Pressemitteilung Sperrfrist: 3. September 20:00 Uhr Magnetische Monopole in magnetischem Festkörper entdeckt Berlin, 02.09.2009 Wissenschaftler des Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) haben in Kooperation mit Kollegen aus Dresden, St. Andrews (UK), La Plata (Argentinien) und Oxford (UK) erstmals magnetische Monopole nachgewiesen sowie deren Erzeugung in fester Materie beobachtet. Sie veröffentlichen dies in der Zeitschrift Science, im online erscheinenden Science Express vom 3. September. Weitere Informationen: Als magnetischen Monopol bezeichnen Physiker hypothetische Teilchen, die nur einen magnetischen Pol tragen, also entweder nur magnetischer Nordpol oder nur magnetischer Südpol sind. In der Welt der Materie ist dies ganz und gar ungewöhnlich, denn normalerweise treten magnetische Teilchen nur als Dipol auf, das heißt, sie bestehen aus einem Nord- und Südpol. Trotzdem existieren einige Theorien, welche die Existenz von Monopolen als Quelle von Magnetfeldern vorhersagen. Unter anderem hat 1931 der Physiker Paul Dirac aus Berechnungen abgeleitet, dass magnetische Monopole am Ende von sogenannten Dirac-Strings existieren müssten. Diese kann man sich als Schläuche vorstellen, die das magnetische Feld tragen. Nachgewiesen wurden magnetische Monopole bislang nicht. Jonathan Morris, Alan Tennant und Kollegen (HZB) führten ein NeutronenstreuExperiment am Berliner Forschungsreaktor durch. Das Untersuchungsmaterial war ein Kristall aus Dysprosium-Titanat. Dieser Stoff kristallisiert in einer ganz bestimmten Geometrie, einem so genannten Pyrochlor-Gitter. Mithilfe der Neutronenstreuung konnten Morris und Tennant zeigen, dass die magnetischen Momente im Inneren des Materials als sogenannte „Spin-Spaghetti“ angeordnet sind. Der Name kommt von der Ausrichtung der Dipole, die ein Netzwerk aus gewundenen Röhren (Strings) bilden. Durch diese Röhren wird der magnetische Fluss transportiert. Dies kann man sichtbar machen, weil die Neutronen, die auf die Probe treffen, selbst ein magnetisches Moment tragen und mit den Strings in Wechselwirkung treten. HZB Glienicker Str. 100 14109 Berlin Dr. Jonathan Morris Tel.: 030-8062-3150 [email protected] Prof. Dr. Alan Tennant Tel.: 030-8062-2741 [email protected] Pressestelle: Dr. Ina Helms Tel.: 030 / 8062-2034 [email protected] Während der Neutronenmessungen haben die Forscher zugleich ein Magnetfeld angelegt. Mit diesem Feld konnten sie die Symmetrie und die Orientierung der Strings beeinflussen. Dadurch wurde es möglich, die Dichte des String-Netzwerks zu reduzieren und die Anzahl der Monopole zu verringern. Als Ergebnis wurden bei einer Temperatur von 0,6 bis 2 Kelvin die Strings mit den magnetischen Monopolen an ihren Enden sichtbar. Die charakteristischen Merkmale dieser magnetischen Monopole wurden ebenso durch Messungen der Wärmekapazität an Dysprosium-Titanat beobachtet. Die von Bastian Klemke (HZB) durchgeführten Messungen bestätigen die Existenz der magnetischen Monopole und zeigen, dass sie ähnlich wie elektrische Ladungen wechselwirken können. In der Arbeit beweisen die Forscher erstmals, dass die von Dirac vorhergesagten Monopole tatsächlich in Festkörpern existieren. Sie entstehen durch eine spezielle Anordnung der Dipole und unterscheiden sich vollkommen von den üblichen Eigenschaften magnetischer Materialien. Doch neben dieser grundlegenden Erkenntnis betont Jonathan Morris vor allem die weitergehende Bedeutung der Resultate: „Wir beschreiben neue, fundamentale Eigenschaften von Materie. Sie sind allgemeingültig für Materialien mit derselben Topologie, also Stoffe mit magnetischen Momenten im Pyrochlor-Gitter. Für die Entwicklung neuer Technologien könnte dies von großer Bedeutung sein.“ Vor allem sei hervorzuheben, dass „erstmals eine magnetische Fraktionalisierung in drei Dimensionen beobachtet wurde“. Bastian Klemke und Jonathan Morris am Experimentierplatz E2 des Berliner Forschungsreaktors am HZB (Flat-Cone Single Crystal Diffractometer). Bastian Klemke an der Messapparatur für spezifische Wärmekapazität am HZB. Artikel in Science Express 3-Sep-2009: Dirac Strings and Magnetic Monopoles in Spin Ice Dy2Ti2O7 D.J.P. Morris, D.A. Tennant, S.A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K.C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R.S. Perry Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) betreibt und entwickelt Großgeräte für die Forschung mit Photonen (Synchrotronstrahlung) und Neutronen. Die zum Teil einzigartigen Experimentiermöglichkeiten werden jährlich von mehr als 2.500 Gästen aus Universitäten und außeruniversitären Forschungseinrichtungen weltweit genutzt. Dabei ist das HZB vor allem bekannt, weil einzigartige Probenumgebungen realisiert werden können (hohe Magnetfelder, tiefe Temperaturen). Das HZB betreibt Materialforschung zu solchen Themen, die besondere Anforderungen an die Großgeräte stellen. Forschungsthemen sind Magnetische Materialien und Funktionale Materialien. Im Schwerpunkt Solarenergieforschung steht die Entwicklung von Dünnschichtsolarzellen im Vordergrund, aber auch chemische Treibstoffe aus Sonnenlicht sind ein wichtiger Forschungsgegenstand. Am HZB arbeiten rund 1.100 Mitarbeiter/innen, davon etwa 800 auf dem Campus Lise-Meitner in Wannsee und 300 auf dem Campus Wilhelm-Conrad-Röntgen in Adlershof. Das HZB ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., der größten Wissenschaftsorganisation Deutschlands. Schema des Neutronenstreu-Experiments: Neutronen treffen auf die Probe und werden an den Strings gestreut. Das resultierende Streubild liefert Informationen über die String-Eigenschaften. Wird ein Magnetfeld angelegt, richten sich die Dirac-Strings – mit den magnetischen Monopolen an deren Enden – entlang des Feldes aus. Ein Teil des Forscherteams am Experimentierplatz E2 des Berliner Forschungsreaktors am HZB (v.l.n.r. Kirrily Rule, Jonathan Morris und Bastian Klemke). Quelle (Fotos): HZB / A. Rouvière Quelle (Grafiken): HZB / D.J.P. Morris & A. Tennant 3D-Simulation des kegelförmigen Streubilds der Dirac-Strings. Veranschaulichung der “Spin-Spaghetti” aus Dirac-Strings.