2 Zweierruppen

Werbung
Atom- und Kernphysik
E 28 Fadenstrahlrohr
E 28
Fadenstrahlrohr
1
Aufgabenstellung
mv 2
 e v  B .
r
Die spezifische Ladung e/m des Elektrons ist
mit Hilfe des Fadenstrahlrohres zu bestimmen.
2
Aus den Gleichungen (1) und (3) folgt
e
2U
 2 2.
m r B
Physikalische Grundlagen
B  0  N  I 
R2
 A2


 R2 
 4

32
.
(5)
Dabei bedeuten: μ0 = 4π 10-7 Vs/Am die
magnetische Feldkonstante (Induktionskonstante), N die Windungszahl der Spulen, I der
Strom durch die Spulen, R der mittlere Radius der Spulen und A der mittlere Abstand
zwischen den beiden Spulen.
Für A = R wird aus (5)
B
(1)
8 0  N  I
.
R
125
(6)
Die Bahn der Elektronen ist im Fadenstrahlrohr sichtbar, weil die Röhre eine kleine
Menge Neon enthält (ca. 1,3 Pa). Die Elektronen stoßen mit den Gasatomen zusammen
und regen diese zur Lichtaussendung an.
wobei U die an die Anode angelegte Spannung ist. Ist die Bewegungsrichtung der
Elektronen senkrecht zur Richtung eines
homogenen Magnetfeldes, das von einem
HELMHOLTZ-Spulenpaar erzeugt wird, so
werden die Elektronen durch die LORENZkraft
F  e v B
(4)
Unter einem HELMHOLTZ-Spulenpaar versteht man eine Anordnung von zwei kurzen
dünnen Spulen, deren Abstand etwa gleich
ihrem Radius ist. Im Inneren ist das Magnetfeld weitgehend homogen. Die Induktion in
der Mitte zwischen den Spulen beträgt
Unter der spezifischen Ladung eines Elektrons versteht man das Verhältnis der Ladung
e des Elektrons (Elementarladung) zu seiner
Masse m. Dieses Verhältnis e/m kann aus der
Ablenkung von Elektronenstrahlen im magnetischen Feld bestimmt werden. Da sich die
Elementarladung mit Hilfe des MILLIKANVersuches messen lässt, kann somit die
Masse des Elektrons bestimmt werden.
Im Fadenstrahlrohr geht von der Kathode
durch Glühemission ein Elektronenstrahl
(Fadenstrahl) aus. Die Elektronen werden in
einem elektrischen Feld zwischen Kathode
und Anode beschleunigt, so dass sie nach
dem Durchgang durch ein Loch in der Anode
die Geschwindigkeit v haben. Aus dem
Energieerhaltungssatz folgt:
m 2
 v  eU
2
(3)
(2)
3
auf eine Kreisbahn mit dem Radius r abgelenkt. B ist die magnetische Induktion des
Feldes. Die LORENZkraft steht senkrecht zur
Bewegungsrichtung, so dass zwischen ihr und
der Zentrifugalkraft Gleichgewicht besteht:
Versuchsaufbau
3.0 Geräte:
- Fadenstrahlrohr mit Sockel
- HELMHOLTZ-Spulenpaar (Windungszahl
N = 124, Drahtstärke d = 1,5 mm, mittlerer
Spulenradius R  148 mm, mittlerer Abstand A  150 mm)
1
Atom- und Kernphysik
E 28 Fadenstrahlrohr
- Röhren-Stromversorgungsgerät
- Stromversorgungsgerät für HELMHOLTZSpulen (30 V, 5 A)
- 2 Vielfachmessgeräte
- Sicherheits-Messleitungen
- Messleitungen
- Teslameter mit Hallsonde
0…5 A Gleichstrom betrieben. Die Hallsonde
dient zur Messung der Stärke und Homogenität des Magnetfeldes.
4
Versuchsdurchführung
Das Fadenstrahlrohr ist teuer, gehen Sie
vorsichtig damit um!
Die Beschleunigunsspannung (max. 500 V,
50 mA) ist berührungsgefährlich! Für alle
Anschlüsse an das Röhren-Stromversorgungsgerät sind daher Sicherheitsleitungen
zu verwenden!
3.1 Zwischen den beiden HELMHOLTZSpulen befindet sich das Fadenstrahlrohr, das
auf ein Gehäuse mit Fassung aufgesteckt ist.
Das Elektrodensystem des Fadenstrahlrohres
(siehe Abb.1) besteht aus einer indirekt
beheizten Oxidkathode, einem Wehneltzylinder zur Abschirmung und Strahlfokussierung und einer mit einem Loch versehenen
Anode. Über dem Elektrodensystem befinden
sich in Abständen von jeweils 20 mm Markierungen zur genauen Einstellung des Kreisdurchmessers des Elektronenstrahles.
Heizspannung (+6…11V), Wehneltspannung
(0…-30V) und Anodenspannung (0…+500V)
für das Fadenstrahlrohr werden entsprechend
Abb.1 dem Röhren-Stromversorgungsgerät
entnommen. Die Helmholzspulen werden mit
4.1 In einem Vorversuch sollen zunächst die
Stärke des Magnetfeldes in Abhängigkeit
vom Strom und seine Homogenität gemessen
werden.
Die beiden Magnetspulen werden in Reihe an
das Netzgerät 30V/5A angeschlossen. Achten
Sie auf gleiche Stromrichtung in den Spulen!
Zur Strommessung wird ein Vielfachmesser
verwendet, da dieser genauer ist als die
Anzeige des Netzgerätes.
Messen Sie mit Hilfe der Hallsonde das
Magnetfeld in der Mitte zwischen den Helmholtzspulen in Abhängigkeit vom Strom für
I = 0…5 A (etwa 10 Messpunkte). Der
Sensorchip muss dabei genau senkrecht zum
Magnetfeld gerichtet sein (nach Augenmaß).
Klemmen Sie ein Lineal senkrecht in der
Mitte zwischen den Spulen fest und messen
Sie bei I = 3 A das Magnetfeld im Bereich
von etwa 12 cm unter bis 12 cm über der
Mitte der Spulenanordnung alle 2 cm.
Bestimmen Sie außerdem den Abstand A und
den Durchmesser 2R beider Helmholtzspulen
an wenigstens drei verschiedenen Stellen.
(Gl.(5) gilt für Spulen mit vernachlässigbarem Querschnitt, es ist also von Mitte bis
Mitte der Wicklungen zu messen!).
4.2 Das Fadenstrahlrohr wird zwischen die
Magnetspulen gestellt und entsprechend
Abb.1 angeschlossen.
Abb. 1: Elektrische Beschaltung des Fadenstrahlrohres. 1: Heizung, 2: Wehneltzylinder,
3: Kathode, 4: Anode
Wenn das ältere Fadenstrahlrohr (der Sockel ist aus
Metall, nicht aus weißem Kunststoff) verwendet wird,
dann muss aus Sicherheitsgründen zusätzlich der grün-
2
Atom- und Kernphysik
E 28 Fadenstrahlrohr
gelbe Erdungsanschluss mit dem Schutzleiteranschluss
am 5A-Stromversorgungsgerät verbunden werden.
netfeldes in radialer Richtung, indem Sie die
Größe B(x)/B(x=0) in Prozent grafisch darstellen.
Anodenspannung, Spulenstrom und Heizspannung sind so einzurichten, dass ein
kreisförmiger Elektronenstrahl sichtbar wird,
der mit Hilfe der Wehneltspannung fokussiert
wird. (Der Heizstrom wird durch eine Sicherung abgeschaltet, wenn der auf dem Röhrensockel notierte Schwellwert überschritten
wird.)
Für die Beschleunigungsspannungen U =
150 V, 200, 300 V und 400 V sind jeweils die
Kreisdurchmesser 2r = 40 mm, 60 mm,
80 mm und 100 mm einzustellen und der
zugehörige Magnetstrom ist zu messen.
5
5.2 Für alle Messungen ist die Magnetflussdichte B aus dem Spulenstrom zu berechnen
und e/m nach Gl. (4) zu bestimmen.
Als Ergebnis ist der Mittelwert aus allen
Einzelmessungen anzugeben. Diskutieren Sie
systematische Fehler in der Messanordnung
und führen Sie eine Fehlerrechnung durch!
6
Literatur
W. Schenk, F. Kremer: Physikalisches Praktikum. Springer 2014
Dieter Meschede: Gerthsen Physik, Springer,
Berlin u.a. 2010
Auswertung
5.1 Aus Gleichung (4) bzw. (5) folgt
B  K I .
(7)
7
Die Konstante K ist aus den gemessenen
Werten für R und A zu berechnen.
Die Magnetflussdichte B ist in Abhängigkeit
vom Strom I grafisch darzustellen. Bestimmen Sie K als Anstieg der Kurve und vergleichen Sie diesen Wert mit dem aus der
Spulengeometrie berechneten Wert.
Zeichnen Sie die Ortsabhängigkeit des Mag-
Kontrollfragen
7.1 Welche Kräfte üben elektrische und
magnetische Felder auf die Elektronen aus?
7.2 Wie berechnet man das Magnetfeld einer
Ringspule?
7.3 Was passiert, wenn man den Restgasdruck in der Röhre ändert?
3
Herunterladen