Atom- und Kernphysik E 28 Fadenstrahlrohr E 28 Fadenstrahlrohr 1 Aufgabenstellung mv 2 e v B . r Die spezifische Ladung e/m des Elektrons ist mit Hilfe des Fadenstrahlrohres zu bestimmen. 2 Aus den Gleichungen (1) und (3) folgt e 2U 2 2. m r B Physikalische Grundlagen B 0 N I R2 A2 R2 4 32 . (5) Dabei bedeuten: μ0 = 4π 10-7 Vs/Am die magnetische Feldkonstante (Induktionskonstante), N die Windungszahl der Spulen, I der Strom durch die Spulen, R der mittlere Radius der Spulen und A der mittlere Abstand zwischen den beiden Spulen. Für A = R wird aus (5) B (1) 8 0 N I . R 125 (6) Die Bahn der Elektronen ist im Fadenstrahlrohr sichtbar, weil die Röhre eine kleine Menge Neon enthält (ca. 1,3 Pa). Die Elektronen stoßen mit den Gasatomen zusammen und regen diese zur Lichtaussendung an. wobei U die an die Anode angelegte Spannung ist. Ist die Bewegungsrichtung der Elektronen senkrecht zur Richtung eines homogenen Magnetfeldes, das von einem HELMHOLTZ-Spulenpaar erzeugt wird, so werden die Elektronen durch die LORENZkraft F e v B (4) Unter einem HELMHOLTZ-Spulenpaar versteht man eine Anordnung von zwei kurzen dünnen Spulen, deren Abstand etwa gleich ihrem Radius ist. Im Inneren ist das Magnetfeld weitgehend homogen. Die Induktion in der Mitte zwischen den Spulen beträgt Unter der spezifischen Ladung eines Elektrons versteht man das Verhältnis der Ladung e des Elektrons (Elementarladung) zu seiner Masse m. Dieses Verhältnis e/m kann aus der Ablenkung von Elektronenstrahlen im magnetischen Feld bestimmt werden. Da sich die Elementarladung mit Hilfe des MILLIKANVersuches messen lässt, kann somit die Masse des Elektrons bestimmt werden. Im Fadenstrahlrohr geht von der Kathode durch Glühemission ein Elektronenstrahl (Fadenstrahl) aus. Die Elektronen werden in einem elektrischen Feld zwischen Kathode und Anode beschleunigt, so dass sie nach dem Durchgang durch ein Loch in der Anode die Geschwindigkeit v haben. Aus dem Energieerhaltungssatz folgt: m 2 v eU 2 (3) (2) 3 auf eine Kreisbahn mit dem Radius r abgelenkt. B ist die magnetische Induktion des Feldes. Die LORENZkraft steht senkrecht zur Bewegungsrichtung, so dass zwischen ihr und der Zentrifugalkraft Gleichgewicht besteht: Versuchsaufbau 3.0 Geräte: - Fadenstrahlrohr mit Sockel - HELMHOLTZ-Spulenpaar (Windungszahl N = 124, Drahtstärke d = 1,5 mm, mittlerer Spulenradius R 148 mm, mittlerer Abstand A 150 mm) 1 Atom- und Kernphysik E 28 Fadenstrahlrohr - Röhren-Stromversorgungsgerät - Stromversorgungsgerät für HELMHOLTZSpulen (30 V, 5 A) - 2 Vielfachmessgeräte - Sicherheits-Messleitungen - Messleitungen - Teslameter mit Hallsonde 0…5 A Gleichstrom betrieben. Die Hallsonde dient zur Messung der Stärke und Homogenität des Magnetfeldes. 4 Versuchsdurchführung Das Fadenstrahlrohr ist teuer, gehen Sie vorsichtig damit um! Die Beschleunigunsspannung (max. 500 V, 50 mA) ist berührungsgefährlich! Für alle Anschlüsse an das Röhren-Stromversorgungsgerät sind daher Sicherheitsleitungen zu verwenden! 3.1 Zwischen den beiden HELMHOLTZSpulen befindet sich das Fadenstrahlrohr, das auf ein Gehäuse mit Fassung aufgesteckt ist. Das Elektrodensystem des Fadenstrahlrohres (siehe Abb.1) besteht aus einer indirekt beheizten Oxidkathode, einem Wehneltzylinder zur Abschirmung und Strahlfokussierung und einer mit einem Loch versehenen Anode. Über dem Elektrodensystem befinden sich in Abständen von jeweils 20 mm Markierungen zur genauen Einstellung des Kreisdurchmessers des Elektronenstrahles. Heizspannung (+6…11V), Wehneltspannung (0…-30V) und Anodenspannung (0…+500V) für das Fadenstrahlrohr werden entsprechend Abb.1 dem Röhren-Stromversorgungsgerät entnommen. Die Helmholzspulen werden mit 4.1 In einem Vorversuch sollen zunächst die Stärke des Magnetfeldes in Abhängigkeit vom Strom und seine Homogenität gemessen werden. Die beiden Magnetspulen werden in Reihe an das Netzgerät 30V/5A angeschlossen. Achten Sie auf gleiche Stromrichtung in den Spulen! Zur Strommessung wird ein Vielfachmesser verwendet, da dieser genauer ist als die Anzeige des Netzgerätes. Messen Sie mit Hilfe der Hallsonde das Magnetfeld in der Mitte zwischen den Helmholtzspulen in Abhängigkeit vom Strom für I = 0…5 A (etwa 10 Messpunkte). Der Sensorchip muss dabei genau senkrecht zum Magnetfeld gerichtet sein (nach Augenmaß). Klemmen Sie ein Lineal senkrecht in der Mitte zwischen den Spulen fest und messen Sie bei I = 3 A das Magnetfeld im Bereich von etwa 12 cm unter bis 12 cm über der Mitte der Spulenanordnung alle 2 cm. Bestimmen Sie außerdem den Abstand A und den Durchmesser 2R beider Helmholtzspulen an wenigstens drei verschiedenen Stellen. (Gl.(5) gilt für Spulen mit vernachlässigbarem Querschnitt, es ist also von Mitte bis Mitte der Wicklungen zu messen!). 4.2 Das Fadenstrahlrohr wird zwischen die Magnetspulen gestellt und entsprechend Abb.1 angeschlossen. Abb. 1: Elektrische Beschaltung des Fadenstrahlrohres. 1: Heizung, 2: Wehneltzylinder, 3: Kathode, 4: Anode Wenn das ältere Fadenstrahlrohr (der Sockel ist aus Metall, nicht aus weißem Kunststoff) verwendet wird, dann muss aus Sicherheitsgründen zusätzlich der grün- 2 Atom- und Kernphysik E 28 Fadenstrahlrohr gelbe Erdungsanschluss mit dem Schutzleiteranschluss am 5A-Stromversorgungsgerät verbunden werden. netfeldes in radialer Richtung, indem Sie die Größe B(x)/B(x=0) in Prozent grafisch darstellen. Anodenspannung, Spulenstrom und Heizspannung sind so einzurichten, dass ein kreisförmiger Elektronenstrahl sichtbar wird, der mit Hilfe der Wehneltspannung fokussiert wird. (Der Heizstrom wird durch eine Sicherung abgeschaltet, wenn der auf dem Röhrensockel notierte Schwellwert überschritten wird.) Für die Beschleunigungsspannungen U = 150 V, 200, 300 V und 400 V sind jeweils die Kreisdurchmesser 2r = 40 mm, 60 mm, 80 mm und 100 mm einzustellen und der zugehörige Magnetstrom ist zu messen. 5 5.2 Für alle Messungen ist die Magnetflussdichte B aus dem Spulenstrom zu berechnen und e/m nach Gl. (4) zu bestimmen. Als Ergebnis ist der Mittelwert aus allen Einzelmessungen anzugeben. Diskutieren Sie systematische Fehler in der Messanordnung und führen Sie eine Fehlerrechnung durch! 6 Literatur W. Schenk, F. Kremer: Physikalisches Praktikum. Springer 2014 Dieter Meschede: Gerthsen Physik, Springer, Berlin u.a. 2010 Auswertung 5.1 Aus Gleichung (4) bzw. (5) folgt B K I . (7) 7 Die Konstante K ist aus den gemessenen Werten für R und A zu berechnen. Die Magnetflussdichte B ist in Abhängigkeit vom Strom I grafisch darzustellen. Bestimmen Sie K als Anstieg der Kurve und vergleichen Sie diesen Wert mit dem aus der Spulengeometrie berechneten Wert. Zeichnen Sie die Ortsabhängigkeit des Mag- Kontrollfragen 7.1 Welche Kräfte üben elektrische und magnetische Felder auf die Elektronen aus? 7.2 Wie berechnet man das Magnetfeld einer Ringspule? 7.3 Was passiert, wenn man den Restgasdruck in der Röhre ändert? 3