Vertiefungsmodul Immunbiologie Ringvorlesung Erlangen WS13/14 Adaptive Humorale Immunität Etablierung des sekundären Antikörper-Repertoires Hans-Martin Jäck Abteilung für Molekulare Immunologie Medizinische Klinik III Nikolaus-Fiebiger-Zentrum FAU Erlangen-Nürnberg Plasma Cell Differentiation 2 Memory B cell Naive B cells Ag + TH Germinal Center Reaction & AID More affine & specialized antibodies „Memory“ Plasma cell THEMEN Überblick: Adaptive humorale Immunität Keimzentrumsreaktion, Affinitätsreifung und IgH-Klassenwechsel AID und APOPECs Funktion und Wirkmechanismus von AID AID und angeborene Immunität Division of Molecular Immunology, Universitätsklinikum Erlangen 3 Immunsystem bildet Barrieren Angeboren Physikalisch • • • • Haut Schleim Darmflora Flimmerhaare Keime & fremde Substanzen • • • • • Bakterien Pilze Würmer Viren Fremde Eiweiße Physiologisch • pH • Temperatur Zellulär (Leukozyten) • Makrophagen • Granulozyten • Lymphoyzen Entzündung • Die vier ‚ors‘ BARRIEREN Abwehrsystem = IMMUNSYSTEN Erworben B- und T-Zellen Antikörper T-Zell-Botenstoffe • • • • Interleukine Zytokine Lymphotoxine Chemokine Gedächtnis !!!! Adaptive Immunität (Immunitas, lat.: ‚Freisein von Leistungen/Lasten‘) Division of Molecular Immunology, Universitätsklinikum Erlangen 4 Adaptive humorale Immunität Anatomie der Adaptiven Immunität Lymphknoten T-Zellzone (extrafollikulär) DZ MHC II MHC I Naive CD8-T TK MHC II Naive CD4-T Dendritische Zelle (DZ) B-Zellzone (follikulär) Gedächtnis-B B Infektion TH Division of Molecular Immunology, Universitätsklinikum Erlangen TFH Plasmazelle 6 Antibodies – Structure and Function Glykoproteine Antigenbindung Quartärstruktur VH • 2 identische schwere (H) (ca. 50kDa) • 2 identische leichten (L) Ketten (ca. 25kDa) • Verknüpft über Inter-Ketten-S-S-Brücken ( CH1 VL L CL CH2 Effektorfunktion CH3 CHO Ketten enthalten variable (V) und konstante (C) Regionen H Ketten bestehen aus Ig-Domänen • Stabilisiert über Intraketten-S-S-Brücken ( ) ) Diversität der V- und C-Regionen IgM • Milliarden verschiedener V-Regionen (Idiotyp) • 2 CL: k und l; 5 CH: m, d, g, a und e (Isotyp) Division of Molecular Immunology, Universitätsklinikum Erlangen 7 Antibodies – Structure and Function Antigen binding sites = Paratop “Magic Part” 3 loops (fingers) from each V region form the antigen binding site (paratop) CDRs = complementary determining regions 1-3 VH VH VL VL 1 CH CL 3 L CH Effector sites “Bullet Part” 3 2 CH H CH 2 1 Tissue distribution Serum halflife Complement Phagocytosis Recruting of cells 1 2 3 Janeway Antibodies are bifunctional (Paul Ehrlich‘s Magic Bullets) Division of Molecular Immunology, Universitätsklinikum Erlangen 8 Antibodies – Effector Functions Neutralisation Agglutination Activation of Complement Enhancement of Phagocytosis (Opsoniation) Recrutement of effector cells (Neutrophils, natural killer cells) Division of Molecular Immunology, Universitätsklinikum Erlangen 9 Adaptive Humoral Immunity Generation of the Primary B Cell Repertoire B cell receptor 1 Antigen 1 One B cell - One Receptor Maturation of B Cells Central Maturation (Bone marrow) BCR Pre-BCR Stem cell Late Pro-B Early Pre-B VH→D → JH Late Pre-B Immature B cell VL → JL L H Division of Molecular Immunology, Universitätsklinikum Erlangen 11 Generation of Antibody Diversity S. Tonegawa Nobel Price 1987 Basel Institute of Immunology ca. 2.5 Mb (mouse) D segments V segments HC locus J segments Cm stem cell Recombination J V B cell Ck VH Exon Transcription Translation VH VL Exon Cm C B cell N LC locus N kL chain C µH chain V(D)J recombination generates antibody diversity Division of Molecular Immunology, Universitätsklinikum Erlangen 12 Summary: Preimmune Repertoire 134 VH 13 D 4JH Cm Recombinatorial diversity • Random assembly from V, D & J Combinatorial diversity ca. 107 antibodies 109-1012 antibodies • Random pairing of H & L chains Junctional diversity • Unprecise V(D)J joining • Nucleotide (N) addition (TdT) • Usage of three RF in D segments B-Zellen Anzahl Neu/Tag Division of Molecular Immunology, Universitätsklinikum Erlangen Mensch 1012 109 Maus 109 106 13 HUMORAL IMMUNE RESPONSE Central Maturation Peripheral Maturation (Bone marrow) (Spleen) BCR Pre-BCR Stem cell Late Pro-B Early Pre-B VH→D→ JH Late Pre-B Immature B cell Transitional B cells Mature B cell VL → JL Primary repertoire L H ~109-1012 specificies Division of Molecular Immunology, Universitätsklinikum Erlangen 14 HUMORAL IMMUNE RESPONSE 15 Central Maturation Peripheral Maturation Effector Phase (Bone marrow) (Spleen) (lymph node, spleen, etc.) Plasma cell BCR Pre-BCR Ag + TH Stem cell Late Pro-B Early Pre-B VH→D→ JH Late Pre-B Immature B cell Transitional B cells Mature B cell H Memory B cell VL → JL Primary repertoire L GC ~109-1012 specificies Division of Molecular Immunology, Universitätsklinikum Erlangen Secondary repertoire → Affnity maturation → Effector functions Adaptive Humoral Immunity Generation of Effector B Cells IgM Plasma cell Ag + TH Ag + TH IgD Memory B IgG Anatomie der Adaptiven Immunität Lymphknoten T-Zellzone (extrafollikulär) DZ MHC II MHC I Naive CD8-T TK MHC II Naive CD4-T Dendritische Zelle (DZ) B-Zellzone (follikulär) Gedächtnis-B B Infektion TH Division of Molecular Immunology, Universitätsklinikum Erlangen TFH Plasmazelle 17 Activation of Naive CD4+ T Cells King et al., Annu. Rev. Immunol. 2008 cytokines Dendritic cell Activation of naive CD4+ T cells in T cell zone Division of Molecular Immunology, Universitätsklinikum Erlangen B cell help in follicule 18 B Cell Antigens The World of Antigens (Antibody generating) Differentiation Clonal Expansion IgM Ig receptors recognize • Proteins • Lipids • Nuclei acids Ag IgM • Carbohydrates • Organich molecules or Haptens (Half-Ag) • Metals • Plastic +/-TH +/-TH IgD Naive B cells But only proteins are good T cell-dependent antigens Division of Molecular Immunology, Universitätsklinikum Erlangen Short-lived Plasma cells IgG, IgA, IgE +TH Long-lived plasma cells +TH Memory B cell 19 T Cell Antigens T-Zellrezepror erkennt Fremd (Peptid) und Selbst (MHC) (MHC restiction - Zinkernagel & Doherty ) Ag B-ZellRezeptor (BZR) T-ZellRezeptor (TZR) Dendritische Zelle MHC II MHC I Ag-Prozessierung & Präsentation Division of Molecular Immunology, Universitätsklinikum Erlangen 20 Merkmale der adaptiven Immunität Organimsus erinnert sich an Antigen und antwortet mit einer besseren (über Affinitätserhöhung) spezialisierteren (durch IgH-Klassenwechsel) schnelleren (Signalwege ?) auf das jeweilge Pathogen zurechtgeschnitte Antikörperantwort Division of Molecular Immunology, Universitätsklinikum Erlangen 21 Anatomical Location Secondary lymphatic organs B cell zone Primary B cell follicule Lymph nodes medulla arteria Appendix Paracortex (T cell zone) venule Spleen Tonsils Peyer Plaques Afferent lymphatic vessel Secundary B cell follicle „Germinal center“ Efferent lymphatic vessel From Janeway Division of Molecular Immunology, Universitätsklinikum Erlangen 22 Anatomy of B Cell Response Spleen section - 7 days SRBC B T Cell Zone T HEV Antigen Expansion IgM IgM +/-TH Naive B cell +TH B cell focus GC B Cell Zone CXCR5 IgD PNA CD3 - B cells - GC B cells - T cells Short-lived Plasma cell IgG IgA IgE Memory B cell Primary follicle IgG IgA IgE Secondary follicle + Germinal center Long-lived plasma cells T-Zell-abhängige B-Zellaktivierung Lymphknoten T-Zellzone (extrafollikulär) DZ MHC II MHC I Naive CD8-T TK MHC II Naive CD4-T Dendritische Zelle (DZ) B-Zellzone (follikulär) Gedächtnis-B B Infektion TH Division of Molecular Immunology, Universitätsklinikum Erlangen TFH Plasmazelle 24 Anatomy of B Cell Response Spleen section - 7 days SRBC B T Cell Zone T HEV Antigen B Cell Zone - B cells - GC B cells - T cells IgM IgM +TH Naive B cell GC IgD PNA CD3 Expansion Primary follicle B cell focus Short-lived Plasma cell Extrafollikuläre B/T-Zell-Kooperation OH NO2 Träger B-Zell-Epitop (Peptid oder Hapten) IL2/4/5 Träger T-Zell-Epitop (Peptid) Gekoppelte Erkennung (Linked recognition) B- und T-Zellepitop müssen auf dem gleichen Molekül liegen ILR CD40 1 2 CD40L B + Primed TH TH MHC II + TZR Peptid Immunologische Synapse BZR CD40L-Defizienz • Keine Antikörper gegen Proteine (z.B. Tetanus) • Kein Klassenwechsel • Kein Gedächtnis → Keine Schutzimpfung • Aber gute Antwort gegen Kohlenhydrate !!!! → Viel IgM im Serum → Hyper-IgM-Syndrom I Division of Molecular Immunology, Universitätsklinikum Erlangen 26 STUDON RINGVORLESUNG http://www.studon.uni-erlangen.de/crs816430.html Anatomy of B Cell Response Spleen section - 7 days SRBC B T Cell Zone T HEV Antigen Expansion IgM IgM +/-TH Naive B cell +TH B cell focus GC B Cell Zone CXCR5 IgD PNA CD3 - B cells - GC B cells - T cells Short-lived Plasma cell IgG IgA IgE Memory B cell Primary follicle IgG IgA IgE Secondary follicle + Germinal center Long-lived plasma cells Germinal Center (dt.: Keimzentrum) 1884 Fleming discovers germinal centers. The name ‘GC’ is based on Fleming’s finding that GC contain a high mitotic activity. He believed that GC are the site of germination or lymphopoiesis 1920 The idea that GC are site of lymphopoiesis fell short because it did not fit the transient appearance 1924 Latta and West proposed that GC are rather sites of death and senescence that lymphopoiesis 1940-43 Crabb and Kelsall, and Hellman found that the presence of GC correlates with chronic antigenic stimulation and that GC can be induced by immunization GC Elise Punkenburg Bachelorarbeit, Erlangen 2008 As we know now, GC are the site of local proliferation and cell death, both of which contribute in antibody affinity maturation and formation of memory cells Division of Molecular Immunology, Universitätsklinikum Erlangen 29 Germinal Center Reaction Germinal Center FDC Light zone 30 Modified from McHyzer-Williams 2011 B cell zone TFH IgG, IgA, IgE Memory B cell Selection ? GC exit Dark zone ? “Memory” plasma cell (long-lived) Expansion SHM IgG, IgA, IgE CSR? CSR IgM TFH T cell zone GC - Molecular Changes at the Ig locus IgM IgG, IgA, IgE VH AID VL CL 31 CH 1. Somatic hypermutation 2. IgH class switch Better and more specialized antibodies IgH Class Switch Recombination (CSR) Kinoshita & Honjo NRCB(2001) Division of Molecular Immunology, Universitätsklinikum Erlangen 32 IgH Class Switch Recombination (CSR) DNA-Looping-out und Deletion VH Cm IL4 LPS Cd Cg3 Sm IgM Sg3 CSR VH • • • • IgG1 Sg1 Cg2b Cg2a Sg2b Cg1 Sg2a Ce Se Ca Sa S, switch regions Cytokine Cg3 Cm Cd Cg1 AID Cg2b Cg2a Ce Ca Cg2b Cg2a Ce Ca Synapsis Incision Double-strand breaks End-Joining/Ligation VH Cg1 Switch circle Jäck et al.,P.N.A.S. USA 1988 von Schwedler et al., Nature 1990 Division of Molecular Immunology, Universitätsklinikum Erlangen 33 Somatic Hypermutation (SHM) of V Regions SHM und Ig-Mutator Jacob et al., Nature 1991 V AID Einfügen von Punktmutationen willkürlich über das gesamte V-Exon des L- und HKetten gens verteilt Division of Molecular Immunology, Universitätsklinikum Erlangen 34 Germinal Center Reaction - Selection Follicular dendritc cell (FDC) FcR Selection CR C Light zone native antigen B cell with high-affine Ag receptor Dark Zone 35 Affinity Maturation STEP 1: Somatic hypermutation over entire V exons STEP 2: FDC selects B cells with higher affinity for immunizing antigen Ag-specific antibodies with higher affinity PROBLEM: Self-reactive B cells could be selected by self-antigen on FDC – ► Requirement for another checkpoint Division of Molecular Immunology, Universitätsklinikum Erlangen 36 Germinal Center Reaction FDC Selection TFH Selected B cell Dark zone Expansion SHM AID Modified from McHyzer-Williams 2011 B cell zone GC reaction Light zone 37 CSR? CSR IgM TFH T cell zone B/T-Kooperation im Keimzentrum Nutt & Tarlinton, Nat Immunol. 2011 Division of Molecular Immunology, Universitätsklinikum Erlangen 38 Germinal Center Reaction FDC Modified from McHyzer-Williams 2011 B cell zone GC reaction Light zone 39 TFH IgG, IgA, IgE Memory B cell Selection Selected B cell Dark zone ? GC exit IgG, IgA, IgE “Memory” plasma cell (long-lived) Expansion SHM AID ? CSR? CSR IgM TFH T cell zone Control of PC Differentiation Staudt/ Calame/ Lassila Model PC Program GC Program Pax5 AID Repair 40 Xbp1 IRF4 ↑ Bcl6 Blimp1 Bach2 IRF4↑↑↑↑ MiTF Modified from Nutt et al., 2011 Germinal Center Reaction FDC Modified from McHyzer-Williams 2011 B cell zone GC reaction Light zone 41 TFH IgG, IgA, IgE Memory B cell Selection ? GC exit Dark zone IgG, IgA, IgE “Memory” plasma cell (long-lived) Expansion SHM AID ? CSR? CSR IgM TFH T cell zone Effector B Cells IgA IgG, IgE Plasma Cell (PC) • Igmem → Igsec • Ig production ↑ (100x) • Long-lived PC in bone marrow niches IgM IgM Ag Plasma cell Memory B Cell IgD IgG IgA IgE Naive B cell Memory B cell • • • • IgGmem, IgAmem or IgEmem Reacts faster to Ag Circulates through body Long-lived (does not require antigen contact for survival) • Generation requires T help Division of Molecular Immunology, Universitätsklinikum Erlangen 42 Summary: Effector B Cells Differentiation Clonal Expansion IgM Better and more IgM Ag IgM +/-TH +/-TH IgD Naive B cells Short-lived Plasma cells specialized abs IgG, IgA, IgE Germinal center reaction +TFH IgG, IgA, IgE • Proliferation Long-lived plasma cells • Somatic hypermutation +TFH • Selection • class switch • Effector cells AID Division of Molecular Immunology, Universitätsklinikum Erlangen Memory B cell 43 Adaptive Humoral Immunity AID Activation-Induced Deaminase Master regulator of secondary antibody diversification and ????? AID - Entdeckung Entdeckt über substraktive Hybrisierung als induzierbares Gen in einer B-Lymphomlinie (CH12) mit IL4-induzierbarem IgH-Klassenwechsel (Muramatsu et al. JBC 1999) Synthese induziert in Ag-aktivierten Keimzentren-B-Zellen Konvertiert in ssDNA ein C zu einem U (oxidative Deaminierung) Deamidase H2O Cytosin AID NH3 O Uracil R C NH2 Säureamid O R C OH Carbonsäure → Activation-Induced Deaminase = AID (Gensymbol AICD) Notwenig für CSR und SHM Division of Molecular Immunology, Universitätsklinikum Erlangen 45 Kurzer Ausflug in APOBEC-Familie Mensch Enthalten alle Deaminase-Domäne mit konservierter katalytischer Stelle (rot) Maus besitzt APOBEC1, 2, 3 (eine Form) und AID APOBEC1 und APOBEC3 nur in Säugern AID und APOBEC2 in allen höheren Vertebraten Funktionen: Goila-Gaul and Strebel, Retrovirology 5:51, 2008 → Editieren von RNA und DNA → Immunität gegen Viren → Inaktivierung von Retroelementen Division of Molecular Immunology, Universitätsklinikum Erlangen 46 APOBEC1 – Prototyp eines RNA-editierenden Enzyms Apolipoprotein B mRNA-editing enzyme catalytic polypeptide 1 N C APOB100 Leber AUG CAA APOBEC1 (one !!!! mutation in RNA) AUG N UAG APOB mRNA UAG Mut APOB mRNA Duodenum UAA C APOB48 Division of Molecular Immunology, Universitätsklinikum Erlangen • Navaratnam et al., LBC 1993 • Teng et al., Science, 1993 47 APOBEC3G – Innate Abwehr gegen Viren und Transposon Nur in Säugern (Lymphozyten) Mutiert neuen ss-cDNA-Strang RT APO3 X XX XX RNA (viral oder Retrotransposons) mutierte cDNA Modelle antiviraler Wirkmechanismen von APOBEG3: (1) Reduziert Bildung viraler Transkripte Sheehy et al. Nature 2002 (2) Inaktivierende Mutationen in Virions (3) Induziert Abbau mutierter Trankripte (4) Induziert Abau nicht-mutierter Transkripte durch Rekrutierung zellulärer Nukleasen →Editing-unabh.Mechanismus Division of Molecular Immunology, Universitätsklinikum Erlangen 48 Kurzer Ausflug: Retroelements Endogene Retroelemente (bis zu 45% des menschlichen Genoms) Mutatoren, werden aber auch selber mutiert From M. Wabl insertional mutagenesis TLR7 RIG I MDA5 new RNA new protein new cDNA Adaptive Immunity Biologische Aktivität/Funktion AIM2 TLR9 APOBEC3 Trex1 AID o Genduplikationen o Vergrößerung des Genoms o Insertionsmutagenese Division of Molecular Immunology, Universitätsklinikum Erlangen 49 AID – A Hypermutator Cytosin → AID Uracil Activation-Induced Deaminase (AID) Converts C in ssDNA to U (oxydative deamination) Expressed in activated germinal center B cells Discovered by Honjo et al. (1999) Required for SHM and CSR Defekt: Hyper-IgM syndrome type II Division of Molecular Immunology, Universitätsklinikum Erlangen 50 AID: Required for SHM & CSR Transfection into B cell lines induces CSR Germline-deficient AID mice have no CSR and SHM (Muramatsu et al., Cell 2000) Patients with mutated AID (autosomal) no CSR and strongly reduced somatic mutation (Revy ; Durandy et al., Cell 2000) AID-deficient mice and patients produce large amounts of IgM antibodies against PROTEINS (!!!!) → Hyper-IgM syndrome type 2 Also required for Ig gene conversion in chicken B cells (Arakawa et al., Science) Division of Molecular Immunology, Universitätsklinikum Erlangen 51 AID: How does it work? RNA Editing Model (indirect) AID is an indirect mutator by editing (like APOBEC1) a mRNA (or miRNA) encoding (or controlling) a switch recombinase/Ig mutator DNA Mutation Model (direct) AID acts directly on DNA (introducing C-to-U mutations) in both processes • • Constans, A. Class /Switch Wars 2004. The Scientist18(18):28 Honjo et al. 2004. Immunity 20:659-68 Division of Molecular Immunology, Universitätsklinikum Erlangen 52 RNA-Editing-Hypothese N C Aktiver „Mutator“ (Endonuklease) AID AUG CAA UAG „Mutator“encoding mRNA AID↑ in Keimzentrums-B-Zelle AUG N UAA C UAG „Mutator“encoding mRNA Inaktiver Mutator Division of Molecular Immunology, Universitätsklinikum Erlangen 53 RNA-Editing-Hypothese Hinweise AID hat sehr starke Sequenzähnlichkeit mit APOBEC1 (RNAEditierung) AID ist hauptsächlich im Zytosol lokalisiert De-Novo Proteinbiosynthese ist für CSR notwendig (Gegenargument: CSR-spezifischer Ko-Faktor wird synthetisiert) AID komplexiert im Zytosol mit mRNA AID mit N51A-Mutation verliert DNA-Deaminase-Aktivität, induziert nach Transduktion in AID-defizienten B-Zellen noch CSR • Honjo und Mitarbeiter, PNAS 2008 (Originalmanuskript) • Shivarov et al., Philos Trans R Soc Lond B Biol Sci 2009 (Review) Division of Molecular Immunology, Universitätsklinikum Erlangen 54 DNA Model SHM V exon Cm Cg C C CC C C CC U U UU U U UU Base excision and error prone A G A G CSR Base excision and mismatch repair 55 Ausflug – DNA-Reparatur Three major DNA repairing mechanisms: Base excision (BER), nucleotide excision (NER) and mismatch repair (MMR). • http://www.web-books.com/MoBio/Free/Ch7G.htm • Peterson and Cote, G&D, 2004 Division of Molecular Immunology, Universitätsklinikum Erlangen 56 DNA-Reparatur – Base excison Repair (BER) • BER repairs damaged DNA throughout the cell cycle by first removing the wrong base • Works only if DNA's bases are modified by deamination or alkylation. • Position of the modified (damaged) base is called the "abasic site" or "AP site". • DNA glycosylases (e.g., Uracil-Nglycosidase = UNG) recognize AP site and remove its base. • AP endonuclease removes the AP site and neighboring nucleotides. • Gap is filled by DNA polymerase I and DNA ligase. Division of Molecular Immunology, Universitätsklinikum Erlangen 57 DNA-Reparatur – Nucleotide excison Repair (NER) • In E. coli, proteins UvrA, UvrB, and UvrC are removedamaged nucleotides (e.g., dimer induced by UV light). • Gap is filled by DNA polymerase I and DNA ligase. • In yeast, the proteins similar to Uvr's are named RADxx ("RAD" stands for "radiation"), such as RAD3, RAD10. etc. Division of Molecular Immunology, Universitätsklinikum Erlangen 58 DNA-Reparatur – Mismatch Repair (MMR) • Important for mutations unable to be repaired by BER or NER E.coli Dam methylates template at GATC GATC • Mut proteins bind to mismatched bp. (Eukaroytic homologues are MSH1-5 (mismatch repair homolog), MLS1 (MutL homolog 1) und PMS (postmeiotic segregation). Mutations of MSH2, PMS1 and PMS2 are related to colon cancer. • Activated Mut H binds to GATC and cleaves unmethylated strand at GATC. (In eukaryotes, the mechanism to distinguish the template strand from the new strand is still unclear) • Distance between the GATC site and the mismatch can be up to 1,000 bp. • Exonucleases remove DNA segment from cleavage site to mismatch. • DNA polymerase III fills gap. Division of Molecular Immunology, Universitätsklinikum Erlangen 59 DNA-Mutations-Modell (CSR) • AID deaminates C to U at accessible sites in S regions BER CSR reduced by 95 % if BER is deficient! nicks • Multiple sites of deamination and UNG/APE-induced nicks nicks • Break processing (Mismatch repair = MMR) MMR • Gaps and DSBs produced • DNA synthesis up to nick • Blunt ends at DSBs • S region ligation Division of Molecular Immunology, Universitätsklinikum Erlangen DSB From: Stavnezer et al., Annu. Rev. Immunol. 2008 Blunt DSB 60 DNA-Mutations-Modell - Hinweise In vitro, AID mutates ssDNA but not RNA Class switch recombination is inhibited (95%) and somatic hypermutation is perturbed in UNG-(BER) deficient mice Division of Molecular Immunology, Universitätsklinikum Erlangen 61 AID – Andere Funktionen? LINE-1 ist in AID-defizienten B-Zellen erhöht (unpublished) AID findet sich in großen RNA/Proteinkomplexen und ko-präzipitiert mit LINE-1 (unpublished) AID blockiert Line1-Retrotrans-Position in HEKZellen (MacDuff… Harris. 2009. NAR 37:6854–1867) AID-defiziente Patienten haben eine höhere Anfälligkeit für Autoimmunsymptome und Leukämien → Wie kann man das erklären? Division of Molecular Immunology, Universitätsklinikum Erlangen 62 AID – Zusammenfassung Activated B cell nucleus M. Metzer Promotion 2010 cytoplasm ADAPTIVE IMMUNITY AID targets Ig locus Cytosine Uracil CSR SHM Formation of 2 antibody repertoire INNATE IMMUNITY ? Host response to viral infection Inhibition of retroelement activity Protection from Autoimmune disease Proliferative disease Division of Molecular Immunology, Universitätsklinikum Erlangen 63 Übersicht: Adaptive humorale Immunität Primärantwort Sekundärantwort IgM Kurzlebige Plasmazelle (IgM) Ag+TH Naive B-Zelle Ag+TH Naive B-Zelle Keimzentrumsreaktion GedächtnisB-Zelle (IgG, IgA, IgE) Keimzentrumsreaktion Log CAK im Serum IgM Langlebige Plasmazelle (IgG, IgA, IgE) Langlebige Plasmazelle (IgG, IgA, IgE) Kurzlebige Plasmazelle (IgM) GedächtnisB-Zelle (IgG, IgA, IgE) Langlebige Plasmazelle (IgG, IgA, IgE) 3 IgG Schneller und mehr !!!! 2 1 20Ag 10Ag IgM IgG IgM t (Tage) 0 4 8 0 4 Division of Molecular Immunology, Universitätsklinikum Erlangen 8 64