Vorlesung Compilertechnik Sommersemester 2008 Zwischencodeerzeugung M. Schölzel Aufgabe der Zwischencodeerzeugung Bereitstellung einer Schnittstelle zum Backend des Compilers. Generierung einer oder mehrerer Zwischenrepräsentation für das Quellprogramm, so dass: alle erforderlichen Informationen erhalten bleiben, die benötigten Informationen auf eine geeignete Weise für den jeweiligen Zweck dargestellt sind, keine oder wenig zielcodespezifische Informationen enthalten sind, sich die Darstellung der Informationen gut in Zielcode/die nächste Zwischencoderepräsentation übersetzen lässt. Art der Zwischenrepräsentation hängt stark vom jeweiligen Zweck ab und kann damit stark variieren. 2 Beispiele für oft genutzte Arten der Zwischencodedarstellung C (erster C++ Compiler, Bison, Flex): Darstellung mehrerer Module, jedes davon besteht aus Funktionen. Syntaxbaum: In der Regel Darstellung eines Moduls mit mehreren Funktionen. Aufrufgraph: Darstellung von Funktionen und der Aufrufbeziehungen. Steuerflussgraph: Repräsentation des Steuerflusses innerhalb einer Funktion. CDFG: Repräsentation einer Funktion und der Datenabhängigkeiten. DAGs: Repräsentation von Datenabhängigkeiten ohne Steuerfluss. 3-Adress-Code: Repräsentation mehrerer Funktionen. SSA-Code: Repräsentation mehrere Funktionen. … 3 Einbettung der Zwischencodeerzeugung in den Compiler Da der Syntaxbaum schon eine Zwischencodeart darstellt, ist die Erzeugung des Syntaxbaums bereits Teil der Zwischencodeerzeugung. Dieser kann in mehreren Schritten vereinfacht werden. Die Darstellung des Zwischencodes nähert sich dabei immer mehr dem gewünschten Zielcode an. Abstraktionsebene Hoch Syntaxbaum Parser Niedrig 3-Adress-Code … t2 := t1 + t0 t3 := a t4 := t2 * t3 … Zwischencodeerzeugung Zielcodeerzeugung 4 3-Adress-Code Folge von 3-Adress-Code-Anweisungen. Anweisungsarten: Binäranweisungen: x := y z Unäranweisungen: x := y Kopieranweisungen: x:=y, x:=k, @x:=y, x:=@y, x:=&y Sprunglabel: Label: Funktionslabel: Function Label: Unbedingte Sprünge: goto index Bedingte Sprünge: if x then Label Funktionsaufrufe: x := call FLabel(y1,…,yn) Funktionsbeendigung: return x, return Castoperationen: x := (Type) y Dabei sind: k Konstante, x, y, yi und z Variablen, wobei Variablen unterschieden werden in: Programmvariablen (lokal, global) Temporäre Variablen (immer lokal) 5 Beispiel: 3-Adress-Code int f(int n){ int fak = 1; while(n > 0) { fak = fak * n; n = n – 1; } return fak; } Function f: t0 := 1 fak = t0 while_0_cond: t1 := n t2 := 0 t3 := t1 > t2 t4 := not t3 if t4 then while_0_end t5 := fak t6 := n t7 := t5 * t6 fak := t7 t8 := n t9 := 1 t10 := t8 – t9 n := t10 goto while_0_cond while_0_end: t11 := fak return t11 6 Speichermodell Temporäre Variablen repräsentieren Werte, die bevorzugt in Prozessorregistern gehalten werden. Programmvariablen repräsentieren Werte, die im Hauptspeicher gehalten werden und damit auch eine Speicheradresse besitzen. Es wird unterschieden zwischen Programmvariablen mit: einer absoluten Adresse (global), einer relativen Adresse (lokal). Parametern einer Funktion und lokalen Variablen einer Funktion, die nicht Parameter sind. Absolute und relative Adressen (möglicherweise als virtuelle Adresse) werden bereits während der Zwischencodeerzeugung festgelegt und zu jeder Variablen gespeichert. 7 Modell für die Zwischencodeerzeugung Die LR(1)-Grammatik der Quellsprache wird für die Zwischencodeerzeugung zu einer attributierten Grammatiken erweitert: S-attributierte Grammatik zum Aufbau des Syntaxbaums: S- oder L-attributierte Grammatik zur Erzeugung von 3-Adress-Code: Jedes Attributvorkommen in einer Regel A0 A1…An speichert die Wurzel des Syntaxbaums, der während der Analyse zu der Ableitung Ai * gehört. Der LR-Parser kann diese Attribute während der Analyse direkt auswerten und berechnet somit den Syntaxbaum. Jeder Knoten erhält ein Attribut, das ein Zwischencodefragment speichern kann. Durch geeignete semantische Funktionen werden diesen Attributen Werte zugewiesen. Konsequenz: An Syntaxbaumknoten, an denen dieselbe Grammatikregel angewendet wurde, wird auch dieselbe Aktion ausgeführt. Weitere Annahme: Hierarchisch organisierte Symboltabellen sind bereits erzeugt. 8 Prinzipien bei der Übersetzung eines Syntaxbaums in 3-Adress-Code Anweisungen ändern Speicherzustände oder den Steuerfluss: Übersetzung in entsprechende Zwischencodebefehle. Übersetzung von Ausdrücken aus der Quellsprache: Bedeutung ist ein Wert. Erzeugung von Zwischencode mit derselben Bedeutung. Berechnung des Wertes in eine temporäre Variable. Ausdrucksanweisungen ändern Speicherzustände und haben einen Wert als Bedeutung. Syntaxbaumknoten, die zu einem Ausdruck gehören können, speichern neben dem Zwischencodefragment auch die temporäre Variable, in die der Zwischencode den Wert berechnet. Attribute für Syntaxbaumknoten, die zu einem Ausdruck gehören können: (ir,t): ir Speichert den 3-Adress-Code und t die Zwischencodevariable, in die durch ir der Wert des Ausdrucks berechnet wird. iVal, fVal sind synthetisiertes Attribute an INTLIT bzw. FLOATLIT, deren Wert durch den Scanner gesetzt wird. Bereits vorhanden: t speichert den Typ des Ausdrucks. 9 Hilfsfunktionen, für die Übersetzung in 3Adress-Code getNextTemp(): liefert einen neuen, noch nicht benutzten Namen für eine temporäre Variable zurück. getNextWhile(): liefert eine neue, noch nicht benutzten Nummer für eine while-Schleife zurück. getNextIf(): liefert eine neue, noch nicht benutzten Nummer für eine ifAnweisunge zurück. uniqueName(v): Liefert für die Programmvariable v ihren eindeutigen Namen durch Suchen in den hierarchisch organisierten Symboltabellen. Eindeutiger Name entsteht z.B. durch Erweiterung des Variablennamens mit der lexikografischen Nummer der Symboltabelle. nextGlobalAdress: Nächste freie globale Adresse (relativ zu einer virtuellen Basis). Kann bereits beim Aufbau der globalen Symboltabelle festgelegt werden. nextLocalAdress: Nächste freie lokale Adresse (relativ zu einer virtuellen Basisadresse). Kann lokal für jede Symboltabelle zu einer Funktion festgelegt werden. 10 Übersetzung von Zuweisungen und Ausdrücken ir[Expr,6],0 := ("t:=a", t), ir[Expr,8],0 := ("t:=iVal1", t), ir[Expr,9],0 := ("t:=fVal1", t), ir[Expr,7],0 := (ir "t:=(type)t'", t), ir[Expr,5],0 := ir2 ir[Expr,1],0 := (irl irr "t:=tl + tr", t), ir[Expr,2],0 := (irl irr "t:=tl - tr", t), ir[Expr,3],0 := (irl irr "t:=tl * tr", t), ir[Expr,4],0 := (irl irr "t:=tl / tr", t), id[LVal,1],0 := id1 ir[Assign,1],0 := ir " t:=t' ", wobei t := getNextTemp() und a = uniqueName(id1) wobei t := getNextTemp() wobei t := getNextTemp() wobei t := getNextTemp(), ir4 = (ir,t'), type = t2 wobei t := getNextTemp(), ir1 = (irl,tl) und ir3 = (irr,tr) wobei t := getNextTemp(), ir1 = (irl,tl) und ir3 = (irr,tr) wobei t := getNextTemp(), ir1 = (irl,tl) und ir3 = (irr,tr) wobei t := getNextTemp(), ir1 = (irl,tl) und ir3 = (irr,tr) wobei t = uniqueName(id1), ir3 = (ir,t') 11 Beispiel Syntaxbaum für den Ausdruck c := a+2*b: Quelltextfragment: Assign ir= t0:=a$0 { t1:=2 t2:=b$01 t3:=t1*t2 t4:=t0+t3 c$01:=t4 int a; … { int b,c; … c := a+2*b; … } … LVal id=c$01 IDENT id=c } Expr Expr ir=(t0:=a$0,t0) ir=( t0:=a$0 t1:=2 t2:=b$01 t3:=t1*t2 t4:=t0+t3,t4) Expr Symtab0 Name UniquName a a$0 Typ Scope Adresse int lokal 0 IDENT id=a ir=( t1:=2 t2:=b$01 t3:=t1*t2,t3) Expr ir=(t1:=2,t1) Expr ir=(t2:=b$01,t2) INTLIT iVal=2 IDENT id=b Symtab0.1 Name UniquName Typ Scope Adresse b b$01 int lokal -4 c c$01 int lokal -8 12 Übersetzung von Anweisungsfolgen "BlBegin_i:" ir1 "BlEnde_i", wobei i = getNextBlock(). Einfügen von Labeln, um an den Blockgrenzen auch Basisblöcke zu abzuschließen. Für die übrigen Alternativen 2,…,k zu Stmt: ir[Stmt,k] := ir1, für 1 < k. ir[StmtL,1] := ir1 ir3 ir[StmtL,2] := ir[Block,1] := ir3 ir[Program,1] := ir1 ir[Stmt,1] := 13 Beispiel Syntaxbaum für das Programm: { Stmt1; { Stmt21; Stmt12; }; Stmt3; Stmt4; } Program ir= 1 BlBegin_1: 2122 BlEnd_1:34 Block { DeclL StmtL ir= BlBegin_1: BlEnd_1: 1 21 22 3 4 Stmt1 ir=1 ; } StmtL ir=BlBegin_1: 2122 BlEnd_1:34 Stmt2 ir=BlBegin_1: 2122 BlEnd_1: Block ir= 21 22 { DeclL ; StmtL ir= 3 4 Stmt3 ; ir=3 StmtL ir= 21 22 } StmtL ir= 4 Stmt4 ; ir=4 Stmt21 ir= 21 StmtL ; StmtL ir= 22 Stmt22 ir=22 ; StmtL 14 Erweiterung der Grammatik um Schleifen und bedingte Verzweigungen Program Block DeclL Type VarL StmtL Stmt Assign LVal Expr ::= ::= ::= ::= ::= ::= ::= ::= ::= ::= While If Cond ::= ::= ::= Block { DeclL StmtL } Type VarL ; DeclL | TYPELIT IDENT , VarL | IDENT Stmt ; StmtL | Block | Assign | While | If LVal = Expr IDENT Expr + Expr | Expr - Expr | Expr * Expr | Expr / Expr | ( Expr ) | IDENT | ( Type ) Expr | INTLIT | FLOATLIT while Cond Block if Cond then Block else Block … 15 Übersetzung einer While-Anweisung ir[While,1],0 := "while_i_cond:" irc "tcn:= not tc" "if tcn then goto while_i_end" irb "goto while_i_cond" "while_i_end:", wobei: ir2 = (irc,tc), ir3 = irb, tcn = getNextTemp(), i = getNextWhile(). 16 Übersetzung einer if-Anweisung ir[If,1],0 := (irc "if tc then goto then_i" irb2 "goto if_i_end" "then_i:" irb1 "if_i_end:"), wobei: ir2 = (irc,tc), ir4 = irb1, ir6 = irb2, i = getNextIf(). 17 Typkonstruktoren Es sei B = {int, float} die Menge der Basisdatentypen. Zu jedem Programm gehört eine Menge T von Typen mit B T, die auch selbst definierte Datentypen enthält. Es existieren die Typkonstruktoren: Für T T stehen folgende Hilfsfunktionen bereit: array(T, n), wobei T T ein Datentyp ist und n , struct(T1 k1,…,Tn kn). sizeof(T): Speicherbedarf des Datentyps T in Byte. typeOfElem(T) = T', falls T = array(T', n). typeOfElem(T,k) = Ti, falls T = struct(T1 k1,…,Tn kn) und ki = k. Für einen Variablenbezeichner a: lookUp(a) = T, falls T der Datentyp des Bezeichners a ist. 18 Deklarationen eigener Datentypen Grammatik erweitert um Deklaration eigener Datentypen: Program TypeDeclL TypeDecl NewType ::= ::= ::= ::= newTypeL Block ::= ::= TypeDeclL Block TypeDecl ";" TypeDeclL | IDENT = NewType IDENT | "array" [INTLIT] "of" NewType | "struct" { NewTypeL } NewType IDENT| NewType IDENT , NewTypeL { DeclL StmtL } Beispiel zur Deklaration eigener Datentypen: myint a1int a2int t = = = = int; array [10] of int; array [10] of array [5] of int; array [20] of struct {int a, a2int b}; Beim Parsen erzeugte Datentyptabelle: Typbezeichner Typkonstruktor Größe in Byte myint int 4 a1int array (int, 10) 40 anonym_1 array (int, 5) 20 a2int array (anonym_1,10) 200 anonym_2 struct (int a, a2int b) 204 t array (anonym_2,20) 4080 19 Attributierte Grammatik zur Übersetzung von Struktur- und Feldzugriffen Stmt Assign LVal Expr ::= ::= ::= ::= While Q ::= ::= Block | Assign | While | If LVal = Expr IDENT Expr + Expr | Expr - Expr | Expr * Expr | Expr / Expr | ( Expr ) | IDENT | ( Type ) Expr | INTLIT | FLOATLIT | IDENT Q while Cond Block [ Expr ] Q | . IDENT Q | [ Expr ] | . IDENT 20 Beispiel Für Felder und Strukturen sind folgende Informationen Im Syntaxbaum annotiert: In der Regel Expr IDENT Q ist t2 = array(T,n), falls lookUp(id1) = array(T,n) ist. In der Regel Expr IDENT Q ist t2 = struct(T1 n1,…,Tm kn), falls lookUp(id1) = struct(T1 n1,…,Tm kn) ist. In der Regel Q [ Expr ] Q ist t4 = T', falls t0 = array(T',n). In der Regel Q . IDENT Q ist t3 = Ti, falls t0 = struct(T1 n1,…,Tm kn) und id2 = ki. Beispiel: Expr Deklaration: t i; Zugriff: i[15].b[8][4]; IDENT id=i t=array(anonym_2,20) [ Expr ] INTVAL iVal=15 . Typbezeichner Typkonstruktor myint int a1int array (int, 10) anonym_1 array (int, 5) a2int array (anonym_1,10) anonym_2 struct (int a, a2int b) t array (anonym_2,20) Q t=struct(int a, a2int b) IDENT id=b Q t=array(anonym_1,10) [ Expr ] INTVAL iVal=8. Q t=array(int, 5) Q [ Expr ] INTVAL iVal=4. 21 Übersetzung von Feld- und Strukturzugriffen in Ausdrücken (1) ir[Expr,10],0 := ( iro "tb:=&id1" "tp:=tb+to" "t:=@tp", t), wobei (iro,to) = ir2, tb := getNextTemp(), tp := getNextTemp(), t := getNextTemp(). ( ire "ts:=s" "to:=ts*te", to), wobei ir[Q,3],0 := Q ::= [ Expr ] ir2 = (ire,te) t0 = array(T',n) und s = sizeof(T') ts := getNextTemp() to := getNextTemp() ir[Q,4],0 := ( "to:=off", to), wobei i- 1 Expr ::= IDENT Q off = å Q ::= . IDENT sizeof (T, ifalls ) t0 = struct(T1 n1,…,Tm nm) und id2 = ni k= 1 to := getNextTemp(). 22 Übersetzung von Feld- und Strukturzugriffen in Ausdrücken (2) ir[Q,1],0 := ir2 = (ire,te), ir4 = (irlo,tlo), t0 = array(T',n) und s = sizeof(T'), ts := getNextTemp(), tno := getNextTemp(), to := getNextTemp(). ir[Q,2],0 := (ire irlo "ts:=s" "to:=ts*te" "tno:=to+tlo", tno), wobei (irlo "to:=off" "tno:=to+tlo", tno), wobei Q ::= [ Expr ] Q Q ::= . IDENT Q off = offset(ni), falls t0 = struct(T1 n1,…,Tm nm) und id2 = ni, ir3 = (irlo,tlo), to := getNextTemp(), tno := getNextTemp(). 23 Beispiel ir=( t0:=15 t1:=8 t2:=4 t3:=4 //sizeof(int) t4:=t3*t2 t5:=20 t6:=t5*t1 t7:=t6+t4 t8:=4 //offset b t9:=t8+t7 t10:=204 t11:=t10*t0 t12:=t11+t9 t13:=&i t14:=t13+t12, t15:=@t14,t15) Expr IDENT id=i [ Expr ] t=array(anonym_2,20) ir=( t0:=15,t0) INTVAL iVal=15 . ir=( t0:=15 t1:=8 t2:=4 t3:=4 //sizeof(int) t4:=t3*t2 t5:=20 //sizof(anonym_1) t6:=t5*t1 t7:=t6+t4 t8:=4 //offset b t9:=t8+t7 t10:=204 //sizeof(anonym_2 t11:=t10*t0 t12:=t11+t9,t12) Q t=struct(int a, a2int b) IDENT id=b Q t=array(anonym_1,10) Q [ Expr ] ir=( t1:=8,t1) t=array(int, 5) Q INTVAL iVal=8. ir=( t1:=8 t2:=4 t3:=4 //sizeof(int) t4:=t3*t2 t5:=20 //sizof(anonym_1) t6:=t5*t1 t7:=t6+t4 t8:=4 //offset b t9:=t8+t7,t9) ir=( t2:=4 t3:=4 //sizeof(int) t4:=t3*t2,t4) [ Expr ] ir=( t1:=8 t2:=4 t3:=4 //sizeof(int) t4:=t3*t2 t5:=20 //sizof(anonym_1) t6:=t5*t1 t7:=t6+t4,t7) ir=( t2:=4,t2) INTVAL iVal=4. 24 Grammatik zur Übersetzung von Funktionsaufrufen und -deklarationen Program FuncL ::= ::= FormalPram::= Block ::= TypeDeclL FuncL IDENT IDENT ( ) Block | IDENT IDENT ( FormalParam ) Block IDENT IDENT , FormalParam | IDENT IDENT { DeclL StmtL } … Expr ::= ParamL While Q ::= ::= ::= Expr + Expr | Expr - Expr | Expr * Expr | Expr / Expr | ( Expr ) | IDENT | ( Type ) Expr | INTLIT | FLOATLIT | IDENT Q | IDENT ( ParamList ) | IDENT ( ) Expr | Expr , ParamL while Cond Block [ Expr ] Q | . IDENT Q | [ Expr ] | . IDENT 25 Übersetzung einer Deklaration Eine Funktion funcDecl speichert die Signaturen der im Programm deklarierten Funktionen: Rückgabetyp, Name, Typen der formalen Parameter. Eine Deklaration der Art t f(t1 i1,…,tn in) im Programm führt zu einem Eintrag (f, (t, t1, …,tn)) in funcDecl. Leicht durch geeignete Attribute zu realisieren. 26 Übersetzung von Funktionsaufrufen ParamL erhält ein Attribut pl zur Speicherung der aktuellen Parameterliste und ein Attribut ir zur Speicherung des Zwischencodes, der bei der Übersetzung der Ausdrücke in der Parameterliste entstanden ist: pl[ParamL,1],0 := te und ir[ParamL,1],0 := ire, wobei (ire,te) = ir1. pl[ParamL,2],0 := (te ,pl3) und ir[ParamL,2],0 := ire ir3, wobei (ire,te) = ir1. Expr ir=( ' tr := call f(t',t), tr) IDENT id=f ( ParamList pl=(t', t) ) ir= ' Exprir=(',t') , , ParamList pl=t ir= Expr ir=(,t) 27 Basisblöcke Ein Basisblock ist eine Folge maximaler Länge von Anweisungen im 3Adress-Code, für die gilt: Nur die erste Anweisung darf ein Label sein (d.h., dass ein Sprung in einen Basisblock nur zu seiner ersten Anweisung führen kann) und nur die letzte Anweisung darf eine Sprunganweisung sein (d.h., dass alle Anweisungen des Basisblocks ausgeführt werden, wenn die erste Anweisung ausgeführt wird). Anmerkung: Unterprogrammaufrufe können als k-näre Operation betrachtet werden, falls sie keine Seiteneffekte verursachen. return-Anweisungen sind Sprunganweisungen. Der erzeugte unoptimierte Zwischencode hat folgende nützlichen Eigenschaften: Vor jeder Benutzung einer temporären Variablen wird diese im selben Basisblock beschrieben. Nachdem eine temporäre Variable beschrieben wurde, wird sie genau einmal im selben Basisblock benutzt. Programmvariablen treten nur in Anweisungen der Art x := y auf, wobei entweder x oder y eine Programmvariable ist. Es ist eine totale Ordnung für die Anweisungen innerhalb eines Basisblocks vorgegeben. 28 DFGs zur Repräsentation von Basisblöcken Totale Ordnung einer Anweisungsfolge im 3-Adress-Code wird zu einer partiellen Ordnung abgeschwächt. G = (N, E, A, ord, label) sei ein gerichteter azyklischer Graph (DAG): Knoten repräsentieren Operationen in den 3-Adress-CodeAnweisungen. Kanten in E repräsentieren durch Variablen modellierte Datenabhängigkeiten: Kanten in A repräsentieren durch Speicherzugriffe entstehende Datenabhängigkeiten: Lese-Schreib-Abhängigkeit (input-dependence), Schreib-Lese-Abhängigkeit (anti-dependence), Schreib-Schreib-Abhängigkeit (output-dependence) ord : E modelliert die Reihenfolge der eingehenden Kanten (Operanden) eines Knotens. Bei ord(e) < ord(e') ist e linker und e' rechter Operand. label : N {const k, store, load, write a, read a, | k , a +, ist Operation im 3-Adress-Code} ist eine Beschriftung der Knoten mit Operationen. 29 Konstruktion eines DAGs zu einem Basisblock mit Eliminierung gemeinsamer Teilausdrücke Eingabe: Basisblock als Folge von 3-Adress-Code-Anweisungen ir0,…,irn Ausgabe: DAG (N, E, A, ord, label) Algorithmus: N := , E := , A := , ord := , label := S := // Enthält für die aktuelle Situation bei der Übersetzung für jede Variable // des Zwischencodes u.a. den Knoten im DAG, der ihren Wert berechnet for i = 0 to n do switch(iri) case "x := y z": TranslateBinStmt(iri); break; case "x := y : TranslateUnaStmt(iri); break; case "x := y" : TranslateCopy(iri); break; case "@x := y" : TranslateStore(iri); break; case "x := @y" : TranslateLoad(iri); break; end od Für jedes (a,n,W) S mit a ist Programmvariable erzeuge Knoten m mit label(m) = write a, N := N {m}, E := E {(n,m)}, A := A {(h,m) | label(h) = read a oder label(h) = load oder label(h) = store} Hilfsfunktionen: findVar(var) if (var,n,x) S then return n else return 0 fi findLabel(label,l,r) if n N mit Beschriftung label und ((l,n) E oder l = 0) und ((r,n) E oder r = 0) then return n else return 0 fi 30 Übersetzung von Kopieranweisungen TranslateConst(x := k) if findLabel(const k,0,0) = 0 then Erzeuge Knoten n mit label(n) = const k N := N {n} fi n := findLabel(const k,0,0) S := S {(x,n,W)} TranslateCopy(x := y) if findVar(y) = 0 then Erzeuge Knoten n mit label(n) = read y N := N {n} S := S {(y,n,R)} fi l := findVar(y) S := S – {(x,n,k) | n N und k {R,W}) S := S {(x,l,W)} // passiert nur, wenn y Programmvariable 31 Übersetzung binärer und unärer Operationen TranslateUnaStmt(x := y) l := findVar(y) // immer erfolgreich if findLabel(, l) then m := n else Erzeuge neuen Knoten m mit label(m) = N := N {m} E := E {(l,m)} fi S := S – {(x,n,k) | n N und k {R,W}) S := S {(x,m,W)} TranslateBinStmt(x := y z) l := findVar(y) r := findVar(z) if n N mit label(n) = und (l,n) E und (r,n) E und not ((r,n) < (l,n)) then m := n else Erzeuge einen Knoten m mit Beschriftung N := N {m} E := E {(l,m),(r,m)} ord((l,m)) := 0; ord((r,m)) := 0, falls kommutativ, sonst ord((r,m)) := 1 fi S := S – {(x,n,k) | n N und k {R,W}) S := S {(x,m,W)} 32 Beispiel 1 Beispiel: a = 2*(b+a-2) * (b+a) t0 := 2 t1 := b t2 := a t3 := t1+t2 t4 := 2 t5 := t3 – t4 t6 := t0 * t5 t7 := b t8 := a t9 := t7 + t8 t10 := t6 * t9 a := t10 read a 3 read b 2 const 2 1 S (t0,1,W) (b,2,R) + 4 5 (t2,3,W) (t3,4,W) * 6 * 7 write a (t1,2,W) (a,3,R) 8 (t4,1,W) (t5,5,W) (t6,6,W) (t7,2,W) (t8,3,W) (t9,4,W) (t10,7,W) (a,7,W) 33 Übersetzung von Speicherzugriffen TranslateLoad(x := @y) l := findVar(y) Erzeuge neuen Knoten n mit label(n)=load N := N {n} E := E {(l,n)} S := S – {(x,n,k) | n N und k {R,W}) S := S {(x,n,W)} A := A {(k,n) | k N und label(k) = store oder label(k) = write a} TranslateStore(@x := y) l := findVar(x) r := findVar(y) Erzeuge neuen Knoten n mit label(n)=store N := N {n} E := E {(l,n),(r,n)}; ord((l,n)):=0; ord((r,n)):=1; A := A {(k,n) | k N und label(k)=store oder label(k)=load oder label(k) = read a} 34 Beispiel 2 Beispiel: a[i] = b[i] + a[j] t0 := i t1 := 4 t2 := t1 * t0 t3 := &b t4 := t3 + t2 t5 := @t4 t6 := j t7 := 4 t8 := t7 * t6 t9 := &a t10 := t9 + t8 t11 := @t10 t12 := t5 + t11 t13 := i t14 := 4 t15 := t14 * t13 t16 := &a t17 := t16 + t15 @t17 := t12 read i 1 read j 7 const 4 2 * 3 const &b 4 + 5 6 * 8 + 13 load + 10 11 load + 12 14 store const &a 9 S (i,1,R) (t0,1,W) (t1,2,W) (t2,3,W) (t3,4,W) (t4,5,W) (t5,6,W) (j,7,R) (t6,7,W) (t7,2,W) (t8,8,W) (t9,9,W) (t10,10,W) (t11,11,W) (t12,12,W) (t13,1,W) (t14,2,W) (t15,3,W) (t16,9,W) (t17,13,W) 35 Rücktransformation (List-Scheduling) Transformation eines DAGs (N, E, A, ord, label) in 3-Adress-Code ist trivial: Eine Menge ready speichert Knoten, deren Eingabedaten berechnet wurden. Eine Menge scheduled speichert die geplanten Knoten. Initial: scheduled := Genau die Kanten e E mit demselben Quellknoten werden mit derselben temporären Variablen beschriftet. ready = {n | n N und m (N – scheduled): (m,n) E und (m,n) A}. Für einen Knoten n ready wird die zugehörige 3-Adress-Code-Anweisung mit den Operanden an den ein- und ausgehenden Kanten von n erzeugt und scheduled := scheduled {n} gesetzt. Der letzte Schritt wird solange wiederholt, bis scheduled = N. Konsequenz: Variablen werden mehrfach verwendet. Reihenfolge der Operationen ist nur partiell festgelegt und kann durch die Auswahl des nächsten Knotens aus ready beeinflusst werden (evtl. Nutzung einer Prioritätsfunktion). 36 Steuerflussgraph Eine Folge von 3-Adress-Code-Befehlen sei in eine Menge von Basisblöcken b1,…bn zerlegt. Ein Basisblock bj ist Steuerflussnachfolger eines Basisblocks bi, gdw. Ein Steuerflussgraph (N,E,q,s) ist ein gerichteter Graph: (die letzte Anweisung in bi kein Sprungbefehl oder ein bedingter Sprungbefehl ist und im 3-Adress-Code die erste Anweidung von bj auf die letzte Anweisung von bi folgt) oder die letzte Anweisung in bi ein Sprungbefehl mit dem Ziellabel x ist und die erste Anweisung in bj das Label x ist. dessen Knoten Basisblöcke repräsentieren und der eine Kante vom Knoten n zum Knoten m besitzt, falls m Steuerflussnachfolger von n ist. q,s N sind ausgezeichnete Startknoten / Endknoten. Ein Steuerflussgraph enthält alle möglichen Abarbeitungspfade innerhalb einer Prozedur. Wird verwendet zur Sammlung von Informationen im Programm, um diese für Optimierungszwecke zu nutzen. 37 Statischer Aufrufgraph In einem statischen Aufrufgraphen (N,E,label) repräsentieren die Knoten die Funktionen des Programms. Eine gerichtete Kante von einem Knoten n zu einem Knoten m existiert genau dann, wenn die Funktion f die Funktion f' aufruft und label(n) = f und label(m) = f'. Verwendung zur interprozeduralen Datenflussanalyse und Programmoptimierung. 38 SSA-Code (Static-Single-Assignment) SSA-Code ist 3-Adress-Code mit folgenden Eigenschaften bzw. Erweiterungen: Eigenschaft: Jeder Variablen wird statisch nur einmal ein Wert zugewiesen. Erweiterung: Es gibt eine Operation x := (y1,…yn), die, abhängig vom Programmablauf, der zu dieser Operation geführt hat, der Variablen x den Wert einer Variablen yi zuordnet. Datenabhängigkeiten sind direkt erkennbar, da jede Variablenverwendung genau eine Definition besitzt. a := 2 b := a a:= 1 a0 := 2 b := a0 a1:= 1 a:= 2 d:= a Steuerflussgraph mit 3-Adress-Code a2:= 2 d:= (a1,a2) Steuerflussgraph mit SSA-Code 39 Ende der Zwischencodeerzeugung Weiter zur Zielcodeerzeugung