
VC
VC
VC
VC
VC
VC
VC
VC
VC
VC
VC
VC
VC
VC
VC
VC
VC
VC+Debt
VC
VC
VC
VC
VC
VC
VC
VC
VC
VC
VC
IPO
VC
VC
VC
Equity
VC
VC
VC
VC
VC
VC
VC
VC
VC
US
US
D
US
US
US
US
US
US
US
US
US
US
US
US
US
US
US
US
I
US
US
US
US
US
ISR
US
US
US
US
US
US
UK
I / US
US
US
US
US
US
US
NZ
US
US
US
US
D
Big Data Technologien verschiedener Architekturumgebungen
Kerngeschäftsprozesse:
ERP, CRM, SCM, „OLTP“ …
Klassische BI:
Reporting, Dashboards, OLAP
Operative
BI
Explorative BI: Fortgeschrittene Analyse,
erweiterter Datenhaushalt
Taktische
BI
Data
Mart
DP Services
CEP
ADB
Explorative
BI
SSBIData
Data
Mart
Data
Mart
Expl. SSBI/DI
Mart
ADB
Data Distribution
Conformed
Dimensions
Conformed Facts
Suchindex
Data Distribution
Data Warehouse
Streaming
IQ Services
NoSQL
ADB
Hadoop
Hadoop
NoSQL
Data Integration
Staging Area
Extraction
ADB, Hadoop, Virtualisierung, DI Services
ERP
SCM
CRM
Strukturierte Geschäftsdaten
29.06.2015
Externe
Systeme
Sensor-Daten
Web Logs
Maschinengeneriert (strukt.)
Social Media
Dokumente
Menschgeneriert (polystr.)
© BARC 2015
17
Geplanter Einsatz von (Big Data) Technologien nimmt zu!
Standard Relationale Datenbanken
91%
Multidimensionale Datenbanken
66%
Standard-Datenintegrationswerkzeuge
5% 7%
57%
Individualentwicklung
5% 8%
53%
42%
7%
Stand-alone Self-Service-BI-Lösungen
42%
9%
Big Data Appliances
NoSQL-Datenbanken
Big-Data-Analyse-Anwendungen
Streaming-Datenbanken
22%
7%
12% 4%
8% 4%
36%
15%
34%
16%
55%
65%
76%
74%
78%
18%
Automatisiertes Data Warehousing 4 2 7%
Im Einsatz
14%
15%
6%3% 13%
Hadoop-Ökosystem 6% 7%
40%
20%
10% 4% 10%
22%
30%
4%3%
Analytische Datenbanken
Werkzeuge für die Datenvirtualisierung
1 2 5
Geplant innerhalb von 12 Monaten
69%
87%
Langfristig geplant
Nicht geplant
Quelle: BARC Survey Datenmanagement im Wandel, n=337
29.06.2015
© BARC 2015
18
Technologiekarte – Überblick Werkzeugklassen der analytischen
Infrastruktur
29.06.2015
© BARC 2015
19
Worin liegen für Sie heute die wesentlichen Aufgaben der
Datenintegration?
Klassisches ETL
84%
Sicherstellung der Datenqualität
67%
Abbildung des Single Point of Truth
54%
Integration vieler unterschiedlicher Datenquellen
49%
Datensicherheit
46%
Aufbau/Verwaltung von Berechnungslogiken
44%
Unterstützung der Kollaboration zwischen…
33%
Kontrolle/Dokumentation der…
31%
Sicherstellung der fachlichen/technischen…
21%
Information Lifecycle Management
19%
Bereitstellung von Echtzeitdaten
14%
Schnelle Ad-hoc-Integration von Daten
14%
Befähigung der Fachbereiche für Aufgaben der…
Integration polystrukturierter Daten
13%
11%
Quelle: BARC Survey Datenmanagement im Wandel, n=307
Worin liegen für Sie heute die wesentlichen Aufgaben der Datenintegration?
29.06.2015
© BARC 2015
20
Worin liegen für Sie zukünftig die wesentlichen Aufgaben der
Datenintegration?
Sicherstellung der Datenqualität
52%
Integration vieler unterschiedlicher Datenquellen
52%
Bereitstellung von Echtzeitdaten
52%
Kontrolle/Dokumentation der Daten/datenverändernden…
50%
Schnelle Ad-hoc-Integration von Daten
49%
Integration polystrukturierter Daten
48%
Abbildung des Single Point of Truth
47%
Information Lifecycle Management
43%
Unterstützung der Kollaboration zwischen Fachbereich…
41%
Sicherstellung der fachlichen/technischen Skalierbarkeit…
40%
Aufbau/Verwaltung von Berechnungslogiken
37%
Befähigung der Fachbereiche für Aufgaben der…
37%
Datensicherheit
Klassisches ETL
36%
30%
Quelle: BARC Survey Datenmanagement im Wandel, n=307
29.06.2015
© BARC 2015
21
Leistungsspektrum moderner Datenintegrationsplattformen im
Zeitalter der Digitalisierung
Drehscheibe
Konsistenz durch
Standardisierung und
Wiederverwendbarkeit
Methodenvielfalt
Unterstützung DI und
erweiterter Funktionen
Produktivitätssteigerung
Performance &
Skalierbarkeit
Datenschutz und
Sicherheit
Unterstützung erw.
Data Governance
Funktionen
Sicherstellung Betrieb
29.06.2015
© BARC 2015
22
Anhaltender Trend hin zu Datenintegrationsplattformen – Markt ist
relativ starr mit wenig Marktneueintritten und -austritten
Follower
Konnektor
(DQ- / DI-) Spezialist
Leader
Integrationsplattform
Funktionalität und Komplexität nimmt vom Konnektor hin zur Plattform zu
Folie beinhaltet Auszug relevanter Hersteller von Datenintegrationswerkzeugen
29.06.2015
© BARC 2015
23
Funktionsabdeckung
ausgewählter Lösungsangebote (Auszug)
ETL
ELT
EAI
EII
DQM
MDM
MeDM
Ab Initio
X
X
X
X
X
X
X
Cubeware
X
Composite
X
Denodo
X
IBM
X
X
X
X
X
X
X
Informatica
X
X
X
X
X
X
X
Microsoft
X
X
X
X
X
X
X
X
X
X
X
Oracle
Pentaho
X
X
Pervasive
X
X
SAP
X
X
SAS
X
X
Syncsort
X
Talend
X
Theobald
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Legende:
ETL (Extract-Transform-Load), ELT (Extract-Load-Transform), EAI (Enterprise Application Inegration),
EII (Enterprise Information Integration), DQM (Data Quality Management), MDM (Master Data Management), MeDM (Metadata Management)
29.06.2015
© BARC 2015
24
Technologiekarte – Überblick Werkzeugklassen der analytischen
Infrastruktur
29.06.2015
© BARC 2015
25
Analytische Datenbanken
29.06.2015
© BARC 2015
26
Trends im Markt analytischer Datenbanken
•
Technologische Innovationen
• Hardware
• Prozessoren
• Speicher(-hierarchie)
• Software
•
•
Verschiedene Ausprägungen
• Speicherform
• Speicherort
• Lieferform
• Architektur
Speicherformen
Speicherorte
Lieferformen
für analytische
Datenbanken
für analytische
Datenbanken
für analytische
Datenbanken
Relational,
zeilenorientiert
Festplatte
Relational,
spaltenorientiert
Solid State Disks
Software
Appliance
Multidimensional
RAM
Sonstige
Prozessor-Cache
optimiert
(Objekt-relational, Assoziativ, Datei, Streaming)
Data as a Service
Architekturen
Single-Node
SMP
Cluster
SMP-Cluster
SMP2tierCluster
MPP-symetr.
MPP-asymetr.
„Einer für alles“ versus „aufgabenspezifisch optimiert“
29.06.2015
© BARC 2015
27
Marktübersicht Analytische Datenbanken
Where stored
Vendor/DB-Engine
Disk
(HDD/SSD)
Actian Vectorwise
Calpont InfiniDB
EMC Greenplum (Pivotal)
Exasol ExaSolution
HP Vertica Analytics Platform
IBM DB2 (PureData Op. Analytics)
IBM Netezza (PureData Analytics)
InfoBright
Kognitio WX2
Microsoft SQL Server / PDW
Oracle Database / Exadata
ParAccel Analytic Platform (Actian)
ParStream
SAND Analytics Server
SAP HANA
Sybase IQ
Teradata
x
x
x
(x)
x
x
x
x
(x)
x
x
x
x
x
(x)
x
x
How provided
InMemory Software Appliance
How stored
DaaS
Architecture
Column
Row
SMP
MPP
x
x
x
x
x
x (BLU)
(x)
x
x
x
x
x
x
x
x
A
S
S
S
A
(RAM)
x
x (BLU)
x
(x)
(x)
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
(x)
x
(x)
x
x
x
x
x
x
x
x
x
(x)
x
x
x
x
x
x
x
x
x
x
x
x
(x)
x
x
x
(x)
x
x
x
x
x
x
x
x
x
(X)
x
x
C/S
2TC
x
x
x
x
C
x
S
x
x
x
x
S
S
Auszug BARC-Studie Analytische Datenbanken 2013
X= ja
29.06.2015
C=SMP Cluster
2TC=2-tier-Cluster
S=symetrisch
A=asymetrisch
© BARC 2015
28
Schnellere Abfrageperformance durch den Einsatz Analytischer
Datenbank als Data Warehouse oder Data Mart
Reporting & Analyse
Junge versus reife ADBs –
wichtige Punkte:
?
Analytische
Datenbanken?
•
•
•
•
•
•
•
?
?
Datenaufbereitung
Staging Area
ERP
SCM
CRM
Externe
Systeme
Abfrage-Leistungen
Schreibe-Leistung
Lastmanagement
Skalierfähigkeit
Einfache Wartbarkeit
Einsatzbreite
Kosten
Nicht nur die Datenbank,
vor allem auch die
Datenarchitektur spielt eine
entscheidende Rolle.
Strukturierte Geschäftsdaten
29.06.2015
© BARC 2015
29
Wie schätzen Sie den Nutzen folgender Technologien zu einer
schnelleren und einfacheren Umsetzung von DWH-Anforderungen
ein?
In-Memory-Datenbanksysteme
55%
30%
Automatisiertes Data Warehousing
34%
36%
Eigenentwicklung
34%
36%
Datenvirtualisierung/Logical Data Warehouse
24%
Referenzdatenmodelle
18%
Verknüpfung von Best-in-Class-Lösungen
17%
Lösungsbausteine vom Softwarehersteller
16%
Einkauf fertiger Lösungen
Cloud-basierte Data-Warehouse-Lösungen
Hoher Nutzen
Mittlerer Nutzen
26%
19%
49%
21%
35%
38%
47%
24%
Geringer Nutzen
11%
6%
9%
36%
35%
4
9%
26%
43%
11%
8%
11% 4
5%
42%
12%
40%
28%
Kein Nutzen
Quelle: BARC Survey Datenmanagement im Wandel, n=312
29.06.2015
© BARC 2015
30
Hadoop
29.06.2015
© BARC 2015
31
Einsatzszenarien für Hadoop nehmen weiter zu
Ablaufumgebung für fortgeschrittene
Analysen/Exploration
24%
25%
40%
Staging/Landing Area für semi-/unstrukturierte
Daten
20%
Datenaufbereitung/Datenintegration für semi/unstrukturierte Daten
20%
32%
35%
Abfragbarer Speicher/Datenarchiv für semi/unstrukturierte Daten
19%
30%
42%
Datenaufbereitung/Datenintegration für
strukturierte Daten
18%
27%
Staging/Landing Area für strukturierte Daten
18%
27%
Abfragbarer Speiche/Datenarchiv für
strukturierte DWH-Daten zur Ergänzung…
Ablaufumgebung für klassisches BI
Unterstützung operationaler Anwendungen
Abfragbarer Speiche/Datenarchiv für
Content/Dokumente
Abfragbarer Speiche/Datenarchiv für
strukturierte DWH-Daten als Ersatz für das…
Im Einsatz
29.06.2015
Geplant in 12 Monaten
16%
37%
10%
30%
32%
24%
15% 12%
15%
35%
19%
44%
32%
34%
25%
8% 15%
44%
34%
Langfristig geplant
Wie nutzen bzw. planen Sie Hadoop zu nutzen?
Quelle: BARC Survey „Hadoop 2015“, n=67
© BARC 2015
32
Marktübersicht Hadoop Distributionen
Marktübersicht
Hauptdistributionen
Spezialisten
Cloudera
Cloudera
S
Cloudera
X
A
Oracle
X
NetApp
X
C
HortonWorks
MapR
Apache Hadoop
HortonWorks
S
HortonWorks
X
Microsoft
X
A
X
Rackspace
Generalisten
IBM
X
Teradata
X
MapR
S
MapR
X
A
Amazon
Pivotal
IBM
Pivotal
C
C
X
S
A
C
X
X
X
X
Legende: S: Software, A: Appliance, C: Cloud
29.06.2015
© BARC 2015
33
Top 5 Erkenntnisse aus der Marktumfrage zu Hadoop
1. Der Einsatz von Hadoop wird vorwiegend von der IT für vorwiegend
technische Aufgabenstellungen diskutiert
2. Die Bedeutung von Hadoop wächst hin zu einem strategischen
Baustein.
3. Einsatzszenarien für Hadoop nehmen weiter zu
4. Fehlendes Know-How und Unsicherheit verhindern Nutzung von
Hadoop Potentialen
5. Die Voraussetzungen für den Einsatz von Hadoop fehlen größtenteils
noch in den Unternehmen.
29.06.2015
© BARC 2015
34
Chancen und Risiken
Chancen des Hadoop-Einsatzes
• Open Source Angebot : niedrige Lizenzkosten, Offenheit, CommunityWeiterentwicklung
• Speicherung und Verarbeitung sehr großer Datenmengen
• Geringe Kosten in puncto Skalierbarkeit, eingebaute Redundanz/Verteilung,
Parallelität
• Performance bei Batch-Verarbeitung
• Flexibilität zur Aufnahme polystrukturierter Daten
• Umsetzung von „late binding“ Konzepten: Daten mit unbekannten oder
veränderlichen Datenmodellen können integriert werden.
• Unterstützung von Individualentwicklung
Risiken
• Enterprise-Reife und Stabilität (bspw. Datenschutz/fehlende Verschlüsselung)
• Geringe Eignung zur Verarbeitung kleiner Datenmengen
• DBMS Integration
• Verfügbarkeit von Experten
• Nutzbarkeit von Hadoop
29.06.2015
© BARC 2015
35
NoSQL
29.06.2015
© BARC 2015
36
Was ist NoSQL?
Eine Variante von Datenbanken oder Datenspeichern auf die häufig
folgende Definitionen zutreffen:
• Nicht relationale Datenspeicherung
• Distributed (über mehrere Rechner (auch Geographisch) verteilt)
• Open Source oder Open Source Derivate
• Horizontal Skalierbar
Weitere Charakteristika sind:
• Schemafrei
• Vermeidung von Joins (->skalierbar)
• Einfache Unterstützung für Datenreplikation
• Einfache oder limitierte APIs
• Datenkonsistenz von „last update wins“ bis ACID
• Große Datenmengen
29.06.2015
© BARC 2015
37
Beispiele für NoSQL Datenbanken
Key-value store
Key
Value
[email protected]
Yining, Hu, , 13 March 1987
[email protected]
John, Smith
[email protected]
Mary, Doherty, 071 546 98999, 654 328 1298, 03 July 1976
Document-oriented stores generalisieren
das Key-value Konzept mit multiplen Keys
JSON {(Key : Value), (Key : Value), ...}
z.B. Google Bigtable, Amazon SimpleDB,
Hbase, Cassandra, etc.
Graph Datenbanken mit Nodes, Edges und
Eigenschaften repräsentieren und speichern
assoziative Daten (Analyse von sozialen
Netzwerken)
{ E-mail : [email protected]
First name : John ,
Surname : Smith }
{ E-mail : [email protected]
First name : Mary ,
Surname : Doherty ,
Date of birth : 03 July 1976 ,
Cell-phone : 071 546 98999 ,
Landline : 654 328 1298 }
{ E-mail : [email protected]
First name : Yining ,
Surname : Hu ,
Date-of-birth : 13 March 1987 }
z.B. CouchDB, MongoDB, Terrastore, etc.
z.B. Neo4J, Infinite Graph, etc.
38
Technologiekarte – Überblick Werkzeugklassen der analytischen
Infrastruktur
29.06.2015
© BARC 2015
39
IBM, Informatica, Microsoft, Oracle, SAP, SAS and Teradata
in direct comparison
Strategy & roadmap
Portfolio
Architecture and Hadoop Integration
Conclusion
29.06.2015
© BARC 2015
40
IBM
29.06.2015
© BARC 2015
41
Total consideration IBM
• Leading provider of hardware, software and services in the IT field, especially
around information management (Big Data)
• Selective expansion in the SW area through in-house development and
acquisitions towards a broad data management portfolio
• $24B Investment in both organic development and 30+ acquisitions
Market development (*)
Revenue 2013: 142 Mio. US$
Growth 2013: 5%
Market share: 9,8%
• Partial function overlaps between the different tools or overlap of tool categories
Development priorities
• Noticeable maturity of the Big Data middleware (besides Oracle) compared to
the other generalists, especially concerning performance, scalability and
development support
•
•
•
•
• Strong commitment in data governance, Big Data and Cloud
• Pioneering IBM Watson (cognitive computing) technology and solutions
• Significant contribution to the Spark Apache OSS project
• Investment of multiple 100 Mio US$ and manpower
• Roadmap:
• Expansion into the Big Data solution segment
• Tightly integrated Big Data platform with „one stop shopping“ approach
• To be a leading cloud provider
29.06.2015
Big Data & Analytics
Cognitive Computing (Watson)
In-Memory
SQL interface/integration for
Hadoop
• Complete Cloud provider
• Big Data & Analytics Consulting
Did you know that:
…, IBM is also one of the largest
SW companies. WW revenue ~
$30B.
(*) Source: BARC Market Research 2014,
All numbers are estimated by BARC and are
focused on the German market in 2013
© BARC 2015
42
Technology Map – Overview Tool Classes of Analytical Infrastructure
for IBM
Search &
Discovery
Predictive
Modeling
Text Analysis
CPM
Sandboxing
Specialized DB
Calculation Engine
Analytical DB
Streaming
Hadoop
Data Integration
Virtualization
Data Quality Management
Master Data Man.
Meta Data Man.
Classic
Analysis
Data Modeling
Reporting &
Dashboards
Data Governance & Data Collaboration
Full support
29.06.2015
Partial support
No support
© BARC 2015
43
Technology Map – Overview Tool Classes of Analytical Infrastructure
for IBM
Watson Explorer,
Information
Catalog
Sandboxing
Information Server (DataClick) &
BigInsights / PDA / DB2 / ...
Data Integration
Information Server,
DataWorks
SPSS, BigInsight &
Watson Content
Analytics
Specialized DB
TM1, Informix Time Series, Cloudant
NoSQL
Analytical DB
PDA, DB2 BLU, DashDB
SPSS, Watson
Analytics
Text Analysis
Virtualization
Fluid Query, Big SQL, DB2,
Federation Server
Cognos TM1
Calculation Engine
Algorithmics CPLEX/Optimization
Streaming
InfoSphere Streams
CPM
Hadoop
BigInsights, BigSQL, BigSQL Federation,
Big Data Appliance
Data Quality Management
Information Server
Master Data Man.
Information Server
Cognos,BigInsights
(BigSheets), SPSS
Watson Analytics
Predictive
Modeling
Data Architect
Search &
Discovery
Meta Data Man.
Cognos, Watson
Analytics
Classic
Analysis
Data Modeling
Reporting &
Dashboards
MDM Server
Data Governance & Data Collaboration
Information Server
29.06.2015
© BARC 2015
44
IBM Information Management & Analytics
29.06.2015
© BARC 2015
45
Packaging Structure
IBM BigInsights for
Apache Hadoop
Data Scientist
IBM BigInsights
Data Scientist
Administrator
Text Analytics
Business
Analyst
IBM BigInsights
Analyst
Machine Learning on
Big R
Big R
IBM BigInsights
Enterprise Management
Big SQL
Big SQL
POSIX Distributed
Filesystem
BigSheets
BigSheets
Multi-workload, Multi-tenant
scheduling
IBM Open Platform with Apache Hadoop*
Developer
*IBM Open Platform with Apache Hadoop is IBMs own 100% open source Apache
Hadoop distribution. IBM will include the ODP common kernel once available (future).
29.06.2015
© BARC 2015
46
Hadoop-SQL(RDBMS)-Integration
Import-/Export-Konnektoren In-Database MapReduce
MR
External Tables
MR
RDBMS
RDBMS
MR
HDFS
HDFS
Hive/Impala
Hadoop DBs
HiveQL
MR
HDFS
29.06.2015
RDBMS
Hybride Systeme
RDBMS
RDBMS
HDFS
MR
HDFS
© BARC 2015
47
BigInsights Big SQL – Federation example
Big SQL Federation Layer
Oracle
29.06.2015
Big SQL on Hadoop
© BARC 2015
48
IBM – key message
IBM is transforming the business to a cloud-first strategy and offers in the
Big Data and Analytics area a complete stack of products and applications.
The intent to be a leading provider for Big Data analytics is expressed by
the new organisational units, IBM Analytics, IBM Commerce, and IBM
Watson. To support the data driven enterprise with Big Data middleware
and solution is IBMs strategic goal. The IBM consulting and implementation
services backing up these strategy.
29.06.2015
© BARC 2015
49
Informatica
29.06.2015
© BARC 2015
50
Total consideration Informatica
• Leading data integration specialist that provides technology to
unleash the power of your data with a strong customer base
• Informatica traditionally offers premium technology for more complex
integration challenges within large companies. Current
developments display additional offerings for the mid market
(PowerCenter Express, Cloud offerings)
• Informatica works cooperates intensively with partners in order to
deliver more overarching solutions to customers (e.g. partner of all
major Apache Hadoop distributions)
• Roadmap:
• Provider of methodology and technology to support overarching
Data Governance. Informatica technology is moving forward
from a pure infrastructure platform towards a more business
user centric Data Intelligence Platform for analytical and
operational scenarios - „DI is easy as Excel“
• Further development in direction of Intelligent Data Lake and
Self Service Data Integration to provide simple and easy-to-use
data solutions also for the business user to enable them to get
value from data
• Enhance platform integration, flexibility and connectivity in new
technology
29.06.2015
Market development (*)
Revenue 2013: 51 Mio. US$
Growth: 13%
Market share: 3,5%
Development priorities
•
•
•
•
Big Data
Self Service Data Integration
Data Governance
Meta Data Management
Did you know that:
…, founded in 1993, today
Informatica operates in 28
countries around the world
(*) Source: BARC Market Research 2014,
All numbers are estimated by BARC and are
focused on the German market in 2013
© BARC 2015
51
Technology Map – Overview Tool Classes of Analytical Infrastructure
for Informatica
Search &
Discovery
Predictive
Modeling
Text Analysis
CPM
Sandboxing
Specialized DB
Calculation Engine
Analytical DB
Streaming
Hadoop
Data Integration
Virtualization
Data Quality Management
Master Data Man.
Meta Data Man.
Classic
Analysis
Data Modeling
Reporting &
Dashboards
Data Governance & Data Collaboration
Full support
29.06.2015
Partial support
No support
© BARC 2015
52
Technology Map – Overview Tool Classes of Analytical Infrastructure
for Informatica
Search &
Discovery
Predictive
Modeling
Text Analysis
CPM
Profiler, Analyst,
Intelligent Data
Lake
Sandboxing
Specialized DB
Calculation Engine
Streaming
Hadoop
Analytical DB
Vibe Data Stream, CEP
Data Integration
PowerCenter
Data Integration Hub,
PowerExchange, Big Data
Edition, Big Data
Relationship Manager
Virtualization
Data Services
Big Data Edition, Big Data Parser
Data Quality Management
Data Quality Manager,
Data as a service
Master Data Man.
Master Data Manager,
Product Information
Management
Data Modeling
Rev (Springbok), PowerCenter, Test
Data Management
Data Governance & Data Collaboration
BPM, VIBE Virtual Data Machine, Application Information Lifecycle Management , Cloud Integration, Intelligent Data
Lake, Live Data Map
Full support
29.06.2015
Partial support
No support
© BARC 2015
53
Metadata Manager
Classic
Analysis
Meta Data Man.
Reporting &
Dashboards
Informatica tools
Informatica Business
Glossary
Informatica Metadata
Manager
Informatica
Masterdata Manager
Informatica
Data Quality
Informatica
Power Center
Source: Informatica
Intelligence Data Platform
Source: Informatica
29.06.2015
© BARC 2015
56
Hadoop Integration
Ext. HIVE
Read/write connectivity enabled by HIVE interface. Informatica utilizes this interface
to initiate Informatica-specific that is implemented in Hadoop to improve
performance or enhance functionality (e.g. DQ). Also support of Tez/Spark.
Connection logic is built within PowerCenter.
29.06.2015
© BARC 2015
58
Informatica – key message
Informatica is a market leading and independent provider of data
integration solutions. Informatica provides technology to establish a robust
and secure infrastructure in support of value extraction of enterprise data.
Informatica does not provide own data storage or analytics technology, but
rather focuses on integrating many different kinds of sources and systems
and managing the data integration process by providing a flexible and high
performant integration platform. In DACH region we see Informatica
primary as middleware in analytical and in operational scenarios.
29.06.2015
© BARC 2015
59
Microsoft
29.06.2015
© BARC 2015
60
Total consideration Microsoft
• One of the major providers of business software, in particular office
products and software for the infrastructure (OS, other middleware)
Market development (*)
• The strategy "Devices and Services" drives mentioned topics and
provides expansion of the Microsoft BI (Big Data) services portfolio
towards a flexible self service offering (Office 360, PowerBI, Azure
(Cloud))
Revenue 2013: 154,2 Mio. US$
Growth 2013: 16%
Market share: 3,5%
• Development of BI as an add-on to existing components, always
based on Microsoft software (OS, complementary products), which
is mandatory for use.
• Integrate ML into BI
• Integrate PolyBase into SQL
Server
• Hadoop becomes more
embedded
• > 640,000 partners (ww) complement the Microsoft product portfolio
to industry-specific solutions and technologies and bridge the gaps
• Unlike the other generalists, Microsoft frequently finds an entry point
via the departmental users (business users) to BI (Excel, SQL
Server).
• Attractive pricing, specifically for SMB
• Roadmap
• Cloud
• Extend SQL Server and PDW In-Memory capabilities
• Integrate Machine Learning capabilities into the font end tools
29.06.2015
Development priorities
Did you know that:
…, the Microsoft WW revenue for
2014 in software was $86B
(*) Source: BARC Market Research 2014,
All numbers are estimated by BARC and are
focused on the German market in 2013
© BARC 2015
61
Technology Map – Overview Tool Classes of Analytical Infrastructure
for Microsoft
Search &
Discovery
Predictive
Modeling
Text Analysis
CPM
Sandboxing
Specialized DB
Calculation Engine
Analytical DB
Streaming
Hadoop
Data Integration
Virtualization
Data Quality Management
Master Data Man.
Meta Data Man.
Classic
Analysis
Data Modeling
Reporting &
Dashboards
Data Governance & Data Collaboration
Full support
29.06.2015
Partial support
No support
© BARC 2015
62
Technology Map – Overview Tool Classes of Analytical Infrastructure
for Microsoft
SS Reporting
Services, Power BI
Classic
Analysis
Search &
Discovery
Power BI, Excel
Power
Pivot/Query/View/
Map
SS Analysis
Services Data
Mining, Revolution
R,
Sandboxing
Text Analysis
CPM
Machine Lerning
(Azure ML)
Specialized DB
Calculation Engine
SS Analysis Services, Document DB,
Analytical DB
Analytics Platform System, SS Parallel
DWH, SQL Server, Azure Data
Warehouse
Data Integration
SS Integration Services
Streaming
StreamInsight, Azure Storm
Virtualization
Hadoop
HDInsight (Hadoop-Distribution)
Analytics Platform System
(Appliance) with PolyBase
Data Quality Management
SS Data Quality Services
Azure Data Factory
Master Data Man.
Data Modeling
Power Pivot
SS Analytics Services
SQL Server
Predictive
Modeling
Meta Data Man.
Reporting &
Dashboards
SS Master Data Services
Data Governance & Data Collaboration
SS Integration Services
29.06.2015
© BARC 2015
63
Microsoft Analytics Platform System
PDW & HDInsight as Appliance = Microsoft Analytics Platform System
•Phase 1: ohne M/R, Ablaufumgebung ist SS
•Phase 2: Cost-based Optimizer, Ablaufumgebung
M/R und RDB gemischt
SQL Zugriff auf
Hadoop/
HDInsight
Hadoop Distrib.
(Hortonworks),
auch über
Azure
Quelle: Microsoft
29.06.2015
© BARC 2015
64
Parallel Datatransfer between PDW Compute Nodes and HDFS Data
Nodes
Quelle: Microsoft
29.06.2015
© BARC 2015
65
Hadoop-SQL(RDBMS)-Integration
Import-/Export-Konnektoren In-Database MapReduce
MR
External Tables
MR
RDBMS
RDBMS
MR
HDFS
HDFS
Hive/Impala
Hadoop DBs
HiveQL
MR
HDFS
29.06.2015
RDBMS
Hybride Systeme
RDBMS
RDBMS
HDFS
MR
HDFS
© BARC 2015
66
Microsoft – key message
Microsoft is the largest software company worldwide and the offerings
range from desktop software to business applications and middleware.
With the advent of Big Data, Microsoft has opened up its „closed shop“ to
integrate Hadoop and Hadoop components into its own proprietary product
stack to allow analysis and processing of very diverse and heterogeneous
data sources. Positioning of SQL Server PDW and SQL Server however is
not clear within the overall Microsoft product portfolio. A clear focus area of
Microsoft is cloud (Azure)
29.06.2015
© BARC 2015
67
Oracle
29.06.2015
© BARC 2015
68
Total consideration Oracle
• Leading provider of hardware and software in the IT field. “One-stop shop for
CIO's." and global market leader in number of sold database licenses. Oracle is
also a leading provider of business SW (ERP, CRM, SCM)
• Oracle seeks to provide tools and products to enable the data driven enterprise
(Oracle World 2013), focus is on developing business applications in the BI /
DWH area
• Numerous acquisitions characterize Oracle's portfolio and development, leading
to diverse approaches and technologies with some overlaps
• Strong technology-driven sales results in less visibility for new topics: digital
transformation, Big Data, predictive analytics
• Strong cross- and upselling business within the currently very broad customer
base
Market development (*)
Revenue 2013: 180 Mio. US$
Growth 2013: 6%
Market share: 12,4%
Development priorities
• Tight integration of HW & SW
• In-Memory
• SQL interface/integration for
Hadoop (Big Data SQL)
• Visual Analytics
• Complete Cloud provider
• Strong partner network, also for SMB
Did you know that:
• Roadmap:
• Capitalize on tight integration of Oracle HW (former SUN) and SW
• Integration of functions into Oracle DB with the aim at Big Data and Hadoop
• To be a leading cloud provider
29.06.2015
…, Oracle WW Revenue for 2014
was ~ $38B.
(*) Source: BARC Marktzahlenstudie 2014,
All numbers are estimated by BARC and are
focused on the German market in 2013
© BARC 2015
69
Technology Map – Overview Tool Classes of Analytical Infrastructure
for Oracle
Search &
Discovery
Predictive
Modeling
Text Analysis
CPM
Sandboxing
Specialized DB
Calculation Engine
Analytical DB
Streaming
Hadoop
Data Integration
Virtualization
Data Quality Management
Master Data Man.
Meta Data Man.
Classic
Analysis
Data Modeling
Reporting &
Dashboards
Data Governance & Data Collaboration
Full support
29.06.2015
Partial support
No support
© BARC 2015
70
Technology Map – Overview Tool Classes of Analytical Infrastructure
for Oracle
Search &
Discovery
OBIEE with
Dasbords and
publishing function
OBIEE, Oracle
Advanced Analytics
with Oracle Data
Mining +R
Integration
Oracle Big Data
Discovery
Sandboxing
Oracle Data Mining
+ SQL Predict in
the Oracle DB
Oracle Text Mining
in the Oracle DB
Essbase, Times Ten, Oracle NoSQL
Analytical DB
Golden Gate, Oracle Data Integrator,
Oracle Soa Suite, Realtime Decison
Virtualization
Oracle Data Service Integrator
Oracle Database Links
CPM
Oracle BI suite
Calculation Engine
Functions integrated in Oracle DB
Streaming
Oracle DB with In-Memory feature
Golden Gate, Oracle Data
Integrator
Text Analysis
Specialized DB
Oracle DB with multi-tennant wizzard
Data Integration
Predictive
Modeling
Meta Data Man.
Enterprise Metadata
Management
Classic
Analysis
Hadoop
Cloudera, Big Data SQL, Big Data
Appliance
Data Quality Management
Oracle Data Quality Suite
Master Data Man.
Oracle Master Data
Management + Product Hub +
Customer Hub
Data Modeling
SQL Developer Data
Modeler
Reporting &
Dashboards
Data Governance & Data Collaboration
Oracle Relationship Management ( Metadata / Realtionship Management Solution)
29.06.2015
© BARC 2015
71
Oracle Big Data Management System
Quelle: Oracle
29.06.2015
© BARC 2015
72
Oracle Engineered Systems – Auszug
Based onOracle Berkeley DB Java
Edition;
Key/value storage;
JSON Data Format;
focus on transactional use cases.
O. SQL Connector for Hadoop
O. Loader for Haoop
O. XQuery for Hadoop
O. R Advanced Analytics for Hadoop
O. Data Integrator Application Adapter for Hadoop
Cloudera
Enterprise
Big Data SQL:
„smart scan for Hadoop“
Federation of Hadoop (Hive MeD)
NoSQL and relational w/ext.
Tables,
Oracle Data
Integrator
29.06.2015
Quelle: Oracle
© BARC 2015
73
Big Data SQL: A New Hadoop Processing Engine
Quelle: Oracle
29.06.2015
© BARC 2015
74
Hadoop-SQL(RDBMS)-Integration
Import-/Export-Konnektoren In-Database MapReduce
MR
External Tables
MR
RDBMS
RDBMS
MR
HDFS
HDFS
Hive/Impala
Hadoop DBs
HiveQL
MR
HDFS
29.06.2015
RDBMS
Hybride Systeme
RDBMS
RDBMS
HDFS
MR
HDFS
© BARC 2015
75
Oracle – key message
Oracle is one of the largest vendors for middleware and business software.
Oracle capitalizes on the tight integration of its own HW and SW, from
which the „Oracle Engineered Eystems“ (Exadata, Exalytics, etc.) have
emerged. Goal is to reduce costs and complexity, and on the other hand to
increase performance and productivity. Oracle offers a complete software
stack for Big Data and is one of the leading cloud providers. The main focal
point of the Oracle strategy is the Oracle DB. Oracle positions it self
against the rival SAP (HANA), for example, by Exalytics and Oracle DB InMemory option. The Oracle consulting division is not as strong as the
competitors’.
29.06.2015
© BARC 2015
76
SAP
29.06.2015
© BARC 2015
77
Total consideration SAP
• One of the largest providers of business software
Market development (*)
• Committed to enhancing the overall offering towards an
overarching data management platform with broad
capabilities, with SAP ERP an it‘s core
Revenue 2013: 371,0 Mio. US$
Growth 2013: 22%
Market share 2013: 25,3%
• Most efforts are currently focused on integration among the
various components of the portfolio, i.e. SAP ERP, SAP
HANA, SAP BW
Development priorities
• Clear roadmap and messaging for future positioning of SAP
HANA and impact on the SAP tool portfolio
•
•
•
•
Self-Service BI
Predictive Analytics
Mobile
Cloud
Did you know that:
• In comparison to other software vendors, SAP has a shorter
…, is the first vendor to
history as a provider of middleware and analytical
successfully market an extensive
databases (SAP HANA)
sematic layer in the DBMS
• Driver of discussion concerning evolution of positioning of
BI and DWHing
• Cloud orientation with SAP HANA, next to SaaS, PaaS, no
IaaS-Angebot
29.06.2015
© BARC 2015
78
Technology Map – Overview Tool Classes of Analytical Infrastructure
for SAP
Search &
Discovery
Predictive
Modeling
Text Analysis
CPM
Sandboxing
Specialized DB
Calculation Engine
Analytical DB
Streaming
Hadoop
Data Integration
Virtualization
Data Quality Management
Master Data Man.
Meta Data Man.
Classic
Analysis
Data Modeling
Reporting &
Dashboards
Data Governance & Data Collaboration
Full support
29.06.2015
Partial support
No support
© BARC 2015
79
Technology Map – Overview Tool Classes of Analytical Infrastructure
for SAP
Crystal Reports,
Web Intelligence,
Design Studio
Analysis for
OLAP/Office
Web Intelligence
Explorer
Search &
Discovery
Lumira,
Predictive
Analysis
Sandboxing
Predictive
Modeling
Text Analysis
Predictive
Analysis,
InfiniteInsight,
CPM
Planning and
Consolidation,
Integrated
Planning
Specialized DB
Calculation Engine
Streaming
Hadoop
Analytical DB
SAP HANA, Sybase IQ
Sybase Event Stream Processor
Data Integration
Data Services, Landscape
Transformation, Smart
Data Access, Smart Data
Integration
Virtualization
Data Federator, Smart
Data Access
HANA Smart Data Access
Data Quality Management
Data Services,
Information Steward
Master Data Man.
Netweaver MDM, Master
Data Governance, Signal
Management
Data Modeling
SAP BW
Data Governance & Data Collaboration
Information Steward
Full support
29.06.2015
Partial support
No support
© BARC 2015
80
Information Steward
Classic
Analysis
Meta Data Man.
Reporting &
Dashboards
Journey to a SAP HANA based Enterprise Target Architecture
Vision: Simplify Your SAP Enterprise Architecture
SAP HANA Information
models:
• Analytic perspectives
are logical, semantic
views on normalized,
detailed data!
SAP S4HANA:
• Reduction of the
operational data
model by 90%!
29.06.2015
© BARC 2015
81
Journey to a SAP HANA based Enterprise Target Architecture
Vision: Extend across all data locations with SAP Smart Data Access
29.06.2015
© BARC 2015
82
SAP HANA Smart Data Access
Mögliche Hadoop
Distributionen:
Intel, Hortonworks,
Cloudera, MapR
Quelle: SAP
29.06.2015
© BARC 2015
83
Hadoop-SQL(RDBMS)-Integration
Import-/Export-Konnektoren In-Database MapReduce
MR
External Tables
MR
RDBMS
RDBMS
MR
HDFS
RDBMS
HDFS
Hive
Hadoop DBs
Hybride Systeme
RDBMS
HiveQL
RDBMS
MR
HDFS
MR
HDFS
HDFS
29.06.2015
© BARC 2015
84
SAP – key message
SAP is a software generalist. SAP HANA has become the core component
of the SAP portfolio and all strategic SAP developments appear to be
focused on the HANA technology and overall latfrm, esp. for ERP, BI, EPM
and Predictive Analytics. HANA is a major investment for SAP and a driving
factor for the overall SW portfolio, spanning ERP modules, BW and recebt
big data solutions. Recent developments concerning S4/HANA have
underlined this approach.
Important to understand is that SAP HANA offers special interfaces to
exploit the full power of the in-database analytical capabilities.
29.06.2015
© BARC 2015
85
SAS
29.06.2015
© BARC 2015
86
Total consideration SAS
• Leading independant software vendor and BI specialist with
focus on BI and data management.
• Comprehensive solution portfolio (various predefined
analytical applications)
• Focus on analytics for “everybody”, also for non-data
scientists or non-experts in statistics
• Vision to enable Hadoop as an data operating System (core
component) for nextgen BI- & analytics strategy
• Vision: SAS technology should be THE analytics and data
management solution for Hadoop
• Roadmap:
• Tighter integration of SAS analytics in operational
processes
• Offering of an integrated Big Data Platform
• Further development of Big Data applications/solutions
29.06.2015
Market development (*)
Revenue 2013: 109,5 Mio. US$
Growth: -10% (ww +5%)
Market share: 7,5%
Development priorities
•
•
•
•
•
Big Data
Real-time
In-Memory
Cloud
User Experience
Didi you know that:
…, in 2014 SAS did high
investments to integrate Hadoop
into the SAS portfolio
(*) Source: BARC Marktzahlenstudie 2014,
All numbers are estimated by BARC and are
focused on the German market in 2013
© BARC 2015
87
Technology Map – Overview Tool Classes of Analytical Infrastructure
for SAS
Search &
Discovery
Predictive
Modeling
Text Analysis
CPM
Sandboxing
Specialized DB
Calculation Engine
Analytical DB
Streaming
Hadoop
Data Integration
Virtualization
Data Quality Management
Master Data Man.
Meta Data Man.
Classic
Analysis
Data Modeling
Reporting &
Dashboards
Data Governance & Data Collaboration
Full support
29.06.2015
Partial support
No support
© BARC 2015
88
Technology Map – Overview Tool Classes of Analytical Infrastructure
for SAS
Enterprise Guide,
Visual Analytics,
Visual Statistics
Visual statistics,
Enterprise Miner
Sandboxing
Predictive
Modeling
Visual Analytics
Contextual
Analytics
Specialized DB
Enterprise Guide, Big Data Lab
SPDS, LASR Server, Base, OLAP
Analytical DB
Data Integration
Virtualization
Federation Server
CPM
Financial
Management
Calculation Engine
various
Streaming
Event Stream Processing
Data Management, Data
Loader, Access Software,
Enterprise Guide
Text Analysis
Hadoop
Data Management, Data Loader for
Hadoop, Access Software, Federation
Server
Data Quality Management
Data Quality, Data Loader
for Hadoop
Master Data Man.
MDM
Data Governance & Data Collaboration
SAS Data Governance
Full support
29.06.2015
Partial support
No support
© BARC 2015
89
Metadata Server
Search &
Discovery
Meta Data Man.
Web Report
studio, BI
dashboards
Classic
Analysis
Data Modeling
Reporting &
Dashboards
Integration, interoperability and interfaces
Source: SAS
29.06.2015
© BARC 2015
90
Hadoop Integration
Source: SAS
29.06.2015
© BARC 2015
91
SAS – key message
Market leading BI and analytics specialist that is committed to supporting
Hadoop as an data operating/storage system and generating added value
by adding next-gen analytics and data management capabilities to simplify
and enhance the „user-experience”, while saving business continuity.
SAS does not provide an own relational database solution but rather
focuses on leveraging market-available technology with sophisticated
analytics and data management capabilities. Therefore, integration with
widespread, market-established data storage technologies is one of the
main characteristics and objectives of the emerging SAS portfolio.
29.06.2015
© BARC 2015
92
Teradata
29.06.2015
© BARC 2015
93
Total consideration Teradata
• Teradata is the veteran in the data warehousing arena and expanding its offers
continuously through in-house development and acquisitions towards Big Data.
Examples are the acquisitions of Rainstor (Big Data archiving) and Loom
(comprehensive metadata for the Teradata Unified Data Architecture) and
Presto as an Open Source initiative (SQL on Hadoop) of Teradata
• Preference of Teradata Aster DB over Hadoop stack for explorative analysis and
data discovery (efficiency and simplification reasons)
• Teradata installations are more likely to be found in the high end data
warehouse market, ranging from multiple TB to PB
• Flexible solution availability (SW Only, Cloud, Commodity Prebuilt)
• Teradata has a relatively small, but very knowledgable consulting division
• Roadmap:
• Extend the Integrated Data Warehouse to address new analytic capabilities
and data types
• Enable additional analytic needs and architectural requirements via workload
specific platforms and cloud based solutions
• Expand UNIFIED DATA ARCHITECTURE to support design, architecture,
and implementation, and leverage multiple best-of breed engines, new tools,
and emerging technologies to provide analytics on all data
29.06.2015
Market development SW D
Revenue 2013: 30,1 Mio. US$
Growth 2013: -5%
Market share: 2,1%
Development priorities
• Integrate all data of the Big Data
space via UDA
• Expand in database analytics
• Expand Query Grid capabilities
Did you know that:
…, Teradata WW Revenue for
2014 was ~ $2.7B.
….,Teradata released the world's
first parallel data warehouse DB in
1984
(*) Source: BARC Marktzahlenstudie 2014,
All numbers are estimated by BARC and are
focused on the German market in 2013
© BARC 2015
94
Technology Map – Overview Tool Classes of Analytical Infrastructure
for Teradata
Search &
Discovery
Predictive
Modeling
Text Analysis
CPM
Sandboxing
Specialized DB
Calculation Engine
Analytical DB
Streaming
Hadoop
Data Integration
Virtualization
Data Quality Management
Master Data Man.
Meta Data Man.
Classic
Analysis
Data Modeling
Reporting &
Dashboards
Data Governance & Data Collaboration
Full support
29.06.2015
Partial support
No support
© BARC 2015
95
Technology Map – Overview Tool Classes of Analytical Infrastructure
for Teradata
Teradata Aster DB
& Applications
(Aster Lens)
Sandboxing
Predictive
Modeling
Teradata
Warehouse Miner
Text Analysis
Teradata Aster DB
& Applications
Specialized DB
Teradata DB/Teradata Aster DB
CPM
Calculation Engine
Engines for Risk, Pricing, Profitability, ...
Analytical DB
Streaming
Teradata DB
Hadoop
Teradata Distribution for Hadoop (based
on Horton Works, MapR, Cloudera),
Presto
Data Integration
Virtualization
Data Quality Management
Teradata Query Grid
Master Data Man.
Teradata MDM (framework)
Data Governance & Data Collaboration
Teradata Loom, Teradata Rainstor
29.06.2015
© BARC 2015
96
Teradata Loom
Search &
Discovery
Meta Data Man.
Classic
Analysis
Data Modeling
Reporting &
Dashboards
Teradata Unified Data Architecture (UDA)
29.06.2015
© BARC 2015
97
Teradata Query Grid (Virtualization)
Enabling the UDA
Quelle: Oracle
29.06.2015
© BARC 2015
98
Hadoop-SQL(RDBMS)-Integration
Import-/Export-Konnektoren In-Database MapReduce
MR
External Tables
MR
RDBMS
RDBMS
MR
HDFS
HDFS
Hive/Impala
Hadoop DBs
HiveQL
MR
HDFS
29.06.2015
RDBMS
Hybride Systeme
RDBMS
RDBMS
HDFS
MR
HDFS
© BARC 2015
99
Teradata – key message
Teradata is the market leader in the high end data warehousing area and
has extended its offerings (i.e. Terdata Aster DB) to address the Big Data
requirements for explorative analytics and data discovery.
Teradata Aster has to be specifally licensed, which entails additional costs
for the overall BI/analytics architecture.
From an overarching perspective, the different elements and engines of the
Teradata solution architecture are tied together by the Teradata Unified
Data Architecture (UDA). Query Grid provides federated access across
various different data sources, both Teradata-specific as well as nonTeradata-specific. Teradata‘s focus is providing a solid backbone for all
analytic needs.
29.06.2015
© BARC 2015
100
Overview
Strategy & Roadmap
Portfolio
(analyst perception of major
driver for roadmap)
Cognitive Intelligence
Generalist
Data Management
Specialist Data Integration
Cloud / Open Source
Generalist
Integrated systems
Generalist
SAP
SAP HANA
Generalist
SAS
Analytics for Hadoop
Specialist Analytics
Teradata
Únified Data Platform
Specialist Database
IBM
Informatica
Microsoft
Oracle
29.06.2015
© BARC 2015
101
Ihr Kontakt bei BARC
Otto Görlich
Senior Analyst BI & Datenmanagement
Tel +49 (0) 931-880651-0
[email protected]
BARC GmbH
Berliner Platz 7
97080 Würzburg
www.barc.de
@BARC_Research
Timm Grosser
Senior Analyst BI & Datenmanagement
Tel +49 (0) 931-880651-0
[email protected]
BARC GmbH
Berliner Platz 7
97080 Würzburg
www.barc.de
@BARC_Research
29.06.2015
© BARC 2015
102
BARC-Tagung: Data Governance Day 2015
•
•
03.September 2015 in Baden (Schweiz)
Themen:
•
•
•
•
•
•
•
•
•
•
•
Datenstrategie und Governance
Data Life Cycle
Data Driven Organisation
Data Integration
Data Quality
Master Data Management
Data Life Cycle
Document Management
Fachvorträge der BARC-Analysten und Fachverbände
Seminardokumentation mit Fachartikeln
Herstellerpräsentationen
29.06.2015
© BARC 2015
103
BARC-Tagung: Advanced und Predictive Analytics
•
•
29. September 2015 in Frankfurt
Themenschwerpunkte:
• Anwendungsgebiete (z.B. Auslastungsoptimierung, Wartung, Forschung,
CRM, Social Media)
• Praxisbeispiele und Erfolgsfaktoren
• Management des Analytischen Prozesses
• Marktübersicht Software- und Serviceanbieter
•
•
Fach-, Praxis-und Produktvorträge zu den verschiedenen
Anwendungsmöglichkeiten
Herstellerpräsentationen
29.06.2015
© BARC 2015
104
BARC Congress Business Intelligence & Datenmanagement
•
•
am 10.+11. November 2015 in Würzburg
Highlights & News:
• Anbietervorträge, Case Studies, Analystenvorträgen von BARC und PAC,
Best Practice Award uvm.
• Neuer Track mit Fokus auf Datenmanagement und Big Data
• Videoaufzeichnung aller Vorträge
• BARC-Service zur Terminvereinbarung im Vorfeld zwischen Teilnehmern
und Ausstellern
• Attraktive Abendveranstaltung mit Verleihung des BI Best Practice Awards
• Erweiterung der Zielgruppe durch den parallel stattfindenden CRM Summit
29.06.2015
© BARC 2015
105
Herunterladen