Analysis II für Physikstudiengänge

Werbung
Analysis II für Physikstudiengänge
Ein Kompendium zur Vorlesung von L. Recke
Inhaltsverzeichnis
1 Konvergenz und Stetigkeit in metrischen Räumen
1
1.1
Metriken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
1.2
Normen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
1.3
Vergleich von Metriken und Normen . . . . . . . . . . . . . . . . . . . . . . . . .
4
1.4
Konvergenz von Folgen in metrischen Räumen
. . . . . . . . . . . . . . . . . . .
4
1.5
Vollständigkeit. Der Banachsche Fixpunktsatz . . . . . . . . . . . . . . . . . . . .
5
1.6
Konvergenz von Folgen und Reihen in Kn . . . . . . . . . . . . . . . . . . . . . .
6
1.7
Teilfolgen, Häufungspunkte und der Satz von Bolzano-Weierstraß in Kn . . . . .
7
1.8
Offene Mengen, abgeschlossene Mengen und Rand . . . . . . . . . . . . . . . . .
7
1.9
Konvergenz von Abbildungen zwischen metrischen Räumen . . . . . . . . . . . .
9
1.10 Iterierte Grenzwerte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
1.11 Stetige Abbildungen zwischen metrischen Räumen . . . . . . . . . . . . . . . . .
11
1.12 Grenzwerte und Stetigkeit von Abbildungen Kn → Km . . . . . . . . . . . . . .
11
2 Differenzierbarkeit von Abbildungen Rn → Rm
1
1.1
12
Konvergenz und Stetigkeit in metrischen Räumen
Metriken
Es seien X eine Menge und ρ : X × X → [0, ∞) eine Abbildung, so dass für all x, y, z ∈ X gilt
Definitheit: ρ(x, y) = 0 ⇔ x = y,
Symmetrie: ρ(x, y) = ρ(y, x),
Dreiecksungleichung: ρ(x, y) + ρ(y, z) ≥ ρ(x, z).
Dann heißt ρ Metrik auf X, und das Paar (X, ρ) heißt metrischer Raum.
Beispiele: (i) Standard-Metrik in R: X := R, ρst (x, y) := |x − y|
(ii) X ⊆ C, ρ(x, y) := |x − y|
1
(iii) X := {(x1 , x2 , x3 ) ∈ R3 : x21 + x22 + x23 = 1}, ρ((x1 , x2 , x3 ), (y1 , y2 , y3 )) := Länge der
kürzesten Kurve in X (der sogenannten geodätischen Kurve) von (x1 , x2 , x3 ) nach (y1 , y2 , y3 )
(iv) Kompaktifizierung von R: X := R ∪ {−∞, ∞},
 x
y 
−
für x, y ∈ R

1+|x|
1+|y|





für x ∈ R, y = ∞
x − 1


 1+|x|


x

+ 1
für x ∈ R, y = −∞
 1+|x|
(1.1)
ρ(x, y) :=
y für x = ∞, y ∈ R
1 − 1+|y| 




y 
für x = ∞, y ∈ R

 1 + 1+|y| 


0
für x = y = ∞ oder x = y = −∞



2
für x = ∞, y = −∞ order x = −∞, y = ∞
Weitere Ungleichungen: Es sei (X, ρ) ein metrischer Raum, dann gilt für alle a, b, c, d ∈ X
Dreiecksungleichung nach unten: |ρ(a, b) − ρ(b, c)| ≤ ρ(a, c),
Vierecksungleichung: |ρ(a, b) − ρ(c, d)| ≤ ρ(a, c) + ρ(b, d).
Unterräume metrischer Räume: Wenn (X, ρ) ein metrischer Raum ist und Y eine Untermenge von X ist, so ist (die Einschränkung auf Y × Y von) ρ eine Metrik auf Y , und der
metrische Raum (Y, ρ) heißt Unterraum von (X, ρ).
Produkte metrischer Räume: Wenn (X1 , ρ1 ), . . . , (Xn , ρn ) metrische Räume sind, so kann
man in X1 × . . . × Xn folgende Metriken einführen:
σ∞ ((x1 , . . . , xn ), (y1 , . . . , yn )) :=
max ρj (xj , yj ),
(1.2)
1≤j≤n

1/p
n
X
ρj (xj , yj )p 
σp ((x1 , . . . , xn ), (y1 , . . . , yn )) := 
für p ∈ [1, ∞).
(1.3)
j=1
Zum Beweis der Dreiecksungleichung für die Metriken σp benötigt man die folgenden Ungleichungen:
Youngsche Ungleichung: Für alle rellen Zahlen x, y ≥ 0 und p, q > 1 mit 1/p + 1/q = 1 gilt
xy ≤
Höldersche Ungleichung:
1/p + 1/q = 1 gilt
n
X
j=1
xp y q
+ .
p
q
Für alle reellen Zahlen x1 , . . . , xn , y1 , . . . , yn und p, q > 1 mit
1/p 
1/q

n
n
X
X
|xj |p  
|yj |q  .
|xj yj | ≤ 
j=1
j=1
Minkowskische Ungleichung: Für alle reellen Zahlen x1 , . . . , xn , y1 , . . . , yn und p ≥ 1 gilt

1/p 
1/p 
1/p
n
n
n
X
X
X

|xj + yj |p  ≤ 
|xj |p  + 
|yj |p  .
j=1
j=1
2
j=1
Metriken in C([a, b]) : Die Menge aller stetigen Funktionen x : [a, b] → R wird mit C([a, b])
bezeichnet. In C([a, b]) kann man folgende Metriken einführen:
σ∞ (x, y) :=
σp (x, y) :=
1.2
max |x(t) − y(t)|,
(1.4)
a≤t≤b
Z
b
p
|x(t) − y(t)| dt
a
1/p
für p ∈ [1, ∞).
(1.5)
Normen
In diesem Unterkapitel unterscheidet sich (weil im Mono-Bachelor-Studiengang an der HU die
Lineare Algebra erst in zweiten Semester gelesen wird) meine Vorlesung von dem, was sinnvoll
und allgemein üblich ist, nämlich den Begriff der Norm für allgemeine Vektorräume einzuführen
und nicht nur für die konkreten Vektorräume Rn und Cn . Der wesentliche Nachteil dieser eingeschränkten Präsentation ist, dass der Zusammenhang zwischen den analytischen Begriffen
“Norm” und “Konvergenz” einerseits und dem algebraischen Begriff “Dimension” andererseits
nicht ersichtlich wird.
Im folgenden steht die Bezeichnung K für den Körper R oder den Körper C. Folglich ist dann
Kn die Menge aller n-Tupel reeller Zahlen oder aller n-Tupel komplexer Zahlen. Wie üblich
werden Elemente von Kn Vektoren genannt und mit x = (x1 , . . . , xn ) oder y = (y1 , . . . , yn )
usw. bezeichnet, und Elemente von K werden Skalare genannt und mit λ, µ usw. bezeichnet.
Die skalare Null 0 ∈ K und der Nullvektor 0 := (0, . . . , 0) ∈ Kn werde mit demselben Symbol
bezeichnet. Ferner benutzen wir die üblichen Operationen “Addition” und “Multiplikation mit
einem Skalar”, die definiert sind durch
(x1 , . . . , xn ) + (y1 , . . . , yn ) := (x1 + y1 , . . . , xn + yn ),
λ(x1 , . . . , xn ) := (λx1 , . . . , λxn ).
Eine Abbildung k · k : Kn → [0, ∞) heißt Norm in Kn , wenn für alle x, y ∈ Kn und λ ∈ K gilt
Definitheit: kxk = 0 ⇔ x = 0,
Homogenität: kλxk = |λ|kxk,
Dreiecksungleichung: kx + yk ≤ kxk + kyk.
Beispiele:

kxkp := 
kxk∞ :=
n
X
j=1
1/p
|xj |p 
für p ≥ 1,
max |xj |.
1≤j≤n
p
Norm in
Im Spezialfall K = R und p = 2 wird die Norm kxk2 = x21 + . . . + x2n Euklidische
p
n
2
R genannt, und im Spezialfall K = C und p = 2 wird die Norm kxk2 = |x1 | + . . . + |xn |2
Hermitesche Norm in Cn genannt.
3
Normen erzeugen Metriken: (i) Wenn k · k eine Norm in Kn ist, so ist
ρ(x, y) := kx − yk
(1.6)
eine Metrik in Kn .
(ii) Eine Metrik ρ auf Kn wird genau dann im Sinn von (1.6) durch eine Norm auf Kn erzeugt,
wenn für alle x, y, z ∈ Kn und λ ∈ K gilt ρ(x + z, y + z) = ρ(x, y) und ρ(λx, λy) = |λ|ρ(x, y).
Beispiel: Die Einschränkung auf R der Metrik (1.1) ist nicht durch eine Norm erzeugt.
1.3
Vergleich von Metriken und Normen
Es seien X eine Menge und ρ und σ zwei Metriken in X. Wenn gilt
∃c > 0 ∀x, y ∈ X : ρ(x, y) ≤ cσ(x, y),
so nennt man σ stärker als ρ, und man schreibt ρ ≺ σ. Wenn ρ ≺ σ und gleichzeitig σ ≺ ρ
gilt, so nennte man ρ und σ äquivalent, und man schreibt ρ ∼ σ. Die Relation “∼” ist eine
Äquivalenzrelation in der Menge aller Metriken in X.
Analog für Normen: Es seien k · k und ||| · ||| zwei Normen in Kn , und es gelte
∃c > 0 ∀x ∈ Kn : kxk ≤ c|||x|||,
dann nennt man ||| · ||| stärker als k · k. Wenn k · k stärker als ||| · ||| ist und gleichzeitig ||| · |||
stärker als k · k, so nennte man k · k und ||| · ||| äquivalent.
Beispiele: (i) Es sei ρ die Einschränkung auf R der Metrik (1.1) der Kompktifizierung von R.
Dann ist die Standard-Metrik in R stärker als ρ, aber beide Metriken sind nicht äquivalent.
(ii) Es seien σp und σ∞ die in (1.4) und (1.5) eingeführten Metriken in C([a, b]). Dann gilt
σp ≺ σq ≺ σ∞ für 1 ≤ p < q < ∞,
und alle diese Metriken sind nicht äquivalent.
(iii) Alle Normen in Kn sind äquivalent.
(iv) Die in (1.2) und (1.3) eingeführten Metriken im Produkt X1 × . . . × Xn sind äquivalent.
1.4
Konvergenz von Folgen in metrischen Räumen
Es sei (X, ρ) ein metrischer Raum. Eine Folge x1 , x2 , . . . ∈ X heißt konvergent, wenn ein x ∈ X
existiert, so dass gilt
∀ε > 0 ∃n0 ∈ N ∀n ≥ n0 : ρ(xn , x) ≤ ε.
(1.7)
Das Element x ist durch (1.7) eindeutig bestimmt und heißt Grenzwert der Folge bzgl. ρ, und
man schreibt xn → x bzgl. ρ oder, wenn aus dem Kontext klar ist, welche Metrik betrachtet
wird, limn→∞ xn = x. Die Bedingung (1.7) ist äquivalent zu
lim ρ(xn , x) = 0,
n→∞
wobei der Grenzwert in (1.8) der klassische Grenzwert von Zahlenfolgen ist.
4
(1.8)
Stärkere Metriken implizieren Konvergenz: Es seien ρ und σ Metriken auf X mit ρ ≺ σ,
und es gelte xn → x bzgl. σ. Dann gilt auch xn → x bzgl. ρ.
Beispiele: (i) Es seien ρst die Standard-Metrik in R und x, x1 , x2 , . . . ∈ R. Dann gilt xn → X
bzgl. ρst genau dann, wenn xn → x im Sinn der klassischen Definition gilt.
(ii) Es seien ρ die Metrik (1.1) der Kompaktifizierung von R und x, x1 , x2 , . . . ∈ R. Dann gilt
xn → x bzgl. ρ genau dann, wenn xn → x bzgl. ρst , obwohl ρ und ρst nicht äquivalent sind.
Ferner gilt xn → ∞ bzgl. ρ bzw. xn → −∞ bzgl. ρ genau dann, wenn xn → ∞ bzw. t xn → −∞
im Sinn der klassischen Definitionen gilt.
(iii) Es seien σ∞ die in (1.4) eingeführte Metrik in C([a, b]) und x, x1 , x2 , . . . ∈ C([a, b]). Dann
gilt xn → x bzgl. σ∞ genau dann, wenn die Funktionenfolge x1 , x2 , . . . gleichmäßig gegen die
Funktion x strebt.
1.5
Vollständigkeit. Der Banachsche Fixpunktsatz
Cauchy-Folgen: Es seien (X, ρ) ein einmetrischer Raum und x1 , x2 , . . . ∈ X eine Folge mit
∀ε > 0 ∃n0 ∈ N ∀m ≥ n ≥ n0 : ρ(xm , xn ) ≤ ε.
Dann heißt die Folge Cauchy-Folge oder Fundamentalfolge in (X, ρ). Jede konvergente Folge ist
eine Cauchy-Folge.
Vollständigkeit: Ein metrischer Raum heißt vollständig, wenn jede Cauchy-Folge konvergent
ist. Analoge Terminologie wird in Kn bzgl. einer Norm k · k benutzt, wobei die Begriffe nicht
davon abhängen, welche Norm gewählt worden ist.
Beispiele: (i) Die Menge der rationalen Zahlen Q ist mit der Standard-Metrik ρst (x, y) = |x−y|
nicht vollständig.
(ii) Die Menge der reellen Zahlen R ist mit der Standard-Metrik ρst (x, y) = |x−y| vollständig.
(iii) Die Mengen Rn und Cn sind bzgl. jeder Norm vollständig.
(iv) Die Funktionenräume C([a, b]) sind vollständig bzgl, der Metrik σ∞ (vgl. (1.4)), aber nicht
vollständig bzgl. der Metriken σp (vgl. (1.5)) für p ∈ [1, ∞). Zum Beispiel ist durch xn (t) := tn
ist eine Cauchy-Folge bzgl. σp gegeben, die aber keinen Grenzwert in C([a, b]) bzgl. σp besitzt
(für p ∈ [1, ∞)).
Banachscher Fixpunktsatz: Es seien (X, ρ) ein vollständiger metrischer Raum und f : X →
X eine Abbildung, und es exitiere ein c < 1, so daß gilt
kf (x) − f (y)k ≤ ckx − yk für alle x, y ∈ X.
Dann existiert genau ein x0 ∈ X mit f (x0 ) = x0 (ein sogenannter Fixpunkt von f ). Ferner gilt:
Wenn x1 ∈ X beliebig gewählt ist und wenn die Folge x2 , x3 , . . . ∈ X induktiv definiert ist durch
xj+1 := f (xj ) für j = 1, 2, . . . ,
dann folgt x0 = limj→∞ xj und
ρ(xj , x0 ) ≤
cj
c
ρ(xj , xj−1 ) ≤
ρ(x2 , x1 ) für j = 1, 2, . . . .
1−c
1−c
5
1.6
Konvergenz von Folgen und Reihen in Kn
In diesem Unterkapitel ist k · k eine beliebige Norm in Kn . Alle folgenden Definitionen und
Aussagen hängen nicht von der Wahl der Norm k · k ab.
Eine Vektorfolge x1 , x2 , . . . ∈ Kn heißt konvergent, wenn sie konvergent bzgl. der durch k · k
erzeugten Metrik ρ(x, y) = kx − yk ist, d.h. wenn ein Vektor x ∈ Kn existiert mit
∀ε > 0 ∃j0 ∈ N ∀j ≥ j0 : kxj − xk ≤ ε.
(1.9)
Konvergenz ist komponentenweise Konvergenz: Es seien k · k eine Norm in Kn ,
(x11 , . . . , xn1 ), (x12 , . . . , xn2 ), . . . , (x1j , . . . , xnj ), . . .
(1.10)
eine Folge von Vektoren aus Kn und x = (x1 , . . . , xn ) ein Vektor aus Kn . Dann gilt: Die Vektorenfolge (1.10) konvergiert bzgl. k · k gegen den Vektor x genau dann, wenn für jedes k = 1, . . . , n
die Zahlenfolge (xkj )∞
j=1 gegen die Zahl xk konvergiert. In diesem Sinne gilt
lim (x1j , . . . , xnj ) = lim x1j , . . . , lim xnj .
j→∞
j→∞
j→∞
Konvergenz und algebraische Operationen: Es seien x1 , x2 , . . . , y1 , y2 , . . . ∈ Kn zwei konvergente Vektorfolgen und λ1 , λ2 , . . . , µ1 , µ2 , . . . ∈ K zwei konvergente Zahlenfolgen. Dann ist
auch die Vektorfolge λ1 x1 + µ1 y1 , λ2 x2 + µ2 y2 , . . . konvergent, und
lim (λj xj + µj yj ) = lim λj lim xj + lim µj lim yj .
j→∞
j→∞
j→∞
j→∞
j→∞
Vektorreihen: Zu jeder Vektorfolge x0 , x1 , x2 , . . . ∈ Kn kann man die Folge
s0 := x0 , s1 := x0 + x1 , s2 := x0 + x1 + x2 , . . .
betrachten. Diese nennt man dann wie im skaleren Fall Reihe mit den Summanden xj und
den Partialsummen sk , und die Reihe heißt konvergent, wenn die Folge ihrer Partialsummen
konvergent ist. Man schreibt dann wieder
∞
X
j=0
xj := lim
k→∞
k
X
xj ,
j=0
und dieser Vektor heißt dann Grenzwert der Reihe.
Cauchy-Kriterium: Eine Vektorreihe mit den Summanden x1 , x2 , . . . ∈ Kn konvergiert genau
dann, wenn gilt:
X
k
∀ε > 0 ∃j0 ∈ N ∀k ≥ j ≥ j0 : xl ≤ ε.
l=j n
Majorantenkriterium: Eine Vektorreihe mit
P den Summanden x1 , x2 , . . . ∈ K konvergiert,
wenn eine konvergente Reihe reeller Zahlen
yn und ein j0 ∈ N existieren , so daß für alle
j ≥ j0 gilt kxn k ≤ yn . Wenn j0 = 0 gewählt werden kann, so gilt ferner
∞ ∞
∞
X
X X
yj .
kxj k ≤
xj ≤
j=0 j=0
j=0
6
Wurzelkriterium: Eine Vektorreihe mit den Summanden x1 , x2 , . . . ∈ Kn konvergiert , wenn
gilt
q
lim sup j kxj k < 1.
j→∞
Neumannsche Reihe: Es seien k · k eine Norm in Kn , A eine n × n-Matrix mit Koeffizienten
in K, und es gelte
sup kAξk < 1.
kξk≤1
Dann existiert für jedes y ∈ Kn genau ein x ∈ Kn mit x = Ax + y, und dieses x läßt sich
konvergente Reihe berechnen:
∞
X
Aj y.
x=
j=0
1.7
Teilfolgen, Häufungspunkte und der Satz von Bolzano-Weierstraß in Kn
Beschränktheit: Es seien (X, ρ) ein metrischer Raum, x1 , x2 , . . . ∈ X eine Folge in X, und es
gelte
∃x0 ∈ X ∃c > 0 ∀n ∈ N : ρ(xn , x0 ) ≤ c.
(1.11)
Dann heißt die Folge x1 , x2 , . . . beschränkt bzgl. ρ. Die Bedingung (1.11) ist äquivalent zu
∀x0 ∈ X ∃c > 0 ∀n ∈ N : ρ(xn , x0 ) ≤ c.
Konvergenz impliziert Beschränktheit: Es seien (X, ρ) ein metrischer Raum und x1 , x2 , . . . ∈
X eine bzgl. ρ konvergente Folge. Dann ist diese Folge auch beschränkt bzgl. ρ.
Häufungspunkte: Es seien (X, ρ) ein metrischer Raum, x1 , x2 , . . . ∈ X eine Folge in X und
x ∈ X, dann sind folgende Bedingungen äquivalent:
(i) Es existiert eine Teilfolge xn1 , xn2 , . . . von mit xnj → x bzgl. ρ für j → ∞.
(ii) Für alle ε > 0 existieren unendlich viele verschiedene n ∈ N mit ρ(xn , x) < ε.
Wenn eine dieser Bedingungen erfüllt ist (und folglich beide Bedingungen erfüllt sind), so heißt
x Häufungspunkt bzgl. ρ der Folge x1 , x2 , . . ..
Satz von Bolzano-Weierstraß in Kn : Es sei x1 , x2 , . . . ∈ Kn eine Folge, die beschränkt
(bzgl. einer und folglich bzgl. jeder Norm in Kn ) ist. Dann besitzt diese Folge mindestens einen
Häufungspunkt (bzgl. einer und folglich bzgl. jeder Norm in Kn ).
Beispiel: Durch xn (t) := tn ist eine Folge in C([0, 1]) definiert, die beschränkt bzgl. σ∞ (vgl.
(1.4)) ist, aber keinen Häufungspunkt bzgl. σ∞ besitzt.
1.8
Offene Mengen, abgeschlossene Mengen und Rand
In diesem Unterkapitel sind (X, ρ) ein metrischer Raum und M ⊆ X eine Teilmenge von X.
Kugeln: Es seien x ∈ X und r > 0. Dann heißen die Menge
K(x, r) := {y ∈ X : ρ(x, y) < r} bzw. K̄(x, r) := {y ∈ X : ρ(x, y) ≤ r}
7
offene bzw. abgeschlossene Kugel um x mit dem Radius r.
Innere Punkte, innerer Kern und Offenheit: Ein Punkt x ∈ M heißt innerer Punkt von
M , wenn ein r > 0 existiert mit K(x, r) ⊆ M . Die Menge aller inneren Punkte von M heißt
◦
innerer Kern von M und wird mit intM (oder M ) bezeichnet. Man sagt, dass M offen ist, wenn
M = intM ist.
Randpunkte, Rand, abgeschlossene Hülle und Abgeschlossenheit: Ein Punkt x ∈ X
heißt Randpunkt von M , wenn für alle r > 0 gilt K(x, r) ∩ M 6= ∅ und K(x, r) ∩ (X \ M ) 6= ∅.
Die Menge aller Randpunkte von M heißt Rand von M und wird mit ∂M bezeichnet. Die Menge
M ∪ ∂M heißt abgeschlossene Hülle von M und wird mit clM (oder M̄ ) bezeichnet. Man sagt,
dass M abgeschlossen ist, wenn M = clM ist.
Äquivalente Charakterisierungen: (i) Die Menge intM ist die größte offene Teilmenge von
M , d.h. für jede offene Menge A ⊆ M gilt A ⊆ intM .
(ii) Die Menge clM ist die kleinste abgeschlossene Menge, die M enthält, d.h. für jede abgeschlossene Menge A ⊆ X mit M ⊂ A gilt clM ⊂ A.
(iii) Es gilt x ∈ ∂M genau dann, wenn Folgen y1 , y2 , . . . ∈ M und z1 , z2 , . . . ∈ X \ M existieren
mit yn → x und zn → x.
(iv) M ist abgeschlossen genau dann, wenn für jede konvergente Tolge x1 , x2 , . . . ∈ M gilt
limn→∞ xn ∈ M .
Dualität von Offenheit und Abgeschlossenheit: (i) M ist offen genau dann, wenn X \ M
abgeschlossen ist, und M ist abgeschlossen genau dann, wenn X \ M offen ist.
(ii) Der Durchschnitt beliebig vieler und die Vereinigung endlich vieler abgeschlossenener
Mengen ist wieder abgeschlossen.
(iii) Die Vereinigung beliebig vieler und der Durchschnitt endlich vieler offener Mengen ist
wieder offen.
(iv) Eine Menge ist abgeschlossen (bzw. offen) genau dann, wenn sie alle ihre Randpunkte
(bzw. keinen ihrer Randpunkte) enthält.
Offenheit und Abgeschlossenheit bzgl. vergleichbarer Metriken: Es sei σ eine zweite
Metrik in X, und es gelte ρ ≺ σ. Dann folgt: Wenn M offen bzw. abgeschlossen bzgl. σ ist, so
ist M auch offen bzw. abgeschlossen bzgl. ρ.
Beispiele: (i) In jedem metrischen Raum (X, ρ) gilt: Endliche Mengen sind abgeschlossen.
Die Menge X ist sowohl offen als auch abgeschlossen, die Kugeln K(x, r) sind offen, die Kugeln
K̄(x, r) sind abgeschlossen, und clK(x, r) = K̄(x, r).
(ii) Es sei X = Kn , und ρ sei durch eine Norm k · k erzeugt. Dann ist Kn die einzige nichtleere
Menge, die sowohl offen als auch abgeschlossen ist. Ferner gilt für alle x ∈ Kn und r > 0
∂K(x, r) = ∂ K̄(x, r) = {y ∈ Kn : kx − yk = r}.
(iii) Es sei X = R mit der Standard-Metrik ρ(x, y) = |x − y|. Dann gilt für alle a < b, dass
(a, b) offen ist, dass [a, b] abgeschlossen ist, dass [a, b) weder offen noch abgeschlossen ist und
∂(a, b) = ∂[a, b) = ∂[a, b] = {a, b}.
Die Intervalle (−1/j, 1/j), j = 1, 2, . . . sind offen, aber ihr Durchschnitt
∞ \
1 1
= {0}
− ,
j j
j=1
8
ist nicht offen.Die Intervalle [−1/j, 1/j[, j = 1, 2, . . . sind abgeschlossen, aber ihre Vereinigung
∞ [
1 1
= (−1, 1)
− ,
j j
j=1
ist nicht abgeschlossen. Ferner gilt
intQ = ∅, ∂Q = clQ = R.
(iv) Es sei X = R2 , ρ sei durch eine Norm k · k erzeugt, und M sei eine Gerade in R2 , z.B.
die x-Achse {(x, 0) ∈ R2 : x ∈ R}. Dann besitzt M keine inneren Punkte.
1.9
Konvergenz von Abbildungen zwischen metrischen Räumen
In diesem Unterkapitel sind (X, ρ) und (Y, σ) metrische Räume, M ⊆ X eine Teilmenge von X
und f : M → Y eine Abbildung.
Häufungspunkte von M : Eine Element x0 ∈ X heißt Häufungspunkt von M , wenn für alle
δ > 0 ein x ∈ M existiert mit 0 < ρ(x, x0 ) < δ, d.h. wenn eine Folge x1 , x2 , . . . ∈ M \ {x0 }
existiert mit xn → x0 , d.h. wenn K(x0 , r) ∩ M eine unendliche Menge ist für jedes r > 0.
Grenzwerte von f : Es seien x0 Häufungspunkt von M , y0 ∈ Y , und es gelte
∀ε > 0 ∃δ > 0 ∀x ∈ M : 0 < ρ(x, x0 ) ≤ δ ⇒ σ(f (x), y0 ) ≤ ε.
(1.12)
Dann nennt man f konvergent für x gegen x0 , y0 heißt Grenzwert von f für x gegen x0 , und
man schreibt
x→x
lim f (x) = y0 oder f (x) → y0 für x → x0 oder f (x) −→0 y0 .
x→x0
Bemerkungen zur Terminologie: (i) Weil x0 Häufungspunkt von M ist, ist y0 durch die
Bedingung (1.12) eindeutig bestimmt. Wenn x0 nicht Häufungspunkt von M wäre, so würde
jedes y0 ∈ Y die Bedingung (1.12) erfüllen.
(ii) Die Bedingung (1.12) hängt nicht davon ab, ob f in x0 definiert ist oder nicht (d.h. ob
x0 ∈ M oder x0 ∈
/ M ), und sie hängt im Fall x0 ∈ X nicht von dem Wert f (x0 ) ab.
Äquivalenz von εδ-Sprache und Folgensprache: Es seien x0 Häufungspunkt von M und
y0 ∈ Y . Dann sind folgende Bedingungen äquivalent:
(i) limx→x0 f (x) = y0 .
(ii) Für jede Folge x1 , x2 , . . . ∈ M \ {x0 } mit limn→∞ xn = x0 gilt limn→∞ f (xn ) = y0 .
1.10
Iterierte Grenzwerte
In diesem Unterkapitel sind (X, ρ), (Y, σ) und (Z, τ ) metrische Räume, M ⊆ X und N ⊆ Y
Teilmengen, x0 ∈ X bzw. y0 ∈ Y Häufungspunkte von M bzw. N und f : M × N → Y
eine Abbildung. Die Menge X × Y wird als metrischer Raum mit einer der in (1.2) und (1.3)
9
eingeführten äquivalenten Metriken betrachtet. Dann ist (x0 , y0 ) Häufungspunkt von M × N ,
und man kann die folgenden Fragen betrachten: Existieren der sogenannte allgemeine Grenzwert
lim
(x,y)→(x0 ,y0 )
f (x, y),
(1.13)
bzw. die sogenannten iterierten Grenzwerte
lim lim f (x, y)
(1.14)
lim lim f (x, y),
(1.15)
x→x0 y→y0
und
y→y0 x→x0
impliziert die Existenz eines von ihnen die Exixstenz eines anderen und sind die entsprechenden
Grenzwerte dann gleich? Nach Definition existiert der iterierte Grenzwert (1.14) und ist gleich
z0 ∈ Z, wenn ein r > 0 und eine Abbildung g : K(x0 , r) ∩ M → Z existieren, so dass gilt
y→y0
∀x ∈ K(x0 , r) ∩ M : f (x, y) −→ g(x)
und
x→x
g(x) −→0 z0 .
(1.16)
(1.17)
Die Bedingung (1.16) bedeutet
∀x ∈ M ∀ε > 0 ∃δ > 0 ∀y ∈ N : ρ(x, x0 ) ≤ r, σ(y, y0 ) ≤ δ ⇒ τ (f (x, y), g(x)) ≤ ε,
(1.18)
und man sagt, wenn diese Bedingung erfüllt ist, dass für x → x0 die Funktionen f (x, ·) punktweise gegen die Funktion g streben. Eine Verstärkung von (1.18) ist
∀ε > 0 ∃δ > 0 ∀x ∈ M ∀y ∈ N : ρ(x, x0 ) ≤ r, σ(y, y0 ) ≤ δ ⇒ τ (f (x, y), g(x)) ≤ ε.
(1.19)
Wenn (1.19) erfüllt ist, so sagt man, dass für x → x0 die Funktionen f (x, ·) gleichmäßig gegen
die Funktion g streben.
Eine notwendige Bedingung, dass (1.13) existiert: Wenn die iterierten Grenzwerte (1.14)
und (1.15) existieren, aber ungleich sind, so existiert (1.13) nicht.
Eine hinreichende Bedingung, dass (1.13) existiert: Wenn (1.17) und (1.19) gilt, so
existiert (1.13) und ist gleich z0 .
Beispiele: Wir setzen X = Y = Z = R mit der Standard-Metrik, M = N = (0, ∞) und
x0 = y0 = 0.
(i) (1.14) und (1.15) existieren und sind ungleich (und folglich existiert (1.13) nicht):
f (x, y) =
x2
x2
.
+ y2
(ii) (1.14) und (1.15) existieren und sind gleich, trotzdem existiert (1.13) nicht:
xy
f (x, y) = 2
.
x + y2
(iii) (1.13) und (1.14) existieren und sind gleich, trotzdem existiert (1.15) nicht:
1
f (x, y) = x sin .
y
10
1.11
Stetige Abbildungen zwischen metrischen Räumen
In diesem Unterkapitel sind wieder (X, ρ) und (Y, σ) metrische Räume, M ⊆ X eine Teilmenge
von X und f : M → Y eine Abbildung.
Stetigkeit: Die Abbildung f heißt stetig in einem Punkt x0 ∈ M , wenn gilt
∀ε > 0 ∃δ > 0 ∀x ∈ X : ρ(x, x0 ) ≤ δ ⇒ σ(f (x), f (x0 )) ≤ ε.
Die Funktion f heißt stetig, wenn sie stetig in jedem x0 ∈ M ist.
Bemerkung zur Terminologie: Wenn x0 ∈ M nicht Häufungspunkt von M ist, dann ist jede
Abbildung f : M → Y stetig in x0 . Wenn aber x0 ∈ M Häufungspunkt von M ist, dann ist eine
Abbildung f : M → Y stetig in x0 genau dann, wenn
lim f (x) = f (x0 ).
x→x0
Stetigkeit und Superposition: Es seien f stetig in einem Punkt x0 ∈ M , (Z, τ ) ein weiterer
metrischer Raum und g : f (X) → Z eine Abbildung, die stetig in f (x0 ) ist. Dann ist die
Superposition g ◦ f ebenfalls stetig in x0 .
1.12
Grenzwerte und Stetigkeit von Abbildungen Kn → Km
In diesem Unterkapitel betrachten wir Abbildungen vom Typ f : X ⊆ Kn → Km , wobei Kn
und Km als metrische Räume, deren Metriken durch eine Norm erzeugt sind, betrachtet werden.
Dann gilt


f1 (x)
 f2 (x) 

f (x) = 
 ... ,
fm (x)
und die Abbildungen f1 , . . . , fm : X → K heißen Komponentenabbildungen der Abbildung f .
Lemma: Grenzwert und Stetigkeit gelten komponentenweise. Es sei x0 ein Häufungspunkt
von X. Dann gilt


limx→x0 f1 (x),
 limx→x0 f2 (x), 
,
lim f (x) = 
(1.20)


x→x0
...
limx→x0 fm (x)
dabei existiert der Grenzwert auf der linken Seite von (1.20) genau dann, wenn alle Grenzwerte
auf der rechten Seite von (1.20) existieren.
Insbesondere gilt: Die Abbildung f ist stetig genau dann, wenn alle Abbildungen f1 , . . . , fm
stetig sind.
Satz: Grenzwert, Stetigkeit und algebraische Operationen Es seien λ : X ⊂ Kn → R
und g : X ⊂ Kn → Km Abbildungen, und x0 sei ein Häufungspunkt von X. Dann gilt
lim (λ(x)f (x)) =
x→x0
lim (f (x) + g(x)) =
x→x0
lim λ(x) lim f (x),
x→x0
lim f (x) + lim g(x).
x→x0
11
x→x0
x→x0
dabei existieren die Grenzwerte jeweils auf der linken Seite, wenn alle Grenzwerte jeweils auf
der rechten Seite existieren.
Insbesondere gilt: Wenn λ, f und g stetig sind, so sind auch λf , f + g stetig.
Extrema stetiger Abbildungen auf abgeschlossenen beschränkten Mengen Es seien
K = R, m = 1, X abgeschlossen und beschränkt, und f sei stetig. Dann existieren ein x∗ ∈ X
und ein x∗ ∈ X, so daß für alle x ∈ X gilt f (x∗ ) ≤ f (x) und f (x∗ ) ≥ f (x).
2
Differenzierbarkeit von Abbildungen Rn → Rm
12
Herunterladen