Pressemitteilung

Werbung
Hochschulkommunikation
Achtung Sperrfrist bis 23. April 2013, 17 Uhr (MEZ)
Pressemitteilung
Rostende Ur-Ozeane durch Bakterien
Geomikrobiologen der Universität Tübingen finden Hinweise wie
Mikroorganismen die weltgrößten Eisenerzvorräte gebildet haben
Tübingen, den 23.04.2013
Achtung Sperrfrist bis 23. April 2013, 17 Uhr (MEZ)
Wissenschaftler der Universität Tübingen können erstmals aufzeigen, wie
Mikroorganismen zur Entstehung der weltgrößten Eisenerzvorräte beigetragen haben. Vor allem in Südafrika und Australien gibt es mächtige,
Milliarden Jahre alte geologische Formationen, die zum Großteil aus Eisenoxid bestehen, also aus Mineralen wie sie aus der Rostbildung bekannt sind. Diese Eisenerze decken nicht nur einen Großteil des Weltbedarfs an Eisen, die Gesteinsformationen geben auch Hinweise auf die
Entwicklung der Atmosphäre und des Klimas sowie der Aktivität von Mikroorganismen in der frühen Erdgeschichte.
Inwiefern Mikroorganismen im Ur-Ozean zur Bildung der Eisenablagerungen beigetragen haben, war bislang unbekannt. Ein internationales
Forscherteam aus den USA, Kanada und Deutschland hat dazu nun neue
Erkenntnisse in der Fachzeitschrift „Nature Communications“ veröffentlicht. Unter Leitung des Geomikrobiologen Professor Andreas Kappler
vom Zentrum für angewandte Geowissenschaften der Universität Tübingen fanden die Wissenschaftler konkrete Hinweise darauf, welche Mikroorganismen an der Bildung der Eisenerze beteiligt waren und woran die
verschiedenen mikrobiellen Stoffwechselprozesse an Gesteinen erkennbar sind.
Das Eisen im Ur-Ozean kam als gelöstes, reduziertes zweiwertiges Eisen
[Fe(II)] aus heißen Quellen auf dem Ozeanboden. Der Großteil des heutigen Eisenerzes liegt aber als oxidiertes, dreiwertiges Eisen [Fe(III)] in
Form von „Rostmineralen“ vor ‒ demnach musste das zweiwertige Eisen
zur Ablagerung oxidiert werden. Das klassische Modell zur Entstehung
der Eisenformationen beschreibt die chemische Oxidation des zweiwertigen Eisens aus diesen Quellen durch Sauerstoff, der von sogenannten
Cyanobakterien („Blaualgen“) produziert wird. Diese Oxidation kann ent-
Seite 1/3
Myriam Hönig
Leiterin
Antje Karbe
Pressereferentin
Telefon +49 7071 29-76788
+49 7071 29-76789
Telefax +49 7071 29-5566
myriam.hoenig[at]uni-tuebingen.de
antje.karbe[at]uni-tuebingen.de
www.uni-tuebingen.de/aktuell
weder chemisch erfolgen (wie bei der Rostbildung) oder durch Beteiligung sogenannter „mikroaerophiler eisenoxidierender Bakterien“.
Unter Wissenschaftlern wird jedoch diskutiert, wann in der Erdatmosphäre überhaupt ausreichend
Sauerstoff durch Cyanobakterien gebildet wurde, um solche Eisenformationen zu bilden. Die ältesten bekannten Eisenerze stammen aus dem Präkambrium und sind bis zu 4 Milliarden Jahre alt
(das Erdalter wird auf ca. 4,6 Milliarden Jahre geschätzt) ‒ zu diesem frühen Zeitpunkt der Erdgeschichte war aber nur sehr wenig bis gar kein Sauerstoff vorhanden. Die Bildung der ältesten gebänderten Eisenerze kann also nicht durch Sauerstoff erfolgt sein.
1993 wurden erstmals Bakterien gefunden, die keinen Sauerstoff benötigen und mit Hilfe von Lichtenergie das zweiwertige Eisen oxidieren („anoxygene phototrophe eisenoxidierende Bakterien“). In
Studien (2005/2010) zeigte die Arbeitsgruppe um Professor Kappler bereits, dass diese Bakterien
gelöstes zweiwertiges Eisen in Eisenoxide (Rost) umwandeln, wie sie in den Eisenerzen enthalten
sind. Jetzt konnte das Tübinger Forscherteam nachweisen, dass sich anhand der Identität und
strukturellen Eigenschaften von Eisenmineralen feststellen lässt, dass die Eisenformationen mikrobiell durch Eisenoxidierer und nicht durch von Cyanobakterien gebildeten Sauerstoff abgelagert
wurden. Die Wissenschaftler setzten hierzu unterschiedliche Mengen an organischem Material zusammen mit Eisenmineralen in Goldkapseln hohen Temperaturen und Druck aus, um die Umwandlung der Minerale über die Erdgeschichte hinweg zu simulieren. Dabei entdeckten sie Strukturen
von Eisenkarbonatmineralen (Siderit, FeCO3), wie sie tatsächlich in Eisenformationen gefunden
wurden. Insbesondere konnten sie Eisenkarbonat-Strukturen unterscheiden, die entweder durch
eine eher geringe Menge an organischen Verbindungen (mikrobielle Biomasse) oder mit einer größeren Menge gebildet wurden.
Durch ihre Arbeiten haben die Wissenschaftler nicht nur erstmals eindeutige Hinweise auf eine direkte Beteiligung von Mikroorganismen an der Ablagerung der ältesten Eisenformationen gefunden.
Die Ergebnisse geben auch Hinweise darauf, dass in Flachwasserregionen des Ur-Ozeans eher
große Mengen an sauerstoffbildenden Bakterien (Cyanobakterien) aktiv waren, während in der
lichtdurchdrungenen (photischen) Tiefwasserzone eher eisenoxidierende Bakterien für die Ablagerung der Eisenformationen verantwortlich waren.
Die Forschungsergebnisse wurden von der Fachzeitschrift Nature Communications vorab online
veröffentlicht (http://dx.doi.org/ 10.1038/ncomms2770): Koehler, I., Papineau, D., Konhauser, K.O.,
Kappler, A. (2013) Biological carbon precursor to dianetic siderite spherulites in banded iron formations. Nature Communications, in press.
Kontakt:
Prof. Dr. Andreas Kappler
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Zentrum für Angewandte Geowissenschaften/ Arbeitsgruppe Geomikrobiologie
Sigwartstrasse 10 ∙ 72076 Tübingen
Tel. +49 (7071) 29-74992
andreas.kappler[at]uni-tuebingen.de
Seite 2/3
http://www.geo.uni-tuebingen.de/arbeitsgruppen/angewandtegeowissenschaften/forschungsbereich/geomikrobiologie/workgroup.html
Eisenerzmine in Hamersley, Westaustralien
Seite 3/3
Foto: Professor K.O. Konhauser
Herunterladen