Inhaltsverzeichnis xiii Vorworte I I.1 I.2 I.3 I.4 I.5 Einführung Ein paar Beispiele . . . . . . . . . . . . . . . . . . Interpretation von Schaubildern . . . . . . . . . . Mathematische Beschreibung von Abhängigkeiten Der Begriff der Funktion . . . . . . . . . . . . . . Einteilung des Zahlenstrahls – Intervalle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 3 7 7 10 II II.1 II.2 II.3 II.4 II.5 II.5.1 II.5.2 II.5.3 Lineare Funktionen Die Streckenlänge im kartesischen Koordinatensystem . . . . . . . Der Mittelpunkt einer Strecke im kartesischen Koordinatensystem Die Hauptform der Geradengleichung . . . . . . . . . . . . . . . . Die gegenseitige Lage von Geraden . . . . . . . . . . . . . . . . . Über Schnittwinkel und orthogonale Geraden . . . . . . . . . . . Eine neue Möglichkeit, die Steigung zu berechnen . . . . . . . . . Zueinander orthogonale Geraden . . . . . . . . . . . . . . . . . . Der Schnittwinkel zweier Geraden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 15 16 23 25 25 27 30 III III.1 III.1.1 III.1.2 III.1.3 III.1.4 III.2 III.2.1 III.2.2 Quadratische Funktionen Die Binomischen Formeln . . . . . . . . . . . . . . . . . . . . . . . . . . Die 1. Binomische Formel . . . . . . . . . . . . . . . . . . . . . . . . . . Die 2. Binomische Formel . . . . . . . . . . . . . . . . . . . . . . . . . . Die 3. Binomische Formel . . . . . . . . . . . . . . . . . . . . . . . . . . Der Weg zurück – Die Binomischen Formeln im Rückwärtsgang . . . . . Der Umgang mit quadratischen Funktionen . . . . . . . . . . . . . . . . Die Mitternachtsformel (MNF) . . . . . . . . . . . . . . . . . . . . . . . Von der Scheitelform zur Normalform und wieder zurück – There and back again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scheitelermittlung durch „Absenken“ . . . . . . . . . . . . . . . . . . . . Die Herleitung der Mitternachtsformel . . . . . . . . . . . . . . . . . . . Der Umgang mit Parabelscharen – Grundlagen Parameterfunktionen . . Zusammenfassung des Unterkapitels über Parameterfunktionen . . . . . III.2.3 III.3 III.4 III.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unauthenticated Download Date | 10/30/17 1:34 PM 35 35 35 36 37 37 39 39 42 46 49 52 65 viii Inhaltsverzeichnis 67 67 67 69 71 72 73 74 74 75 75 76 76 78 79 83 IV IV.1 IV.1.1 IV.1.2 IV.2 IV.2.1 IV.2.2 IV.2.3 IV.2.4 IV.2.5 IV.2.6 IV.2.7 IV.2.8 IV.2.9 IV.3 IV.4 Grundlagen Potenzfunktionen Potenzfunktionen – Definition und ein paar Eigenschaften Parabeln n-ter Ordnung . . . . . . . . . . . . . . . . . . . Hyperbeln n-ter Ordnung . . . . . . . . . . . . . . . . . . Die Potenzgesetze . . . . . . . . . . . . . . . . . . . . . . . Warum Hochzahlen praktisch sind . . . . . . . . . . . . . . Das „nullte“ Potenzgesetz und noch eine Definition . . . . Das erste Potenzgesetz . . . . . . . . . . . . . . . . . . . . Das zweite Potenzgesetz . . . . . . . . . . . . . . . . . . . Das dritte Potenzgesetz . . . . . . . . . . . . . . . . . . . Das vierte Potenzgesetz . . . . . . . . . . . . . . . . . . . Das fünfte Potenzgesetz . . . . . . . . . . . . . . . . . . . Rationale Hochzahlen . . . . . . . . . . . . . . . . . . . . Rechnen ohne Klammern – Vorfahrtsregeln beim Rechnen Rechnen mit Wurzeln – Einfache Wurzelgleichungen . . . . Die Logarithmengesetze . . . . . . . . . . . . . . . . . . . V V.1 V.2 V.3 V.4 V.4.1 V.4.2 V.4.3 V.5 V.5.1 V.5.2 V.6 V.7 V.7.1 V.7.2 V.7.3 V.7.4 Ganzrationale Funktionen – Eine Einführung 91 Definition und Grenzverhalten . . . . . . . . . . . . . . . . . . . . . . . . 91 Zur Symmetrie bei ganzrationalen Funktionen . . . . . . . . . . . . . . . 95 Noch mehr Symmetrie – Symmetrie zu beliebigen Achsen und Punkten . 96 Ganzrationale Funktionen und ihre Nullstellen . . . . . . . . . . . . . . . 99 Warum die Polynomdivision funktioniert . . . . . . . . . . . . . . . . . . 99 Das Horner-Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Nullstellen und Substitution bei ganzrationalen Funktionen . . . . . . . . 105 Das Baukastenprinzip – Zusammengesetzte Funktionen . . . . . . . . . . 106 Addition und Subtraktion von Funktionen . . . . . . . . . . . . . . . . . 106 Multiplikation und Division von Funktionen . . . . . . . . . . . . . . . . 109 Den Überblick behalten – Gebietseinteilungen vornehmen . . . . . . . . . 112 Beträge von Zahlen/Funktionen und Betragsgleichungen . . . . . . . . . 113 Vom Betrag einer Zahl und den dazugehörigen Rechenregeln . . . . . . . 113 Der Betrag einer Funktion oder Ebbe in den Quadranten Nummer III und IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Die abschnittsweise definierte Funktion in Gleichungen – Jetzt wird’s kritisch! 121 Betragsgleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 VI VI.1 VI.1.1 VI.1.2 VI.1.3 VI.1.4 VI.1.5 Die vollständige Induktion und (ihre) Grundlagen . . . . . . . . . . . . . . . Ein paar Spielregeln zu Beginn . . . . Darstellungsformen von Folgen . . . . Die Definition der Monotonie . . . . . Der Nachweis der Monotonie . . . . . . Beschränktheit . . . . . . . . . . . . . Folgen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unauthenticated Download Date | 10/30/17 1:34 PM 131 131 131 132 133 134 134 Inhaltsverzeichnis ix VI.2 VI.2.1 VI.2.2 VI.3 VI.3.1 VI.3.2 VI.3.3 VI.4 VI.4.1 VI.4.2 VI.5 VI.5.1 VI.5.2 VI.5.3 VI.6 VI.6.1 VI.6.2 VI.6.3 VI.6.4 VI.6.5 Der Grenzwert einer Folge . . . . . . . . . . . . . . . . . . . Die Definition des Grenzwertes . . . . . . . . . . . . . . . . Zwei Sätze und ein paar Begriffe . . . . . . . . . . . . . . . Die Grenzwertsätze . . . . . . . . . . . . . . . . . . . . . . . Die 3 Grenzwertsätze . . . . . . . . . . . . . . . . . . . . . . Ein Beweis zu den Grenzwertsätzen . . . . . . . . . . . . . . Berechnung der Grenzwerte bei rekursiven Folgen . . . . . . Arithmetische und geometrische Folgen . . . . . . . . . . . . Arithmetische Folgen I – Ein paar Grundlagen . . . . . . . . Geometrische Folgen I – Ein paar Grundlagen . . . . . . . . Die vollständige Induktion – Ein mächtiges Beweisverfahren Arithmetische Folgen II – Die Summe der Folgenglieder . . . Geometrische Folgen II – Die Summe der Folgenglieder . . . Vollständige Induktion in Beispielen . . . . . . . . . . . . . . Ein Test alles Gelernten – Die Fibonacci-Zahlenfolge . . . . Einführung und historischer Abriss . . . . . . . . . . . . . . Die Fibonacci-Zahlenfolge – Grundlagen . . . . . . . . . . . Die Kaninchen-Aufgabe . . . . . . . . . . . . . . . . . . . . Der Goldene Schnitt . . . . . . . . . . . . . . . . . . . . . . Die Herleitung der expliziten Formel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 136 137 138 138 139 140 141 141 142 144 147 149 150 156 157 158 161 163 164 VII VII.1 VII.2 VII.2.1 VII.3 VII.3.1 VII.3.2 VII.3.3 VII.3.4 VII.3.5 VII.4 VII.4.1 VII.4.2 VII.4.3 VII.5 VII.5.1 VII.5.2 VII.5.3 VII.5.4 VII.6 Einführung in die Differentialrechnung Vom Differenzen- zum Differentialquotienten . . . . . . . . . . . Die Ableitung einer Potenzfunktion und die Tangentengleichung Der Umgang mit Berührpunkten . . . . . . . . . . . . . . . . . Die Herleitungen der Ableitungsregeln . . . . . . . . . . . . . . Die Summenregel . . . . . . . . . . . . . . . . . . . . . . . . . . Die Faktorregel . . . . . . . . . . . . . . . . . . . . . . . . . . . Die Produktregel . . . . . . . . . . . . . . . . . . . . . . . . . . Die Quotientenregel . . . . . . . . . . . . . . . . . . . . . . . . . Die Kettenregel . . . . . . . . . . . . . . . . . . . . . . . . . . . Wichtige Punkte eines Funktionsgraphen . . . . . . . . . . . . . Extrempunkte . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wendepunkte . . . . . . . . . . . . . . . . . . . . . . . . . . . . Neu und alt – Ableitung trifft Parameter . . . . . . . . . . . . . Stetigkeit, Differenzierbarkeit, Monotonie und die Wertetabelle . Stetigkeit – Ohne Sprung ans Ziel . . . . . . . . . . . . . . . . . Differenzierbarkeit – Knickfrei durch’s Leben . . . . . . . . . . . Monotonie – Wo geht’s denn hin? . . . . . . . . . . . . . . . . . Die Wertetabelle – Eine oft ignorierte Zeichenhilfe . . . . . . . . Die Kurvendiskussion – Gesamtübersicht mit Beispiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 169 173 178 179 180 182 183 185 188 190 191 205 210 215 215 218 220 225 226 Unauthenticated Download Date | 10/30/17 1:34 PM x Inhaltsverzeichnis 229 229 230 231 232 233 234 234 237 243 VIII VIII.1 VIII.1.1 VIII.1.2 VIII.1.3 VIII.1.4 VIII.2 VIII.2.1 VIII.2.2 VIII.3 Über das Lösen linearer Gleichungssysteme LGS mit 2 Unbekannten und 2 Gleichungen . . . . . . . . . . . Das Gleichsetzungsverfahren . . . . . . . . . . . . . . . . . . . . Das Einsetzungsverfahren . . . . . . . . . . . . . . . . . . . . . Das Additionsverfahren . . . . . . . . . . . . . . . . . . . . . . . Der Umgang mit Parametern bei einem LGS . . . . . . . . . . . LGS mit 3 und mehr Unbekannten . . . . . . . . . . . . . . . . Das Gaußsche Eliminationsverfahren . . . . . . . . . . . . . . . Gibt es Lösungen – und wenn ja wie viele? . . . . . . . . . . . . LGS und Funktionen – Bestimmung ganzrationaler Funktionen IX Mit Brüchen muss man umgehen können – Gebrochenrationale Funktionen 253 Grundlagen – Umgang mit Bruchgleichungen und Brüchen . . . . . . . . 253 Definition der gebrochenrationalen Funktionen . . . . . . . . . . . . . . . 258 Ein paar Besonderheiten – Definitionslücken und Asymptoten . . . . . . 258 Ableiten gebrochenrationaler Funktionen . . . . . . . . . . . . . . . . . . 269 IX.1 IX.2 IX.3 IX.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X.2 X.3 Trigonometrische Funktionen 271 Grundlagen und Ableitungsregeln . . . . . . . . . . . . . . . . . . . . . . 271 Definition und Beispiele . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Vom Einheitskreis zur Funktion . . . . . . . . . . . . . . . . . . . . . . . 273 Das Bogenmaß . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 Andere Winkel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 Der Sinussatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 Der Kosinussatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 Weitere Betrachtungen zum Einheitskreis . . . . . . . . . . . . . . . . . . 284 Die Ableitungen der trigonometrischen Funktionen – Ein wenig Nostalgie bei der Herleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Übersicht über die Eigenschaften der trigonometrischen Grundfunktionen 292 Die Modifizierung trigonometrischer Funktionen (Sinus und Kosinus) . . 296 XI XI.1 XI.2 XI.3 XI.3.1 XI.3.2 XI.3.3 XI.3.4 XI.4 Wachsen ist schön – Exponentialfunktionen Grundlagen . . . . . . . . . . . . . . . . . . . . . . Ableiten von Exponentialfunktionen . . . . . . . . Wachstum . . . . . . . . . . . . . . . . . . . . . . . Lineares Wachstum . . . . . . . . . . . . . . . . . . Exponentielles/Natürliches Wachstum . . . . . . . Beschränktes Wachstum . . . . . . . . . . . . . . . Logistisches Wachstum . . . . . . . . . . . . . . . . Die Grenzen erfahren – Grenzwertuntersuchung mit X X.1 X.1.1 X.1.2 X.1.3 X.1.4 X.1.5 X.1.6 X.1.7 X.1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L’Hospital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unauthenticated Download Date | 10/30/17 1:34 PM 305 305 306 313 314 314 319 319 321 Inhaltsverzeichnis xi XII XII.1 XII.2 XII.2.1 XII.2.2 Die Ableitung der Umkehrfunktion Was ist eine Umkehrfunktion? – Grundlagen und Begriffe Ableiten von Umkehrfunktionen . . . . . . . . . . . . . . Implizites Differenzieren . . . . . . . . . . . . . . . . . . Ableiten von Umkehrfunktionen mit der Kettenregel . . . . . . . . . . . . . . . . . . . . . . 325 325 331 331 332 XIII XIII.1 XIII.1.1 XIII.2 XIII.3 XIII.3.1 XIII.3.2 XIII.3.3 XIII.4 XIII.5 Integralrechnung Schritt für Schritt zum Ziel – Ober- und Untersumme . . . . . . . Ober- und Untersumme . . . . . . . . . . . . . . . . . . . . . . . Was haben Stammfunktionen und Integralfunktionen gemeinsam? Übersicht zu wichtigen Stammfunktionen . . . . . . . . . . . . . . Aufleiten mittels der linearen Substitution . . . . . . . . . . . . . Etwas Interessantes – Die Produktintegration . . . . . . . . . . . Ein praktischer Satz – Über das Aufleiten von Brüchen . . . . . . Flächenberechnung – Worauf man achten sollte . . . . . . . . . . Einmal rundherum – Berechnung von Rotationsvolumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 335 335 343 346 349 350 352 353 356 XIV XIV.1 XIV.2 XIV.3 XIV.3.1 XIV.4 XIV.4.1 XIV.4.2 XIV.4.3 XIV.4.4 XIV.5 Beweise mit Vektoren führen Der Vektor in der analytischen Geometrie . . . . . . . . . . . Linear abhängig und unabhängig . . . . . . . . . . . . . . . . Das Prinzip des geschlossenen Vektorzugs . . . . . . . . . . . Ein Beispiel: Teilverhältnis der Seitenhalbierenden im Dreieck Ein erstes Produkt für Vektoren: Das Skalarprodukt . . . . . Von Vektoren und ihren Beträgen . . . . . . . . . . . . . . . . Das Skalarprodukt: Die Definition und ihre Konsequenzen . . Was man vom Skalarprodukt zum Beweisen benötigt . . . . . Ein Beispiel: Der Satz des Thales . . . . . . . . . . . . . . . . Eine Aufgabe zur Vertiefung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 361 363 364 365 367 368 373 376 377 378 XV XV.1 XV.2 XV.3 XV.4 XV.4.1 XV.4.2 XV.4.3 XV.5 XV.5.1 XV.5.2 XV.5.3 Rechnen im Raum – Analytische Geometrie Noch ein Produkt für Vektoren: Das Kreuzprodukt Eine Runde Teamwork – Das Spatprodukt . . . . . Geraden und Vektoren . . . . . . . . . . . . . . . . Ebenen . . . . . . . . . . . . . . . . . . . . . . . . Die Koordinatenform . . . . . . . . . . . . . . . . . Die Normalenform . . . . . . . . . . . . . . . . . . Umwandeln von Ebenen . . . . . . . . . . . . . . . Lagebeziehungen . . . . . . . . . . . . . . . . . . . Gegenseitige Lagen von Geraden . . . . . . . . . . Gegenseitige Lagen von Ebenen . . . . . . . . . . . Gegenseitige Lagen von Ebene und Gerade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 381 386 388 390 392 395 397 400 400 402 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unauthenticated Download Date | 10/30/17 1:34 PM xii Inhaltsverzeichnis XV.6 XV.6.1 XV.6.2 XV.6.3 XV.7 XV.8 Abstände . . . . . . . . . . . . . . . . . . . . . . . . . Der Abstand zweier Punkte . . . . . . . . . . . . . . . Die Hessesche Normalenform – Abstandsbestimmungen Abstände, die uns noch fehlen . . . . . . . . . . . . . . Ein kurzes Wort über Schnittwinkel . . . . . . . . . . . Ein kugelrunder Abschluss . . . . . . . . . . . . . . . . . . . . bei . . . . . . . . . . . . . . . . Ebenen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 408 408 412 416 418 XVI XVI.1 XVI.1.1 XVI.1.2 XVI.2 XVI.2.1 XVI.2.2 XVI.3 Wenn’s nicht direkt geht – Ein wenig Numerik Für Nullstellen – Das Newton-Verfahren . . . . . . . . . . . . Wann Newton nicht funktioniert . . . . . . . . . . . . . . . . . Übersicht mit Beispiel . . . . . . . . . . . . . . . . . . . . . . Für Flächen – Die Keplersche Fassregel . . . . . . . . . . . . . Sehnentrapeze . . . . . . . . . . . . . . . . . . . . . . . . . . . Tangententrapeze . . . . . . . . . . . . . . . . . . . . . . . . . Wo Kepler aufhört, da fängt Simpson an – Die Simpson-Regel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 421 424 424 425 426 427 428 XVII XVII.1 XVII.2 XVII.3 XVII.4 XVII.5 XVII.6 XVII.7 XVII.8 Wem’s reell nicht genug ist – Komplexe Zahlen Von natürlich bis reell – Eine kurze Geschichte der Zahlen . Komplexe Zahlen – Definition und Grundlagen . . . . . . . . Rechnen mit komplexen Zahlen I . . . . . . . . . . . . . . . Polarkoordinaten und komplexe Zahlen . . . . . . . . . . . . Euler und eine der schönsten Gleichungen der Mathematik . Rechnen mit komplexen Zahlen II . . . . . . . . . . . . . . . Potenzen berechnen und Wurzelziehen bei komplexen Zahlen Bastelstunde: Additionstheoreme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 431 435 436 440 444 449 451 454 A A.1 A.2 A.3 A.4 Die Strahlensätze Einführende Betrachtungen . . . . Der 1. Strahlensatz . . . . . . . . . Der 2. Strahlensatz . . . . . . . . . „Kurzversion“ des 1. Strahlensatzes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 459 460 461 462 B B.1 B.2 Ungleich geht die Welt zugrunde – Rechnen mit Ungleichungen Ganz elementare Regeln . . . . . . . . . . . . . . . . . . . . . . . . . . . Beispiele statt allgemeiner Hudelei . . . . . . . . . . . . . . . . . . . . . 465 465 466 C C.1 C.2 C.3 Das Pascalsche Dreieck Worum es geht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zum Aufstellen des Dreiecks . . . . . . . . . . . . . . . . . . . . . . . . . Warum das Schema funktioniert . . . . . . . . . . . . . . . . . . . . . . . 469 469 470 471 Anhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Weiterführende Literatur 475 Stichwortverzeichnis 477 Unauthenticated Download Date | 10/30/17 1:34 PM