Lineare Algebra – Rechnen mit Matrizen Beispiel 1 Ein Angestellter kostet 7.500 Euro Lohn/Monat Wie hoch sind die Lohnkosten für 5 Angestellte? ==> 5 · 7.500 Euro = 37.500 Euro Lineare Zusammenhänge sind in der Wirtschaft sehr häufig anzutreffen. Lineare Algebra – Rechnen mit Matrizen Beispiel 2 Für die Produktion eines Bauteiles muß eine Maschine 36 Sekunden laufen. Wie lange ist die Laufzeit bei der Produktion von 1000 Bauteilen? ==> 1.000 · 36 Sekunden = 36.000 Sekunden = 10 Stunden Oder - etwas komplizierter: Wieviel Bauteile können auf 10 Maschinen in 8 Arbeitsstunden produziert werden? 10 (Maschinen)·8 (Stunden/Maschine)· 36 = 8000 (Bauteile) 3600 (Sekunden/Bauteil) (Sekunden/Stunde) Lineare Algebra – Rechnen mit Matrizen Matrizen: Einführendes Beispiel Gegeben sei der folgende Sachverhalt: Ein Betrieb produziert 3 Produkte P1, P2 und P3 auf 2 Maschinen M1 und M2. Produkt P1 muss 1 h auf Maschine M1 und 2 h auf Maschine M2 laufen. Produkt P2 muss 3 h auf Maschine M1 und 1 h auf Maschine M2 laufen. Produkt P3 muss 1,5 h auf Maschine M1 und nicht auf Maschine M2 laufen. Aufgabe: Schreiben Sie diesen Sachverhalt übersichtlich auf! Lineare Algebra – Rechnen mit Matrizen Matrizen: Einführendes Beispiel Ein Betrieb produziert 3 Produkte P1, P2 und P3 auf 2 Maschinen M1 und M2. Die Laufzeiten (in Stunden) entnehme man folgender Tabelle: Produkt 1 Produkt 2 Produkt 3 Maschine 1 1 3 1,5 Maschine 2 2 1 0 Lineare Algebra – Rechnen mit Matrizen Matrizen: Einführendes Beispiel Die Maschinenlaufzeiten sind also in einer Tabelle zusammengefasst. Entfernt man die Beschriftung, so sieht die Tabelle wie folgt aus: 1 3 1,5 2 1 0 Ein solches, rechteckiges Zahlenschema nennen wir in der Mathematik eine Matrix. Es wird dabei etwas anders hingeschrieben. 1 3 1, 5 2 1 0 Lineare Algebra – Rechnen mit Matrizen Matrizen: Einführendes Beispiel Wenn wir mit Matrizen in der Anwendung hantieren, dürfen wir die Herkunft (die “Beschriftung”) nicht vergessen, da sie uns angibt, was die Zahlen in der Matrix zu bedeuten haben. 1 3 1, 5 2 1 0 Eine Matrix ohne Interpretation ist nichtssagend! Lineare Algebra – Rechnen mit Matrizen Matrizen: Einführendes Beispiel Jeder Spalte steht für eine Maschine! (Es gibt 2 Maschinen) 1 Jeder Zeile steht für ein Produkt! 3 (Es gibt 3 Produkte) 1, 5 2 1 0 Die Einträge geben die Maschinenlaufzeiten der Produkte an! Lineare Algebra – Rechnen mit Matrizen Wichtige Eigenschaften einer Matrix Spaltenanzahl (hier 2) Zeilenanzahl (hier 3) 1 3 1, 5 2 1 0 Wertebereich der Einträge (auch Koeffizienten genannt) (hier: nicht-negative Zahlen) Lineare Algebra – Rechnen mit Matrizen Definition einer Matrix Das rechteckige Zahlenschema a 1 ,1 a 2 ,1 a m ,1 a1, 2 a 2,2 a m ,2 a1, n a 2 ,n a m , n heißt Matrix mit m Zeilen und n Spalten, oder m × n Matrix (Mehrzahl: Matrizen) Die Zahlen in dem Schema heißen Einträge, Elemente oder Koeffizienten der Matrix. Lineare Algebra – Rechnen mit Matrizen Beispiele für Matrizen 1 2 7 8 4 0 3 0 0 2 0 3 2 3 42 5 6 3 ist eine 3 ×5 Matrix mit nicht0 negativen, ganzen Zahlen 1 ist eine 1 × 4 Matrix mit positiven, ganzen Zahlen ist eine 1 × 1 Matrix Lineare Algebra – Rechnen mit Matrizen Spezielle Matrizen: Vektoren Definition: Eine Matrix mit nur einer Zeile oder Spalte wird auch Vektor genannt. 1 0 2 3 ist ein Spaltenvektor mit 4 Komponenten (0,5 3 2 1,1 -2) ist ein Zeilenvektor mit 5 Komponenten Lineare Algebra – Rechnen mit Matrizen Beispiele Der Wertebereich der Einträge ist wichtig und sollte stets im Auge behalten werden! Beispiel 1 Die folgende Matrix gebe für 2 Abteilungen einer Firma an, wieviel Arbeiter, Angestellte und Manager dort beschäftigt sind: Arbeiter Angestellte Manager Abteilung 1 Abteilung 2 20 35 12 14 2 3 Die Einträge der Matrix müssen positive, ganze Zahlen sein! Es gibt weder halbe, noch negative Arbeiter! Lineare Algebra – Rechnen mit Matrizen Beispiele Der Wertebereich der Einträge ist wichtig und sollte stets im Auge behalten werden! Beispiel 2 Die folgende Matrix gebe für 2 Produkte einer Firma an, wie diese prozentual aus 3 Rohstoffen zusammengesetzt sind Rohstoff 1 Produkt 1 Produkt 2 50% 10% Rohstoff 2 30% 85% Rohstoff 3 20% 5% Die Einträge der Matrix müssen Prozentwerte zwischen 0% und 100% sein! Ein Produkt kann nicht aus 150% eines Rohstoffs bestehen. Lineare Algebra – Rechnen mit Matrizen Beispiele Der Wertebereich der Einträge ist wichtig und sollte stets im Auge behalten werden! Beispiel 3 Die folgende Matrix gebe für 2 Firmen, wieviel Gewinn oder Verlust sie in drei Geschäftsjahren gemacht haben (in Mio. DM): 1994 Firma 1 Firma 2 11,5 20,8 1995 8,8 22,9 1996 1,24 18,6 Die Einträge der Matrix sind beliebige reelle Zahlen, positiv oder negativ! Verluste/Gewinne können beliebige Werte annehmen! Lineare Algebra – Rechnen mit Matrizen Besondere Matrizen Die Einheitsmatrix Definition 3 Eine quadratische Matrix, in der alle Einträge auf der Hauptdiagonale Eins sind und alle anderen Einträge Null, heißt Einheitsmatrix 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 Lineare Algebra – Rechnen mit Matrizen Besondere Matrizen Die Diagonalmatrix Definition 4 Eine Matrix, in der alle Einträge außer der Hauptdiagonale Null sind, heißt Diagonalmatrix 4 0 0 0 0 0 0 6 0 0 7 0 0 0 0 0 0 0 8 0 Lineare Algebra – Rechnen mit Matrizen Besondere Matrizen Die Nullmatrix Definition 5 Eine Matrix, in der alle Einträge Null sind, heißt Nullmatrix. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lineare Algebra – Rechnen mit Matrizen Besondere Matrizen Drei Automobilfirmen werden von 6 Zulieferern mit Bauteilen beliefert. Die folgende Matrix gibt an, wieviel die Autofirmen an die Zulieferer pro Quartal zahlen: Zulieferer 1 Autofirma 1 Autofirma 2 Autofirma 3 1234 2350 1005 Zulieferer 2 Zulieferer 3 Zulieferer 4 Zulieferer 5 800 8123 5988 120 1500 7023 10235 240 1003 6523 4468 300 Zulieferer 6 352 752 1200 Frage: Wie sieht die Matrix aus, die beschreibt, wieviel die Zulieferfirmen von den Autofirmen erhalten? “Autofirma 1 zahlt pro Quartal 120 TDM an Zulieferer 5” “Zulieferer 5 erhält pro Quartal 120 TDM von Autofirma 1” Lineare Algebra – Rechnen mit Matrizen Besondere Matrizen Die Matrix aus Sicht der Autofirmen (“Wieviel zahlen wir an die Zulieferer?”) Zulieferer 1 Autofirma 1 Autofirma 2 Autofirma 3 1234 2350 1005 Zulieferer 2 Zulieferer 3 Zulieferer 4 Zulieferer 5 800 8123 5988 120 1500 7023 10235 240 1003 6523 4468 300 Zulieferer 6 352 752 1200 Lineare Algebra – Rechnen mit Matrizen Besondere Matrizen Die Matrix aus Sicht der Zulieferer (“Wieviel bekommen wir von den Autofirmen?”) Autofirma 1 Zulieferer 1 Zulieferer 2 Zulieferer 3 Zulieferer 4 Zulieferer 5 Zulieferer 6 1234 800 8123 5988 120 352 Autofirma 2 Autofirma 3 2350 1005 1500 1003 7023 6523 10235 4468 240 300 752 1200 Lineare Algebra – Rechnen mit Matrizen Besondere Matrizen Zulieferer 1 Autofirma 1 Autofirma 2 Autofirma 3 Zulieferer 2 1234 2350 1005 Zulieferer 3 Zulieferer 4 Zulieferer 5 800 8123 5988 120 352 1500 7023 10235 240 752 1003 6523 4468 300 1200 Zulieferer 6 Die Matrix wird durch “Kippen” zu folgender Matrix: Lineare Algebra – Rechnen mit Matrizen Besondere Matrizen “Aus Zeilen werden Spalten, aus Spalten werden Zeilen.” Autofirma 1 Zulieferer 1 Zulieferer 2 Zulieferer 3 Zulieferer 4 Zulieferer 5 Zulieferer 6 1234 800 8123 5988 120 352 Autofirma 2 Autofirma 3 2350 1005 1500 1003 7023 6523 10235 4468 240 300 752 1200 Lineare Algebra – Rechnen mit Matrizen Besondere Matrizen Die transponierte Matrix Definition Die Matrix, die entsteht, wenn wir in einer gegebenen Matrix A die Zeilen als Spalten (bzw. die Spalten als Zeilen) schreiben, heißt die transponierte Matrix AT. Beispiel Wie sieht die Transponierte der folgenden Matrix aus? 1 3 A 5 7 2 4 6 8 A T 1 3 5 7 2 4 6 8 Lineare Algebra – Rechnen mit Matrizen Besondere Matrizen 1 3 A 5 7 Die transponierte Matrix 2 6 8 4 A T 1 2 3 5 7 4 6 8 Frage: Was erhält man, wenn man AT transponiert? (A T ) T 1 3 5 7 2 4 A 6 8 Feststellung Für alle Matrizen A gilt: (AT)T = A (Zweifaches Transponieren liefert die Ausgangsmatrix) Lineare Algebra – Rechnen mit Matrizen Besondere Matrizen Die transponierte Matrix Frage: Wie sieht die Transponierte der folgenden Matrix aus? 1 A 0 3 0 3 2 7 7 8 1 T A 0 3 0 2 7 3 7 8 Man sieht: Es gilt A = AT Definition Ist eine Matrix A gleich ihrer transponierten Matrix AT , so heißt A eine symmetrische Matrix Feststellung Nur quadratische Matrizen können symmetrisch sein. Lineare Algebra – Rechnen mit Matrizen Erste Zusammenfassung Um Zusammenhänge zwischen Komponenten übersichtlich aufzuschreiben, eignen sich Tabellen besonders gut. Beispiele dafür sind: - Laufzeiten von Produkten auf Maschinen - Lieferkosten von Anbietern zu Abnehmern - Entfernungen zwischen Produktionsstätten - Zusammensetzung von Produkten aus Rohstoffen - Kosten für verschiedene Posten in Abteilungen - usw. Lineare Algebra – Rechnen mit Matrizen Erste Zusammenfassung Produkte setzen sich auf Rohstoffen zusammen: Eine Firma stellt 3 Produkte her: Gummibärchen, Schokolade und Hustenbonbons. In der folgenden Tabelle ist angegeben, wie sich die Produkte prozentual aus den Rohstoffen Zucker, Fett, Gelatine und Zusatzstoffen zusammensetzen: Zucker Fett Gelatine Zusätze Gummibären 40% 5% 50% 5% Schokolade 40% 50% 0% 10% Hustenbonbons 90% 0% 5% 5% Lineare Algebra – Rechnen mit Matrizen Erste Zusammenfassung •Die mathematische “Modellierung” einer Tabelle ist die Matrix (Plural: Matrizen) •Eine Matrix ist ein rechteckiges Zahlenschema, die Zahlen in der Matrix heißen Einträge •Matrizen werden beschrieben durch: - Anzahl Zeilen - Anzahl Spalten - Art der Einträge (reelle Zahlen, ganze Zahlen, positive Zahlen, etc.) •Matrizen mit nur einer Zeile bzw. Spalte heißen auch Zeilenvektoren bzw. Spaltenvektoren. Lineare Algebra – Rechnen mit Matrizen Erste Zusammenfassung •Die Einträge werden durch ihre Zeilen- und Spaltennummer identifiziert (auch Zeilen- und Spaltenindex genannt) •Die Einträge mit gleichen Zeilen- und Spaltenindex bilden die Hauptdiagonale einer Matrix •Spezielle Matrizenformen sind: - Quadratische Matrizen - Diagonalmatrizen - Einheitsmatrix - Nullmatrizen Lineare Algebra – Rechnen mit Matrizen Rechnen mit Matrizen Addieren und Subtrahieren 3 Betriebe beliefern 4 Abnehmer mit jeweils dem gleichen Produkt. Die Lieferungen im ersten Halbjahr (in t) seien in der folgenden Matrix L1 gegeben: 0 L 500 1 800 100 200 650 650 700 100 900 100 400 Die Lieferungen im zweiten Halbjahr seien in der Matrix L2 gegeben: 100 L 400 2 800 200 300 250 250 700 200 300 200 300 Lineare Algebra – Rechnen mit Matrizen Addieren und Subtrahieren Rechnen mit Matrizen Frage: Wieviel lieferten die Betriebe im ganzen Jahr? 0 L 1 500 800 100 200 650 650 700 100 400 900 100 100 L 2 400 800 3 00 250 250 700 200 300 300 200 Lieferungen im 2. Halbjahr Lieferungen im 1. Halbjahr + ? LG ? ? 200 ? 500 ? ? ? ? ? ? ? Lineare Algebra – Rechnen mit Matrizen Rechnen mit Matrizen Addieren und Subtrahieren Frage: Wieviel lieferten die Betriebe im ganzen Jahr? 0 L 1 500 800 100 200 650 650 700 100 900 100 100 L 2 400 800 400 Lieferungen im 1. Halbjahr LG 100 900 1600 200 300 250 250 700 200 300 200 300 Lieferungen im 2. Halbjahr 300 500 900 900 1400 300 1200 300 700 Lieferungen im ganzen Jahr! Lineare Algebra – Rechnen mit Matrizen Rechnen mit Matrizen Addieren und Subtrahieren Frage: Wieviel lieferten die Betriebe im ganzen Jahr? LG 100 900 1600 300 500 900 900 1400 300 1200 300 700 Lieferungen im ganzen Jahr! Die Matrix LG, die die Lieferungen für das ganze Jahr beschreibt, ist genauso groß, wie die Matrizen L1 und L2, die die Halbjahreslieferungen beschreiben (alles 3 x 4 Matrizen). Die Einträge von LG ergeben sich als Summen der entsprechenden Einträge in L1 und L2. Lineare Algebra – Rechnen mit Matrizen Rechnen mit Matrizen Addieren und Subtrahieren 2 Lagerstätten lagern 3 Produkte. Der Lagerbestand zu Beginn des Monats (in Produktionseinheiten) sei durch die Matrix MA gegeben: MA 1000 2000 1500 1000 1800 2500 Der Lagerbestand am Ende des Monats sei durch ME gegeben: ME 120 200 0 110 150 500 Frage: Wieviel wurde im Laufe des Monats von den Lagerstätten ausgeliefert? Lineare Algebra – Rechnen mit Matrizen Rechnen mit Matrizen MA 1000 2000 1500 2500 1000 1800 Bestand am Monatsanfang Addieren und Subtrahieren M E 120 0 150 200 110 500 Bestand am Monatsende ? ? 850 ML ? ? ? Im Monat ausgelieferter Bestand? Lineare Algebra – Rechnen mit Matrizen Rechnen mit Matrizen MA 1000 2000 1500 2500 1000 1800 Bestand am Monatsanfang Im Monat ausgelieferter Bestand Addieren und Subtrahieren M E 120 0 150 200 110 500 Bestand am Monatsende 880 ML 1800 1500 2390 850 1300 Die Matrix ML ist genauso groß, wie die Matrizen MA und ME (alles 2 x 3 Matrizen). Die Einträge von ML ergeben sich als Differenzen der entsprechenden Einträge in MA und ME. Man schreibt: ML = MA - ME Lineare Algebra – Rechnen mit Matrizen Rechnen mit Matrizen Addieren und Subtrahieren 2 Lagerstätten lagern 3 Produkte. Der Lagerbestand zu Beginn des Monats (in Produktionseinheiten) sei durch die Matrix MA gegeben: MA 1000 2000 1500 1000 2500 1800 Der Lagerbestand für die Produkte 1 und 2 am Ende des Monats sei durch ME gegeben: ME 120 200 110 0 Lineare Algebra – Rechnen mit Matrizen Rechnen mit Matrizen Addieren und Subtrahieren Frage: Können wir berechnen, wieviel von den Lagerstätten im Laufe des Monats ausgeliefert wurde? Genauer: Können wir berechnen, wieviel Lagerstätte 1 von Produkt 3 ausgeliefert hat? ==> Nein! Frage: Warum nicht? Antwort: In Matrix ME fehlen die Angaben für das Produkt 3 ! Allgemeiner: Die Matrizen MA und ME sind nicht gleich groß! MA ist eine 2 x 3 Matrix, ME ist eine 2 x 2 Matrix! Feststellung Matrizen unterschiedlicher Größe können nicht addiert oder subtrahiert werden! Lineare Algebra – Rechnen mit Matrizen Addieren und Subtrahieren Rechnen mit Matrizen Definition 1 a 1,1 a 2,1 A a m,1 Seien A und B Matrizen mit m Zeilen und n Spalten: a 1,2 a 2,2 a m,2 b 1,1 b 2,1 B b m,1 a 1, n a 2, n a m, n b 1,2 b 2,2 a m,2 b 1, n b 2, n b m, n Dann definiert sich die Summe A+B von A und B als a 1,1 a 2,1 A B : a m,1 b 1,1 a 1,2 b 1,2 b 2,1 a 2,2 b 2,2 a m,2 b m,2 b m,1 a 1, n b 1, n a 2, n b 2, n a m, n b m, n Lineare Algebra – Rechnen mit Matrizen Rechnen mit Matrizen Definition 2 a 1,1 a 2,1 A a m,1 Addieren und Subtrahieren Seien A und B Matrizen mit m Zeilen und n Spalten: a 1,2 a 2,2 a m,2 a 1, n a 2, n a m, n b 1,1 b 2,1 B b m,1 b 1,2 b 2,2 a m,2 b 1, n b 2, n b m, n Dann definiert sich die Differenz A-B von A und B als a 1,1 a 2,1 A B : a m,1 b 1,1 a 1,2 b 1,2 b 2,1 a 2,2 b 2,2 a m,2 b m,2 b m,1 a 1, n b 1, n a 2, n b 2, n a m, n b m, n Lineare Algebra – Rechnen mit Matrizen Zusammenfassung Rechnen mit Matrizen • Matrizen gleicher Größe (mit gleicher Zeilen- und Spaltenanzahl) können addiert werden. • Man addiert Matrizen, indem man die Einträge komponentenweise addiert. • Für die Matrizenaddition gilt das Kommutativgesetz: A+B = B+A (Summanden dürfen vertauscht werden) • Für die Matrizenaddition gilt das Assoziativgesetz: (A + B) + C = A + (B + C) (Klammerung darf vertauscht werden) •Addition der Nullmatrix N verändert eine Matrix nicht: A+N =N +A=A (Die Nullmatrix ist „neutral“.) • Subtraktion ist nur ein Spezialfall der Addition Lineare Algebra – Rechnen mit Matrizen Rechnen mit Matrizen Multipliaktion einer Matrix mit einer Zahl Die folgende Matrix M gebe die monatlichen Budgets zweier Tochterfirmen für die Posten Personal, Sachmittel und Verbrauch (in TDM) an: 20,12 M 42,58 0,5 0,8 0,25 0,1 Aufgabe: Wie hoch sind die Budgets pro Quartal? Lösung: Das Quartal hat 3 Monate, also sind die Quartalsbudgets dreimal so hoch, wie die monatlichen Budgets. (Klar!) M Quart 3 20,12 3 42,58 3 0,5 3 0,1 3 0,8 3 0,25 = 3 ·M 60,36 127,74 = 3M 1,5 0,3 2,4 0,75 Lineare Algebra – Rechnen mit Matrizen Multiplikation einer Matrix mit einer Zahl Rechnen mit Matrizen Sei A eine beliebige mxn Matrix und sei x eine beliebige Zahl. A[1,1] A[2,1] A A[m,1] A[1,2] A[2,2] A[m,2] A[1, n] A[m, n] A[2, n] Werden alle Einträge von A mit x multipliziert, so sprechen wir von der Multiplikation der Matrix A mit dem Skalar x. Wir schreiben dafür xA: x A[1,1] x A[2,1] xA x A[m,1] x A[1,2] x A[2,2] x A[m,2] x A[1, n] x A[m, n] x A[2, n] Lineare Algebra – Rechnen mit Matrizen Rechnen mit Matrizen Multiplikation einer Matrix mit einer Zahl Feststellung 1 Jede Matrix kann - unabhängig von ihrer Größe - mit einem Skalar (einer Zahl) multipliziert werden. Feststellung 2 Bei der Multiplikation mit einem Skalar (einer Zahl) ist es egal, ob von links oder von rechts multipliziert wird. Für eine Matrix A und eine Zahl x gilt stets: xA=Ax (Kommutativgesetz) Lineare Algebra – Rechnen mit Matrizen Zusammenfassung Multiplikation einer Matrix mit einer Zahl (Skalar) • Eine Matrix A beliebiger Größe kann stets mit einer Zahl x (einem Skalar) multipliziert werden. Man schreibt x A • Man multipliziert Matrizen mit einem Skalar, indem man die Einträge komponentenweise mit dem Skalar multipliziert. • Es gilt das Kommutativgesetz: x A = A x (Matrix und Skalar dürfen vertauscht werden) • Es gilt das Assoziativgesetz: (x y) A = x (y A) (Klammerung darf vertauscht werden) • Es gilt das Distributivgesetz: x (A+B) = xA+ xB (Man darf ausmultiplizieren/ ausklammern) • Multiplikation mit 0 ergibt die Nullmatrix • Multiplikation mit 1 ergibt die Ausgangsmatrix: 1 A = A • Multiplikation mit -1 negiert die Einträge: (-1 A) = -A (Subtraktion ist nur ein Spezialfall der Addition) Lineare Algebra – Rechnen mit Matrizen Multiplikation von Matrizen Modell Regalsystem 2A 4A 6A Korpus Türen Einlegeböden Schubladensätze A 1 1 1 0 1 2 3 3 6 1 0 0 Modellmatrix Ein Auftrag zur Lieferung der verschiedenen Schrankmodelle ist zu bearbeiten Modell 2A 20 Stück Modell 4A 40 Stück Aufgabe: Berechnen Sie, wie viele Schrankelemente jeweils hergestellt werden müssen Modell 6A 70 Stück Lineare Algebra – Rechnen mit Matrizen Multiplikation von Matrizen Regalsystem Korpus Türen Einlegeböden Schubladensätze 1 1 1 0 A b 3 1 2 3 6 1 0 0 1*20+1*40+1*70 = 130 0*20+1*40+2*70 = 180 3*20+3*40+6*70 = 600 1*20+0*40+0*60 = 20 20 40 70 130 180 600 20 Modell 2A 20 Stück Modell 4A 40 Stück Modell 6A 70 Stück Beachte: Die Multiplikationeiner Matrix A mit einem Vektor b ist nur möglich, wenn die Anzahl der Spalten von A mitder Anzahl der Koordinaten von b übereinstimmt Lineare Algebra – Rechnen mit Matrizen Multiplikation von Matrizen Regalsystem Unter Verwendung der Modellmatrix A sollen folgende Kundenaufträge bearbeitet werden. Modellmatrix A 1 1 Kunde X 1 Modell 2A 10 40 Modell 4A 40 20 Modell 6A 50 10 0 1 2 3 3 6 1 0 0 Auftragsmatrix 10 Kunde Y 40 B 40 20 50 10 C 1* 10 1* 40 1* 50 1* 40 1* 20 1* 10 0 * 10 1* 40 2 * 20 0 * 40 1* 20 2 * 10 3 * 10 3 * 40 6 * 50 3 * 40 3 * 20 6 * 10 1* 10 0 * 40 0 * 50 1* 40 0 * 20 0 * 10 100 70 80 40 450 240 10 40 Lineare Algebra – Rechnen mit Matrizen Multiplikation von Matrizen Definition: Ist A = (aij) eine l x m – Matrix und B = (bjk) eine m x n – Matrix, so ist das Produkt A B = C = (cik) eine l x n – Matrix. Jedes Element cik der Produktmatrix C = (cik) berechnet man als Skalarprodukt des i-ten Zeilenvektors der Matrix A mit dem k-ten Spaltenvektor der Matrix B. B m x nMatrix AlxmMatrix b 11 b 21 b m1 a 11 a 21 a l1 b b 12 22 b b b m2 a a 12 22 a l2 13 23 b m3 a a 13 23 a l3 b 1n 2n b mn b a 1m a 2m a lm Die Produktmatrix C = A B Ist eine l x n Matrix c23 = a21b13+a22b23+..+a2mbm3 c 11 c 21 c l1 c c 12 22 c c 13 23 c c c c l2 l3 1n 2n c ln Lineare Algebra – Rechnen mit Matrizen Multiplikation von Matrizen Achtung: Man kann zu zwei Matrizen A und B nur das Produkt A B bilden, wenn die Anzahl der Spalten des ersten Faktors A mit der Anzahl der Zeilen des zweiten Faktors B übereinstimmt. Zur Durchführung der Multiplikation lese man die Matrix A zeilenweise und die Matrix B spaltenweise. Die Elemente des Produkts erhält man als Skalarprodukt der Zeilenvektoren von A mit den Spaltenvektoren von B. Lineare Algebra – Rechnen mit Matrizen Matrizen in Mathematica Matrizen werden in Mathematica als Listen dargestellt: Matrix1={{1,3,4},{4,5,7},{3,4,5}} Matrix2={{4,2,3},{1,2,0},{1,9,4}} Dieses stellt jeweils eine 3x3 – Matrix dar. Um zwei Matrizen zu addieren, gibt man folgenden Befehl ein: Matrix1+Matrix2 Man erhält als Darstellung wieder die Listendarstellung. Möchte man das Ergebnis in der gewohnten Matrixschreibweise erhalten, so genügt folgender Zusatz: Matrix1+Matrix2//MatrixForm Lineare Algebra – Rechnen mit Matrizen Matrizen in Mathematica Um zwei Matrizen zu multiziplizieren, gibt man folgenden Befehl ein: Matrix1.Matrix2 (Dieses ist der einfache Punkt) Man erhält als Darstellung wieder die Listendarstellung. Möchte man das Ergebnis in der gewohnten Matrixschreibweise erhalten, so genügt folgender Zusatz: Matrix1.Matrix2//MatrixForm Lineare Algebra – Rechnen mit Matrizen Matrizen in Mathematica Um die inverse Matriz zu bestimmen, gibt es den Befehl: Inverse[Matrix1]//MatrixForm Lineare Algebra – Rechnen mit Matrizen Die Basis eines Vektorraumes Wir betrachten den zweidimensionalen Vektorraum über dem Körper der reellen Zahlen. Jeder Vektor kann als Linearkombination zweier sog. Basisvektoren dargestellt werden. Die Basisvektoren müssen linear unabhängig sein. Die Anzahl der Basisvektoren hängt von der Dimension ab. Im zweidimensionalen Vektorraum benötigt man 2 Vektoren, im dreidimensionalen sind es dagegen 3. Die Menge der Basisvektoren nennt man Basis Besonders einfache Basisvektoren sind im R2 die folgenden: b 1 1 , 0 b 2 0 , 1 Diese Basis nennt man auch die kanonische Basis. Lineare Algebra – Rechnen mit Matrizen Die Basis eines Vektorraumes Wie sieht nun die Basisdarstellung eines bestimmten Vektors bzgl. der kanonischen Basis aus? Folgender Vektor liegt vor: x 7 5 Die Linearkombination bzgl. der kanonischen Basis sieht dann wie folgt aus: 1 0 x 7 5 0 1 Wie man jetzt leicht nachvollziehen kann, sieht die Darstellung eines beliebigen Vektors bzgl. der kanonischen Basis wie folgt aus x x y 1 0 x x y 0 1 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Definition: f sei eine Abbildung von Vektoren, dann heißt diese Abbildung linear, wenn folgende Bedingungen erfüllt sind: 1. f( x y ) f( x ) f( y ) 2. f( λ x ) λ f( x ) Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Spiegelung an der x-Achse P(4/3) P‘(4/-3) oder allgemein P(x/y) P‘(x/-y) Die Matrix dazu lautet: 1 Mx 0 1 0 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Spiegelung an der x-Achse P(4/3) P‘(4/-3) oder allgemein P(x/y) P‘(x/-y) Die Matrix dazu lautet: 1 Mx 0 1 0 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Spiegelung an der y-Achse P(4/3) P‘(-4/3) oder allgemein P(x/y) P‘(-x/y) Die Matrix dazu lautet: -1 My 0 0 1 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Spiegelung an der y-Achse P(4/3) P‘(-4/3) oder allgemein P(x/y) P‘(-x/y) Die Matrix dazu lautet: -1 My 0 0 1 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Spiegelung an der 1. Winkelhalbierenden P(4/2) P‘(2/4) oder allgemein P(x/y) P‘(y/x) Die Matrix dazu lautet: M 1.Wh 0 1 1 0 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Drehung um 90o P(3/2) P‘(-2/3) oder allgemein P(x/y) P‘(-y/x) Die Matrix dazu lautet: 0 M 90 1 - 1 0 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Drehung um 180o P(3/2) P‘(-3/-2) oder allgemein P(x/y) P‘(-x/-y) Die Matrix dazu lautet: -1 M 180 0 0 - 1 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Drehung um einen beliebigen Winkel P(x/y) P‘(x‘/y‘) Um die Rechnung zu vereinfachen, bezeichnet man den Winkel zwischen der x-Achse und dem Vektor zum Punkt P mit , sei der Winkel zwischen dem Vektor p und p‘. Weiterhin bezeichnen wir die Abstände der Punkte P und P‘ vom Ursprung mit r. Man erhält dann für die Koordinaten x und y des Punktes P: Für die Koordinaten x‘ und y‘ des Punktes P‘: x = r cos und y = r sin x‘ = r cos ( + ) und y‘ = r sin ( + ) Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen x = r cos und y = r sin x‘ = r cos ( + ) und y‘ = r sin ( + ) Mit Hilfe der Additionstheoreme für sin und cos kann man die Beziehungen für x‘ und y‘ vereinfachen. Dieses sind: 1.cos (+) = cos cos - sin sin 2.sin (+) = cos sin + sin cos x‘ = r cos( + ) = r cos cos - r sin sin = x cos - y sin y‘ = r sin( + ) = r cos sin + r sin cos = x sin + y cos Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Drehung um einen beliebigen Winkel alpha P(x/y) P‘(x‘/y‘) x‘ = r cos( + ) = r cos cos - r sin sin = x cos - y sin y‘ = r sin( + ) = r cos sin + r sin cos = x sin + y cos Damit ergibt sich die folgende Rotationsmatrix (Drehung um den Ursprung mit einem beliebigen Winkel) Cos M Sin - Sin Cos Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Drehung um einen beliebigen Winkel alpha P(x/y) P‘(x‘/y‘) Wie man jetzt leicht nachvollziehen kann, sieht die Darstellung eines beliebigen Vektors bzgl. der kanonischen Basis wie folgt aus x x y 1 0 x x y 0 1 Cos M Sin - Sin Cos Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Drehung um einen beliebigen Winkel alpha P(x/y) P‘(x‘/y‘) Die Matrix dazu lautet: Cos M Sin - Sin Cos Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Scherung Unter einer Scherung versteht man eine Abbildung, bei der der Flächeninhalt erhalten bleibt. Bei einer Scherung bleibt eine Gerade der Ebene fix (unverändert), das heißt, jeder Punkt dieser Geraden wird auf sich abgebildet. Alle anderen Punkte der Ebene werden parallel zur Achse verschoben Bei einer Scherung bleibt also der Abstand jedes Punktes zur Achse unverändert. Damit werden Rechtecke und Dreiecke, bei denen eine Seite parallel zur Achse ist, auf Parallelogramme bzw. Dreiecke abgebildet, die (auf diese Seite) eine gleich lange Höhe haben Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Scherung Bei einer Scherung muss berücksichtigt werden, dass die Scherachse festgelegt werden muss. In der rechten Abbildung ist es die x-Achse. Man sieht, dass die Achse des Dreiecks, die mit der x-Achse zusammenfällt, nicht verändert wird. Matrix zur Scherung an der x-Achse Scherung 1 x - Achse 0 0,6 1 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Scherung an der x-Achse Eine Dreiecksseite ist jetzt parallel zur x-Achse. Bei der Scherung bleibt diese Seite parallel zur ursprünglichen Dreiecksseite, ist aber nach rechts verschoben. Berechnung der neuen Koordinaten des Bildpunktes 1 0 0,6 1 1 1 1,6 1 Matrix zur Scherung an der x-Achse Scherung 1 x - Achse 0 0,6 1 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Scherung an der x-Achse Keine Dreiecksseite ist jetzt parallel zur x-Achse. Man sieht, dass der Punkt auf der Scherachse bei der Abbildung erhalten bleibt. Die anderen Punkte haben weiterhin denselben Abstand von der Scherachse. Matrix zur Scherung an der x-Achse Scherung 1 x - Achse 0 0,6 1 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Scherung an der x-Achse Keine Dreiecksseite ist jetzt parallel zur x-Achse. Weiterhin liegt kein Punkt des Dreiecks auf der Scherachse. Berechnung der neuen Koordinaten des Bildpunktes 1 0 0,6 1 6 0 6 0 Matrix zur Scherung an der x-Achse Scherung 1 x - Achse 0 0,6 1 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Scherung an der x-Achse Keine Dreiecksseite ist jetzt parallel zur x-Achse. Weiterhin liegt kein Punkt des Dreiecks auf der Scherachse. Berechnung der neuen Koordinaten des Bildpunktes 1 0 0,6 1 1 2 2,2 2 Matrix zur Scherung an der x-Achse Scherung 1 x - Achse 0 0,6 1 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Scherung an der y-Achse Eine Dreiecksseite liegt auf der y-Achse. Ergebnisse entsprechend zur Scherung an der xAchse Berechnung der neuen Koordinaten des Bildpunktes 1 0,6 0 3 1 4 3 5 , 8 Matrix zur Scherung an der y-Achse Scherung 1 y - Achse 0,6 0 1 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Scherung an der y-Achse Keine Dreiecksseite ist jetzt parallel zur y-Achse. Weiterhin liegt kein Punkt des Dreiecks auf der Scherachse. Die Eckpunkt haben denselben Abstand zur y-Achse. Berechnung der neuen Koordinaten des Bildpunktes 1 0,6 0 3 1 1 3 2 , 8 Matrix zur Scherung an der y-Achse Scherung 1 y - Achse 0,6 0 1 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Scherung an der x- u. y-Achse Das Dreieck hat die Eckpunkte: A(1/5), B(3/1) und C(5/3) Die beiden Scherungen sind: Scherung Scherung 1 y - Achse 0,9 1 x - Achse 0 0 1 0,6 1 Es ist ein Unterschied, ob erst die y-Scherung und dann die xScherung oder erst die x-Scherung und dann die y-Scherung durchgeführt wird. Die Matrizenmultiplikation ist i. Allg. nicht kommutativ. 1 0,9 1 0 0 1 1 0 0,6 1 1 0,9 0,6 1 0 1 1,54 0,9 0,6 1 0,9 0,6 1 1,54 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Scherung an der x- u. y-Achse Das Dreieck hat die Eckpunkte: A(1/5), B(3/1) und C(5/3) 1 0,9 1 0 0 1 1 0 0,6 1 1 0,9 0,6 1 0 1 1,54 0,9 0,6 1 0,9 0,6 1 1,54 Lila: Ausgangsdreieck Rot: Erst die x- dann die yScherung Grün. Erst die y- dann die xScherung Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Skalierung Bei der Skalierung werden die Abmessungen des Objekts (geometrische Transformation) bzw. die Skaleneinteilung der Koordinatenachsen (Koordinatentransformation) vergrößert (Skalierungsfaktoren größer als 1) bzw. verkleinert. Die Skalierung bezieht sich immer auf einen zu definierenden Punkt, der dann selbst seine Lage nicht, während alle anderen Punkte ihren Abstand vom Bezugspunkt vergrößern oder verkleinern. Bei der geometrischen Skalierung bezüglich des Nullpunktes mit den Skalierungsfaktoren Sx und Sy (jeweils in Richtung der Koordinatenachsen) berechnet sich die Lage des neuen Punktes mit Hilfe der Matrix Skalierung Sx 0 0 Sy Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Skalierung in x-Richtung Skalierung x 2.5 0 0 1 Berechnung der neuen Koordinaten des Bildpunktes 2.5 0 0 5 1 2 12 ,5 2 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Skalierung in y-Richtung Skalierung y 1 0 0 2 Berechnung der neuen Koordinaten des Bildpunktes 1 0 0 5 2 2 5 4 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Skalierung in x- und y-Richtung Skalierung 2.5 0 0 2 Berechnung der neuen Koordinaten des Bildpunktes 2.5 0 0 5 2 2 12 ,5 4 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen Verschiebung in x- und y-Richtung Das Dreieck hat die Eckpunkte: A(1/5), B(3/1) und C(5/3) Das Dreieck soll in x-Richtung um 3 Einheiten und in y-Richtung um 4 Einheiten verschoben werden Berechnung der neuen Koordinaten des Bildpunktes A 1 5 3 4 4 9 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen im R3 Spiegelung an der xz-Ebene Die Matrix dazu lautet: 1 M xz Ebene 0 0 0 1 0 0 0 1 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen im R3 Spiegelung an der yz-Ebene Die Matrix dazu lautet: -1 M yz Ebene 0 0 0 1 0 0 0 1 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen im R3 Spiegelung an der xy-Ebene Die Matrix dazu lautet: 1 M xy Ebene 0 0 0 1 0 0 0 - 1 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen im R3 Spiegelungen an den Koordinaten-Ebenen 1 M xy Ebene 0 0 0 1 0 0 0 - 1 -1 M yz Ebene 0 0 1 M xz Ebene 0 0 0 1 0 0 0 1 0 1 0 0 0 1 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen im R3 Drehung um die x-Achse Die Matrix dazu lautet: 1 M x Achse 0 0 0 0 Cos - Sin Sin Cos Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen im R3 Drehung um die y-Achse Die Matrix dazu lautet: Cos M y Achse 0 - Sin 0 Sin 1 0 0 Cos Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen im R3 Drehung um die z-Achse Die Matrix dazu lautet: Cos M z Achse Sin 0 - Sin Cos 0 0 1 0 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen im R3 Drehungen um die Koordinaten-Achsen 1 M x Achse 0 0 0 0 Cos - Sin Sin Cos Cos M y Achse 0 - Sin Cos M z Achse Sin 0 - Sin Cos 0 0 1 0 0 Sin 1 0 0 Cos Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen im R3 Skalierung Die Matrix dazu lautet: M Skalierung 2.5 0 0 0 0 2 0 0 1.5 In x-Richtung: Faktor 2.5 In y-Richtung: Faktor 2 In z-Richtung: Faktor 1.5 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen im R3 Scherung in x-Richtung Die Matrix dazu lautet: M ScherungxR 1 0.5 0 0 1 0 0 0 1 Lineare Algebra – Rechnen mit Matrizen Lineare Abbildungen im R3 Scherung in y-Richtung Die Matrix dazu lautet: M ScherungyR 1 0 0 0.5 1 0 0 0 1 Lineare Algebra – Rechnen mit Matrizen Homogene Koordinaten Transformationen Problem: Keine einheitliche Beschreibung der Transformationen Wie sieht die Hintereinanderausführung der Transformationen aus? Alle Operationen lassen sich durch 4x4-Matrizen (bzw. 3x3Matrizen) darstellen. Erweiterung des Vektorraumes. 3D 4D (bzw. 2D 3D) Lineare Algebra – Rechnen mit Matrizen Homogene Koordinaten Übersicht über die Transformationen Verschiebung Vektoraddition Skalierung Spiegelung Skalare Multipliaktion Rotation Scherung Matrixoperation Lineare Algebra – Rechnen mit Matrizen Homogene Koordinaten Verschiebung Alle Transformationen bis auf die Verschiebung können mit Hilfe einer 2x2-Matrix durchgeführt werden. Bei der Verschiebung erfüllt die Abbildung eine 2x1-Matrix (bzw. ein Spaltenvektor) und diese wird noch addiert. Beispiel: Der Punkt P(2/3)soll um 3-Einheiten in x-Richtung verschoben werden. Dies erfüllt folgende Rechnung: 3 0 2 3 5 3 Der neue Punkt hat also die Koordinaten: P‘(5/3) Lineare Algebra – Rechnen mit Matrizen Homogene Koordinaten Verschiebung Um alle Transformationen mit derselben Rechenoperation durchführen zu können, müsste die Methode, mit der man die Translation einbindet, geändert werden. Die Translation müsste also durch eine Matrix mit der gleichen Anzahl von Zeilen und Spalten wie die anderen Transformationsmatrizen dargestellt werden. Ein Ausweg bzw. Lösung sind die sog. homogenen Koordinaten. In der Tat lassen sich nun die Translationen gleichwertig mit allen anderen affinen Abb. als Produkte "Matrix mal Vektor„ berechnen. Lineare Algebra – Rechnen mit Matrizen Homogene Koordinaten Einbettung des 2D in homogene Koordinaten x y 1 x y 1 V 0 0 0 1 0 Vx Vy 1 Mit Hilfe dieser Matrix kann ein Punkt sowohl in x-Richtung (Vx) als auch in y-Richtung(Vy) verschoben werden Lineare Algebra – Rechnen mit Matrizen Homogene Koordinaten Einbettung des 2D in homogene Koordinaten 1 V 0 0 0 1 0 Vx Vy 1 Beispiel: Der Punkt P(2/3) soll um 3 Einheiten in x- und 4 Einheiten in y-Richtung verschoben werden. Die Verschiebungsmatrix ergibt sich zu: 1 V 0 0 Die Rechnung sieht dann wie folgt aus: 1 0 0 0 1 0 3 4 1 2 5 3 7 1 1 Der Punkt ist demnach: P‘(5/7) 0 1 0 3 4 1 Lineare Algebra – Rechnen mit Matrizen Homogene Koordinaten Einbettung des 2D in homogene Koordinaten Verschiebungsmatrix 1 V 0 0 0 1 0 Vx Vy 1 Skalierungsmatrix Sx S 0 0 0 Sy 0 0 0 1 Rotationsmatrix cos R sin 0 sin cos 0 0 0 1 Lineare Algebra – Rechnen mit Matrizen Homogene Koordinaten Einbettung des 3D in homogene Koordinaten x y z x y z 1 Lineare Algebra – Rechnen mit Matrizen Verschiebung Verschiebung in x- und y-Richtung M Verschiebu 1 0 ng 0 0 0 0 2 1 0 1.5 0 1 0 0 0 1 Lineare Algebra – Rechnen mit Matrizen Verschiebungsmatrix Ein Punkt kann durch Matrixmultiplikation verschoben werden M Verschiebu 1 0 ng 0 0 0 0 xR 1 0 yR 0 1 zR 0 0 1 Lineare Algebra – Rechnen mit Matrizen Verknüpfung von linearen Abbildungen Verschiebung dann Rotation Rot -> Blau -> Grün Lineare Algebra – Rechnen mit Matrizen Verknüpfung von linearen Abbildungen Rotation dann Verschiebung Rot -> Blau -> Grün Lineare Algebra – Rechnen mit Matrizen Verknüpfung von linearen Abbildungen Da die Matrixmultiplikation nicht kommutativ ist, ist die Reihenfolge der Transformationen wichtig Lineare Algebra – Rechnen mit Matrizen Zusammenfassung – affine Transformationen Geradlinigkeit, Parallelität, Teileverhältnis bleiben erhalten Orientierung bleibt erhalten Längentreu Winkeltreu Translation Ja Ja Ja ja Rotation Ja Ja Ja ja Spiegelung Ja Nein Ja ja Skalierung Ja Ja Nein ja Scherung Ja Ja Nein nein Lineare Algebra – Rechnen mit Matrizen Aufgabe Dreieck mit A(1/1), B(3/2), C(2/4) 1.Drehung um 90o 2.Verschiebung um 2 EH in x-Richtung, um -3,5 EH in yRichtung 1.Verschiebung um 2 EH in x-Richtung, um -3,5 EH in yRichtung 2.Drehung um 90o Führen Sie die beiden Aufgaben in zwei verschiedenen Koordinatenkreuzen hintereinander aus Wie lautet jeweils die Transformationsmatrix für beide Abbildungen? Lineare Algebra – Rechnen mit Matrizen Aufgabe Dreieck mit A(1/1/-1), B(3/2/1), C(2/4/-2) 1.Drehung um 90o um die z-Achse 2.Verschiebung um 2 EH in x-Richtung, um -3,5 EH in yRichtung und 3 EH in z-Richtung 1.Verschiebung um 2 EH in x-Richtung, um -3,5 EH in yRichtung und 3 EH in z-Richtung 2.Drehung um 90o um die z-Achse Führen Sie die beiden Aufgaben in zwei verschiedenen Koordinatenkreuzen hintereinander aus Wie lautet jeweils die Transformationsmatrix für beide Abbildungen? Lineare Algebra – Rechnen mit Matrizen Aufgabe Dreieck mit A(1/1/0), B(3/2/0), C(2/4/0) Lineare Algebra – Rechnen mit Matrizen Spiegelung an der Geraden y= a x 1. Betrachte die Gerade y = a x als x‘-Achse eines neuen rechtwinkligen Koordinatensystems (x‘,y‘), das gegenüber (x,y) um den Winkel gedreht ist. 2. Spiegelung an der x‘-Achse des neuen Koordinatensystems. 3. Darstellung des gespiegelten Punktes im alten Koordinatensystem (x,y). Wir benötigen also drei Matrizen zur Darstellung der einzelnen linearen Abbildungen. 1.Drehung um T 2. Spiegelung Ts 3. Drehung zurück um - T - Insgesamt also: T = T Ts T - Lineare Algebra – Rechnen mit Matrizen Spiegelung an der Geraden y= a x T α Cos α Sin α Sin α Cos α T T= = s T 1 0 Cos α Sin α -α Cos α - Sin α Sin α Cos α 0 - 1 Sin α Cos α Cos 2 α - Sin 2 α 2 Sin α Cos α 1 0 Cos α - Sin α 0 - 1 2 Sin α Cos α - (Cos 2 α - Sin 2 α) Sin α Cos α Lineare Algebra – Rechnen mit Matrizen Hausaufgabe 1 Spiegelung der Punkte A(3/1), B(5/2) und C(4/3) an der Geraden mit der Gleichung y = 1/2 x 0.6 M 0.8 0.8 - 0.6 Mit Hilfe dieser Matrix ergeben sich folgende Bildpunkte A(3;1) A‘(2.6 ; 1.8) B(5/2) B‘(4.6 ; 2.8) C(4/3) B‘(4.8 ; 1.4) Lineare Algebra – Rechnen mit Matrizen Hausaufgabe 1 Spiegelung der Punkte A(3/1), B(5/2) und C(4/3) an der Geraden mit der Gleichung y = 1/2 x Lineare Algebra – Rechnen mit Matrizen Hausaufgabe 2 Spiegelung der Punkte A(3/1), B(5/2) und C(4/3) an der Geraden mit der Gleichung y = -2 x M 3 5 4 5 4 5 3 5 Mit Hilfe dieser Matrix ergeben sich folgende Bildpunkte A(3;1) A‘(-13/5 ; -9/5) B(5/2) B‘(-23/5 ; -14/5) C(4/3) B‘(-24/5 ; -7/5) Lineare Algebra – Rechnen mit Matrizen Hausaufgabe 2 Spiegelung der Punkte A(3/1), B(5/2) und C(4/3) an der Geraden mit der Gleichung y = -2 x Lineare Algebra – Rechnen mit Matrizen Spiegelung an der Geraden y= m x T α Cos α Sin α Sin α Cos α T T= = s T 1 0 Cos α Sin α -α Cos α - Sin α Sin α Cos α 0 - 1 Sin α Cos α Cos 2 α - Sin 2 α 2 Sin α Cos α 1 0 Cos α - Sin α 0 - 1 2 Sin α Cos α - (Cos 2 α - Sin 2 α) Sin α Cos α Lineare Algebra – Rechnen mit Matrizen Spiegelung an der Geraden y= m x Bezug zur Steigung m der Geraden y = m x (es gilt: tan = m ) cos 1 1 tan 2 sin tan 1 tan 2 cos sin 2 2 1 m 2 1 m 2 Damit ergibt sich für die Matrix: 1 1 m und 2 m 1 m und T 2 2 sin cos 1 1 m 2 2m 1 m 1 m 2 2m 2 2 (1 m ) 2m Lineare Algebra – Rechnen mit Matrizen Spiegelung an einer Geraden durch den Ursprung mit der Gleichung u x v Die Matrix lautet: S 1 u v 2 2 u2 v2 2u v 2u v 2 2 v u Lineare Algebra – Rechnen mit Matrizen Spiegelung an einer Geraden durch den Ursprung mit der Gleichung u x v w Die Matrix lautet: u2 v2 w2 1 S 2 2u v 2 2 u v w 2u w 2u v u v w 2 2 2vw 2vw 2 2 2 u v w 2u w 2 Lineare Algebra – Rechnen mit Matrizen Spiegelung an einer Geraden m1 durch den Ursprung mit der x m2 Gleichung m 3 Die Matrix lautet: m 12 m 22 m 32 1 S 2 2 m1 m 2 2 2 m1 m 2 m 3 2 m1 m 3 2 m1 m 2 m1 m 2 m 3 2 2 2 m2 m3 2 m2 m3 2 2 2 m1 m 2 m 3 2 m1 m 3 2 Lineare Algebra – Rechnen mit Matrizen Spiegelung an einer Ebene durch den Ursprung mit der Gleichung x a y b 0 a x b y c z 0 z c Die Matrix lautet: a2 b2 c2 1 T 2 2ab 2 2 a b c 2ac 2ab a b c 2 2 2bc 2bc 2 2 2 a b c 2ac 2 Lineare Algebra – Rechnen mit Matrizen Die Zentralprojektion Der Effekt bei der Zentralprojektion ist dem des menschlichen Auges sehr ähnlich. Abgebildete Objekte werden proportional zu ihrer Entfernung von der Bildebene verkleinert, d.h. entfernt liegende Körper erscheinen kleiner als näherliegende. Eigenschaften Parallele Geraden werden, falls sie nicht parallel zur Bildebene verlaufen, nicht auf parallele Geraden abgebildet, sondern laufen in einem Fluchtpunkt zusammen. Winkel zwischen zwei Geraden werden nur dann beibehalten, wenn die durch die Geraden definierte Ebene parallel zur Bildebene liegt. Entfernungen zwischen verschiedenen Punkten werden in der Abbildung unterschiedlich verzerrt. Lineare Algebra – Rechnen mit Matrizen Die Zentralprojektion Beispiel: Zentralprojektion eines achsenparallelen Würfels der Kantenlänge 2, zentriert um die z-Achse im Abstand 4 vom Ursprung auf eine Bildebene im Abstand d = 2. A(-1/-1/-4) B(1/-1/-4) C(1/1/-4) D(-1/1/-4) E(-1/-1/-6) F(1/-1/-6) G(1/1/-6) H(-1/1/-6) M ZentralPro 1 0 0 0 0 0 1 0 0 1 0 - 1 2 0 0 0 0 Lineare Algebra – Rechnen mit Matrizen Die Zentralprojektion Lineare Algebra – Rechnen mit Matrizen Die Zentralprojektion Tabellen – Trigonometrische Funktionen 0o Sin 30o 0 45o 60o 90o 2 3 1 1 2 Cos 1 3 0 3 3 2 2 1 2 2 Tan 2 0 2 1 3 Tabellen – Trigonometrische Funktionen 90o Sin 120o 1 135o 3 0 1 0 2 2 1 2 Tan 180o 2 2 Cos 150o 3 2 3 2 2 -1 3 3 -1 0 Tabellen – Trigonometrische Funktionen 180o Sin 0 210o 1 2 Cos Tan -1 0 225o 240o 2 3 3 2 3 3 2 2 2 1 2 1 270o -1 0 2 3 Tabellen – Trigonometrische Funktionen 270o Sin Cos -1 300o 0 3 2 330o 1 2 2 2 1 2 3 2 Tan 315o 2 3 -1 360o 0 1 2 3 3 Aufgaben Matrizenmultiplikation Wir fragen uns, wieviel Arbeit das Multiplizieren von Matrizen macht. Betrachten Sie die beiden 4x4 Matrizen M und N. n 1,1 n 2,1 N n 3,1 n 4,1 n 1,2 n 1,3 n 2,2 n 2,3 n 3,2 n 3,3 n 4,2 n 4,3 n 1,4 n 2,4 n 3,4 n 4,4 m 1,1 m 2,1 M m 3,1 m 4,1 m 1,2 m 1,3 m 2,2 m 2,3 m 3,2 m 3,3 m 4,2 m 4,3 a)Wieviel Multiplikationen und wieviel Additionen von Zahlen muss man durchführen, um einen Zeilenvektor von M mit einem Spaltenvektor von N zu multiplizieren? b)Wieviel Produkte aus Zeilen- und Spaltenvektor muss man durchführen, um das Matrixprodukt aus M und N zu berechnen? c)Schließen Sie aus (a) und (b), wieviel elementare Rechenoperationen (also Additionen und Multiplikationen von Zahlen) man benötigt, um das Matrixprodukt aus M und N zu berechnen! d)Überlegen Sie sich in der gleichen Weise, wieviel Rechenoperationen man benötigt, um das Produkt von zwei 5x5 Matrizen und zwei 100x100 Matrizen zu berechnen. e)Überschlagen Sie, wieviel Rechenoperationen man benötigt, um das Produkt von zwei nxn Matrizen zu berechnen. Jemand kündigt an, zwei 100x100 Matrizen von Hand miteinander multiplizieren zu wollen. Als flinker Kopfrechner benötigt er 2 Sekunden pro Rechenoperation. Wie lange braucht er in etwa für diese Aufgabe, wenn man annimmt, daß er täglich 10 Stunden arbeiten kann? m 1,4 m 2,4 m 3,4 m 4,4 Aufgaben Matrizenmultiplikation - Lösung m 1,1 m 2,1 M m 3,1 m 4,1 m 1,2 m 1,3 m 2,2 m 2,3 m 3,2 m 3,3 m 4,2 m 4,3 m 1,4 m 2,4 m 3,4 m 4,4 n 1,1 n 2,1 N n 3,1 n 4,1 n 1,2 n 1,3 n 2,2 n 2,3 n 3,2 n 3,3 n 4,2 n 4,3 n 1,4 n 2,4 n 3,4 n 4,4 a) Es sind jeweils 4 Additonen und 4 Multiplikationen b) c)16*4 = 64 Additionen und 16*4=64 Multiplikationen d) 5x5-Matrix: 25*5=125 Additionen und 25*5=125 Multiplikationen 100x100-Matrix: 100*100*100 = 1 000 000 Additionen und 1 000 000 Multipliaktionen e) Es sind n3 Additionen bzw. Multiplikationen Die Zeit beträgt: 2*1 000 000 000/2 = 1 000 000 s 277 h. Die Person benötigt ungefähr 277 h, das ergibt ca. 28 Tage. Aufgaben Matrizenmultiplikation 1 5 A 9 13 Seien A und E die 4x4 Einheitsmatrix gegeben. a)Berechnen Sie die Matrixprodukte AE und EA b)Sei E24 die Matrix, die sich ergibt, wenn Sie in der Einheitsmatrix die zweite und vierte Zeile vertauschen. Berechnen Sie AE24 und E24A. c)Sei E23 die Matrix, die sich ergibt, wenn Sie in der Einheitsmatrix die zweite und dritte Zeile vertauschen. Berechnen Sie AE23 und E23A. d)Sei E14 die Matrix, die sich ergibt, wenn Sie in der Einheitsmatrix die erste und vierte Zeile vertauschen. Berechnen Sie AE14 und E14A. e)Fassen Sie Ihre Berechnungen aus (a)-(e) in einer Vermutung zusammen. 2 3 6 7 10 11 14 15 4 8 12 16 Aufgaben Matrizenmultiplikation b) c) d) 1 4 3 2 5 8 7 6 9 12 11 10 13 16 15 14 1 2 3 4 13 14 15 16 9 10 11 12 5 6 7 8 1 3 2 4 5 7 6 8 9 11 10 12 13 15 14 16 1 2 3 4 9 10 11 12 5 6 7 8 13 14 15 16 4 2 3 1 8 6 7 5 12 10 11 9 16 14 15 13 13 14 15 16 5 6 7 8 9 10 11 12 1 2 3 4 1 5 A 9 13 2 3 6 7 10 11 14 15 4 8 12 16 Aufgaben Matrizenmultiplikation Ein Landwirt düngt seine 3 Felder viermal im Jahr mit 4 verschiedenen Düngemitteln. Im ersten Quartal gibt er von Düngemittel A 10dz auf Feld 1, 20dz auf Feld 2 und 5dz auf Feld 3. Im zweiten Quartal gibt er von Düngemittel B 8dz auf Feld 1, 12dz auf Feld 2 und 2dz auf Feld 3. Im dritten Quartal gibt er von Düngemittel C 2dz auf Feld 1, 4dz auf Feld 2 und 0dz auf Feld 3. Im vierten Quartal gibt er von Düngemittel D 6dz auf Feld 1, 0dz auf Feld 2 und 1dz auf Feld 3. (Bemerkung: dz = 1 Doppelzentner = 100kg) Die Düngemittel des Landwirts bestehen aus den Wirkstoffen Phosphor (P), Kalium (K) und Stickstoff (N). Die Düngemittel seien dabei wie folgt zusammengesetzt: Mittel A besteht aus 30% P, 20% K und 50% N, Mittel B besteht aus 10% P, 20% K und 70% N, Mittel C besteht aus 40% P, 10% K und 50% N und Mittel D besteht aus 30% P, 30% K und 40% N. Aufgaben Matrizenmultiplikation a)Schreiben Sie den obigen Sachverhalt mit Hilfe von Matrizen übersichtlich auf. Vergessen Sie dabei nicht, anzugeben, wofür Zeilen, Spalten und Einträge der Matrizen stehen b)Aus Umweltschutzgründen darf der Landwirt pro Jahr nur eine bestimmte Menge an Stickstoff auf seine Felder geben. c)Überlegen Sie sich, wie man berechnen kann, wieviel Stickstoff im ganzen Jahr jeweils auf die 3 Felder gegeben wurde. Berechnen Sie für jedes Feld, wieviel dz jedes Wirkstoffs im ganzen Jahr auf das Feld gegeben wurden. Benutzen Sie dabei Ihr Wissen über Produktionsmatrizen! Aufgaben Matrizenmultiplikation A B C D Feld 1 Feld 2 10 20 8 12 2 4 6 0 Feld 3 5 2 0 1 P K N A 30% 20% 50% B 10% 20% 70% C 40% 10% 50% D 30% 30% 40% Aufgaben Matrizenmultiplikation b) Man berechnet: 35*50%+22*70%+6*50%+7*40% = 46 dz c) Die Zeilen stehen für die unterschiedlichen Felder, die Spalten für P, K und N. Also: Auf Feld 1 wurden 6,4 dz Phosphor aufgebracht 6.4 5.6 14. 8.8 6.8 20.4 2. 1.7 4.3 Aufgaben Abbildungen durch Matrizen 1.Aufgabe: ( Seite 204 A.6) Gegeben ist die Ebene E mit 1*x – 2*y + 0*z = 0. a) Bestimmen Sie die Schnittgerade g der Ebene E mit der xy-Ebene. b) Bestimmen Sie die zur Spiegelung an E gehörende Abbildungsmatrix. c) Bestimmen Sie die 3x3-Matrix, die die Spiegelung an g in der xyEbene beschreibt. d) Bestimmen Sie die 2x2-Matrix, die die Spiegelung an g in der xyEbene beschreibt. Vergleichen Sie mit den Matrizen aus den Teilaufgaben b) und c). 2 a) Die Schnittgerade lautet: x 1 0 3 4 0 b) 5 4 5 5 3 5 0 0 0 1 c) 3 5 4 5 4 5 3 5 0 0 0 0 1 Aufgaben Abbildungen durch Matrizen 5.Aufgabe: Gegeben ist die Abbildungsmatrix 1 1 T1 2 3 2 2 1 2 2 2 1 a) Bestimmen Sie die Bildpunkte der Punkte A(3/3/0), B(3/-6/3), C(3/3/-3). a) A‘(-3/-3/0) B‘(5/-2/5) C‘(-5/-1/1) b) Geben Sie zur Spiegelung an der Geraden g: 1 x 0 0 gehörende Abbildungsmatrix T2 an, und bestimmen Sie die zur Verkettung (zunächst die zu T1 gehörenden Abbildung und anschließend die Spiegelung an der Geraden g) gehörende Abbildungsmatrix V. 1 2 2 b) 3 2 3 2 3 3 1 3 2 3 3 2 3 1 3 Übungen zur 1.Klausur 2.Aufgabe: ( Seite 205 A.13) Gegeben sind die Punkte A(0/0/0), B(-1/-1/4) und C(-1/-4/1) a) Zeigen Sie, dass das Dreieck ABC gleichseitig ist. b) Zeigen Sie, dass mit D(-4/-1/1) die Figur ABCD ein regelmäßiges Tetraeder ist, d.h. eine Figur, die von vier gleichseitigen Dreiecken begrenzt wird. d) Bestimmen Sie die Abbildungsmatrix T derjenigen Abbildung, die B auf C, C auf D, D auf B abbildet. Bestimmen Sie die Fixpunkte dieser Abbildung. Lösung: a)Mit Hilfe der Abstandsbeziehung erhält man: d = 3 d ( x 2 x1 ) ( y 2 y 1 ) ( z 2 z 1 ) 2 2 2 b)Zusätzlich müssen noch die anderen Dreiecke auf Gleichseitigkeit überprüft werden, nämlich: ABD BCD und CAD c)Die Abbildungsmatrix lautet: 0 1 0 0 1 0 0 1 0 2 Übungen zur 1.Klausur 8.Aufgabe: Gegeben sind die Punkte A(-2/-5/-5), B(1/-2/7), C(1/7/-2). a) Geben Sie eine Parameterdarstellung und eine Normalenform der durch A, B und C festgelegten Ebene E an. b) Zeigen Sie, dass das Dreieck ABC gleichseitig ist, und bestimmen Sie den Schwerpunkt S des Dreiecks ABC. c)Bestimmen Sie alle Punkte D so, dass A, B, C, D die Eckpunkt eines regelmäßigen Tetraeders bilden. 4 1 8 1 d)Zeigen Sie, dass die durch die Matrix T 1 4 8 9 4 vermittelte Abbildung jeden Punkt der Geraden g: 7 4 5 x 1 1 auf sich abbildet. Wie bildet die zu T gehörige Abbildung das Dreieck ABC ab? Übungen zur 1.Klausur Lösung: Die Gleichseitigkeit wird mit Hilfe der Abstandformel d ( x 2 x1 ) ( y 2 y 1 ) ( z 2 z 1 ) 2 2 2 berechnet. Es ergibt sich: d) Man sieht, dass man wieder den Vektor (-5,1,1) erhält. 9 2 Übungen zur 1.Klausur Lösung: d) Für die Bilder der Punkte A, B und C erhält man: A(-2/-5/-5) A‘(1/-2/7) B(1/-2/7) B‘(1/7/-2) C(1/7/-2) C‘(-2/-5/-5)