HTWK Leipzig, Fakultät IMN Prof. Dr. Sibylle Schwarz [email protected] 2. Übung zur Vorlesung „Modellierung“ Wintersemester 2015/16 Lösungen bis 21. Oktober 2015 einzusenden im Opal-Kurs zum Modul: https://bildungsportal.sachsen.de/opal/url/RepositoryEntry/9360769029 Aufgabe 2.1 Welche der folgenden Zeichenketten sind aussagenlogische Formeln? Geben Sie zu jeder Formel den Formelbaum, die Menge aller vorkommenden Variablen, die Anzahl aller Variablenvorkommen und für alle Formeln mit höchstens drei Variablenvorkommen auch alle Teilformeln an: ¬¬p ¬p ∨ ∧q p → (¬p ∨ ((¬¬q) → (p ∧ q))) p → (¬p ∨ (¬p¬)) (p → q) ∧ (¬r → (q ∨ (¬p ∨ r))) p → (((q ∧ ¬r) → q) ∨ (¬p ∨ r)) q¬ ∧ r → r (¬(¬p ∧ ¬q) ∨ r) → (p ∧ ¬(¬q ∨ ¬r)) 1. 2. 3. 4. 5. 6. 7. 8. Aufgabe 2.2 Für jede aussagenlogische Formel ϕ ∈ AL(P ) ist ihre Größe size(ϕ) induktiv definiert durch: IA: falls ϕ = p (Atom), dann size(ϕ) = 1 IS: – nullstellige Junktoren (t, f ): für ϕ = t oder ϕ = f gilt size(ϕ) = 1 – einstellige Junktoren (¬): für ϕ = ¬ϕ1 gilt size(ϕ) = 1 + size(ϕ1 ) – zweistellige Junktoren (∗ ∈ {∨, ∧, →, ↔}): für ϕ = ϕ1 ∗ ϕ2 gilt size(ϕ) = 1 + size(ϕ1 ) + size(ϕ2 ) Bestimmen Sie für jede aussagenlogische Formel aus Aufgabe 2.1 ihre Größe mit dieser Definition. Aufgabe 2.3 Geben Sie zur jeder der folgenden Formeln die Wahrheitswerttabelle an: a. ϕ = ¬(¬q ∨ r) b. ψ = p → (q ∧ ¬r) Aufgabe 2.4 Beantworten Sie für jede der Formeln ψi ψ1 ψ2 ψ3 ψ4 ψ5 = = = = = ¬p ∨ (q ↔ r) q → (r ∧ ¬p) (p ∧ q) ∧ (p → ¬q) (p → (q → p)) ¬(p ∧ r) ∧ (p → q) die folgenden Fragen und begründen Sie Ihre Antworten: a. Ist ψi erfüllbar? b. Ist ψi allgemeingültig? Aufgabe 2.5 a. Zeigen Sie, dass die Formeln p → q und (¬q) → (¬p) äquivalent sind. b. Zeigen Sie, dass die Formeln ¬(p → q) und (¬p) → (¬q) nicht äquivalent sind, Hinweis: Finden Sie dazu wenigstens eine Belegung W : {p, q} → {0, 1} mit W (¬(p → q)) 6= W ((¬p) → (¬q)) c. Stellen Sie für die folgenden Paare von Formeln ϕi und ψi jeweils fest, ob ϕi ≡ ψi gilt: ϕ1 = ¬(p ∨ q) ϕ2 = p → (q → p) ψ1 = (¬p) ∨ (¬q) ψ2 = t Aufgabe 2.6 Ein Gerät kann je nach Kombination der Baugruppen A, B, C und D in verschiedenen Varianten hergestellt werden. Dabei sind jedoch folgende Bedingungen einzuhalten: • Die Baugruppen A und D können nur gemeinsam auftreten. • Der Einbau von D macht den Einbau von C erforderlich. • Jede Variante, die A nicht enthält, muss B enthalten. • B und D schließen einander aus. a. Geben Sie zu jeder der vier Bedingungen einen möglichst einfachen aussagenlogischen Ausdruck an. Verwenden Sie dazu die Aussagenvariablen a, b, c und d, wobei jeweils die Aussagenvariable x bedeutet, dass das Bauteil X eingebaut wird. b. Ermitteln Sie alle mögliche Bauvarianten. Übungsaufgaben, Folien und weitere Hinweise zur Vorlesung finden Sie online unter www.imn.htwk-leipzig.de/~schwarz/lehre/ws15/modellierung