Sterne - Entwicklung und Ende André Kesser 5. Juli 2010 1 Entstehung von Sternen mit: M : Masse der Gaswolke kB : Boltzmann Konstante T : Temperatur mmol : mittlere molare Masse ρ : Dichte des Gases 1.1 Vorraussetzungen für die Bildung von Sternen Das Jeans Kriterium folg aus dem Viralsatz (−Epot = 2 · Ekin ) und der kalorischen Zustandsgleichung eines idealen Gases (Ekin = 32 kB T mM ) durch Integration mol über den Energiegewinn. Sterne entstehen aus interstellaren Gaswolken. Diese können aus Überresten von früheren Sternen bestehen, oder direkt nach dem Urknall entstanden sein. Sterne die aus von Vorgängersternen stammenden Gaswolken entstehen, nennt man Population II Sterne. Sie enthalten im Vergleich zu Population I Sternen, die aus Gaswolken entstanden sind, die sich direkt nach dem Urknall gebildet haben, mehr schwerere Elemente. Das nach Sir James Hopwood Jeans benannte Jeans Kriterium trifft eine Aussage darüber, wie groß eine Masse in Abhängigkeit von der Temperatur und der Dichte sein muss, damit eine interstellare Gaswolke kollabieren kann. Es gilt: s M> 5kB T Gmmol 3 3 · 4πρ Abbildung 1: Das etwa 7000 Lichtjahre entfernte Sternentstehungsgebiet „Adlerne(1) bel“ (NGC 6611) 1 Besitzt die Gaswolke eine ausreichende Größe und damit eine genügend große Masse, zieht sie sich aufgrund der Gravitation zusammen. Da der Drehimpuls der Gaswolke erhalten bleiben muss, bildet sich ein Ringsystem oder eine Akkretionsscheibe. Ein Ringsystem kann weiter fragmentieren und mehrere Sterne bilden. Man spricht dann von einem Doppel- oder Mehrsternsystem. Aus einer Akkretionsscheibe können sich, wie etwa in unserem Sonnensystem, Planeten bilden. Der Drehimpuls ist dann in Form von Bahndrehimpuls im Doppel- bzw. Mehrfachsternsystem oder den Planeten gespeichert. Beispielsweise tragen in unserem Sonnensystem Saturn und Jupiter zusammen 99% des Drehimpulses, aber die Sonne 99% der Masse. Etwa 80% der beobachtbaren Sterne befinden sich in einem Doppel- oder Mehrfachsternsystem. re Massen kollabieren schneller als kleine. Die Zeit, die eine Gaswolke benötigt um zu kollabieren wird „Helmholz-KelvinZeit“ genannt, sie beträgt 105 bis 108 Jahre. Abbildung 3: HD216956, ein Akkretionsscheibe, aus dem sich ein Stern mit einem Planetensystem bilden kann. 1.2 Energieproduktion in einem Stern Der Kollaps der Gaswolle kommt zum Halt, wenn das Kerngebiet sich auf etwa 4000K erwärmt hat. Durch das Pauli-Prinzip wird der Kern dicht und der Kern wirkt als Stoßfront für die äußere, weiter einfallende Materie. Dadurch erhöhen sich sowohl Druck als auch Temperatur. Ist beides genügend hoch, kommt es zum Wasserstoffbrennen. Solche so genannten Protosterne sind wegen der Staubhülle, die sie umgibt zunächst nur im Infrarotbereich zu sehen. Abhängig von der Masse des Sterns kann dieser verschiedene Brennstufen durchlaufen. Dabei muss für jede höhere Brennstufe der Druck und die Temperatur im Kern des Sterns zunehmen. Diese Zunahme kann nur dadurch entstehen, dass äußere Schalen in den Kern stürzen. Sterne mit Massen Abbildung 2: M57, ein Ringnebel, aus dem sich ein Doppel- oder Mehrfachsternsystem bilden kann. Der Kollaps einer solchen Gaswolke ist abhängig von ihrer Ursprungsgröße, größe- 2 bis etwa 8M können folgende Brennstufen 1.3 Herzsprung-Russeldurchlaufen: Diagramm 1913 entwickelte Henry Norris Russell beruhend auf Arbeiten von Ejnar Herzsprung aus dem Jahre 1905 das nach beiden benannte Herzsprung-Russell-Diagramm (HRD). • Wasserstoffbrennen • Heliumbrennen Da mit jeder höheren Brennstufe mehr Energie erforderlich wird um die Coulombwälle bei der Kernfusion zu überwinden, können nur genügend schwere Sterne auch weitere Brennstufen durchlaufen: • Kohlenstoffbrennen • Neonbrennen • Sauerstoffbrennen Abbildung 4: Henry Norris Russell • Siliziumbrennen Russell klassifizierte die Sterne nach ihrer Leuchtkraft und Temperatur. Dabei entsteDie Asche einer Brennstufe ist dabei gleich- hen vier Gruppen. Zum einen ergibt sich zeitig der Ausgangsstoff der nächsten Stu- die Hauptreihe (Main Sequence), auf der fe. Dabei ist das Wasserstoffbrennen die am sich etwa 70% der Sterne befinden. längsten dauernde Brennstufe, alle höheren Stufen laufen zunehmend schneller ab. Tabelle (1.2) zeigt den zeitlichen Verlauf, sowie die nötige Temperatur der einzelnen Brennstufen eines Sternes mit M = 25M : Brennphase H-Brennen He-Brennen C-Brennen Ne-Brennen O-Brennen Si-Brennen Temp. in K 6 · 107 2, 3 · 108 9, 3 · 108 1, 7 · 109 2, 3 · 109 4, 1 · 109 Dauer 7 · 106 J 5 · 105 J 600 J 1J 1 J 2 1d Tabelle 1: Zeitlicher Ablauf und benötigte Temperatur der Brennstufen eines Sterns Abbildung 5: Herzsprung Russell Diamit M = 25M . gramm 3 dass dieser durch das Pauli-Prinzip dicht wird, wirkt er als Stoßfront. Die reflektierte Stoßwelle bläht die äußeren Schalen auf einhundert Sonnenradien auf. Die Temperatur der ausgedehnten Schalen nimmt ab, die Leuchtkraft der Sonne bleibt hingegen durch die größere Oberfläche etwa konstant. Die Sonne ist zum Roten Riesen geworden. Durch den zunehmenden Druck beginnt in den Schalen der Sonne ebenfalls eine Wasserstoffbrennphase. Befindet sich eine genügende Menge an Helium im Kern (etwa 0, 45M ), kommt es zum Heliumflash. Dabei zündet explosionsartig die Heliumbrennphase und bläht die Sonne zu einem Überriesen mit 140R auf. Stabilisiert sich das Heliumbrennen, wird die Sonne zum Gelben Riesen. Am Ende des Heliumbrennens wird die Sonne ihre Hülle abstoßen. Die zunächst noch sichtbare Hülle kühlt ab, weshalb die Temperatur sinkt. Wird der übrig gebliebene Kern sichtbar, ist die Sonne zu einem Weißen Zwerg geworden, der nur noch Restwärme abstrahlt. Sterne beginnen ihr Leben am unteren Ende der Hauptreihe als rote Zwerge und wandern während der Phase des Wasserstoffbrennens auf der Hauptreihe weiter nach oben. Rechts oberhalb der Hauptreihe befinden sich die so genannten Riesensterne (Giants). Diese Sterne befinden sich am Ende der Wasserstoffbrennphase im Übergang zum Heliumbrennen. Bei noch größeren Leuchtkräften befinden sich Überriesen (Supergiants). Dabei handelt es sich um Sterne bei denen die das Heliumbrennen schlagartig begonnen hat. Bei niedrigen Leuchtkräften aber hohen Temperaturen befinden sich die Weißen Zwerge (White Dwarts). Weiße Zwerge sind Überreste erloschener Sterne. Zeit Phase ~9 Mrd J Hauptreihe Sonne 4,5 Mrd J (jetzt) ~10 000 J Planet. Nebel Weißer Zwerg 12,2 Mrd J 12,3305 Mrd J 13,3306 Mrd J 12,3 Mrd J Kern Schrumpft 104 Leuchtkraft Sonne = 1 ~1 Mrd J ~100 Mill J Roter Riese Gelber Riese Abstoßen der Hülle Planetrarischer Nebel Roter Überriese 103 102 10 Kern kühlt aus Roter Riese Weißer Zwerg Hauptreihe 1 2 Ende von Sternen 0,1 0,01 100 000 20 000 10 000 5000 Temperatur K Es gibt drei verschiedene Möglichkeiten, wie ein Stern sein Leben beenden kann. Sterne mit einer Masse bis 1, 44M , der Chandrasekhar-Grenze, enden als Weißer Zwerg, Sterne mit bis zu 3M , der Tolman-OppenheimerVolkoff-Grenze, enden als Neutronenstern. Schwere Sterne werden zu Schwarzen Löchern. 3000 Abbildung 6: Wanderung der Sonne im Herzsprung-Russell-Diagramm Abbildung Nr. (6) zeigt beispielhaft die Wanderung der Sonne auf dem HerzsprungRussell-Diagramm. Während er Wasserstoffbrennphase, die bei der Sonne etwa 109 Jahre dauert, wandert sie auf der Hauptreihe. Ist der Wasserstoffvorrat des Kerns aufgebraucht, fehlt der Gegendruck zum Gravitationsdruck. Dadurch beginnt die Schale in den Kern zu stürzen und erhöht damit Druck und Temperatur im Kern. Dadurch 2.1 Weiße Zwerge Weiße Zwerge sind die Kerne leichter Sterne, die ihr Hülle bereits durch eine Supernova abgestoßen haben. Sie besitzen keine eigene Energieproduktion mehr, sondern 4 strahlen nur noch Restwärme ab. Sie haben Temperaturen von 104 bis 105 K. Dem Gravitationsdruck wird durch den Entartungsdruck der Elektronen standgehalten. Dadurch besitzt der Weiße Zerg eine hohe Dichte. Etwa die Masse der Sonne ist auf des Volumen der Erde komprimiert. Dadurch herrscht an der Oberfläche eines Weißen Zwerges eine im Vergeich zur Erde etwa 300000 mal größere Fallbeschleunigung. Dem Gravitationsdruck hält nun der Entartungsdruck der Neutronen stand. Entsprechend steigt steigt auch die Fallbeschleunigung an und erreicht Werte, die 2 · 1011 mal so groß wie die Fallbeschleunigung auf der Erde. Aufgrund der Drehimpulserhaltung weisen Neutronensterne eine hohe Drehfrequenz auf, es wurden Drehfrequenzen bis zu 716Hz gemessen. Neutronensterne weisen ebenfalls ein hohes Magnetfeld bis zu 108 T auf, steht dieses nicht parallel zu Drehachse, spricht man von einem Pulsar. Die Hülle des Neutronensterns besteht aus Eisenkernen und freien Elektronen. Durch die Rotation kommt es zu einer Hallspannung im Bereich von 1018 V . 2.3 Schwarzes Loch Bei Schwarzen Löchern wird der Entartungsdruck der Neutonen überwunden und das Volumen des Sterns praktisch auf Null reduziert. Durch die starke Gravitation wird die Raumzeit bis zur Singularität gekrümmt. Schwarze Löcher sind nicht sichtbar, können aber durch Materiejets, Abbildung 7: Weißer Zwerg: Sirius B, die senkrecht zur Akkretionsscheibe austreBegleiter des Sirius im Sternbild „Großer ten detektiert werden. Hund“ Weiße Zwerge besitzen eine Hülle aus Wasserstoff und Helium sowie meist einen Kern aus Sauerstoff und Kohlenstoff. 2.2 Neutronenstern Bei Neutronensternen wird der Entartungsdruck der Elektronen durch die Gravitation überwunden. Die Elektronen werden dadurch in die Protonen gedrückt und wandeln sich mit diesen zu Neutronen und Abbildung 8: Prinzipdarstellung eines Neutrinos um: Schwarzen Lochs, das einen Stern verschlingt p + e− → n + νe (2) 5 2.4 Supernovae Es gibt grundsätzlich zwei verschiedene Supernovaetype, die KernkollapsSupernovae und die DoppelsternSupernovae. Abbildung 10: Supernova aus dem Jahr 1987 Bei einer Doppelstern-Spernovae saugt ein Weißer Zwerg in einem Doppelsternsystem einem benachbarten Roten Riesen Materie ab und wächst bis zur Chandrasekhar-Grenze an. Die anschließende Supernova dient als Standardkerze zur Entfernungsmessung. Der Begleitstern wird zum Fluchtstern (Runaway Star). Abbildung 9: Supernova aus dem Jahr 1054 Bei der Kernkollaps-Supernovae werden die Schalen des Stern am Ende des Sternlebens in den interstellaren Raum geschleudert. Dies geschieht dadurch, dass die Hülle zunächst auf den Kern zufällt, da die Energie fehlt, der Gravitation stand zu halten. Wird der Kern durch das Pauli-Prinzip dicht, wirkt er als Stoßfront, an der die Stoßwelle reflektiert wird. Bei dieser Explosion können Bedingungen herrschen, die für die Bildung von Elementen schwerer als Eisen Voraussetzung sind. Die abgesprengte Gashülle erreicht Geschwindigkeiten bis 106 km . Fast die gesamte Energie Abbildung 11: Prinzipdarstellung einer h (99%) wird in Form von Neutrinos abge- Doppelsternsupernova geben. 6 3 Nachweis von Neutrinos aus Supernovae aus 5160 lichtempfindlichen Sensoren an 86 Strängen, die in das Eis der Antarktik eingelassen sind. IceCube ist zum Nachweis Um rechtzeitig vor Supernovae war- von Neutrinos genbaut. Hochenergetische nen zu können besteht das Supernova- Neutrinos können durch die Reaktion von Frühwarnungssystem (SNEW), ihm ange- Myon-Neutrinos detektiert werden: schlossen sind die Detektoren: νµ + N → X + µ (3) • SNO (Kanada) Das dabei entstehende Tscherenkow-Licht kann im hochreinen Eis detektiert werden und lässt damit die Berechnung der Flugbahn des Neutrinos zu. • Super-Kamikande (Japan) • LVD (Italien) • IceCube (Antarktis) 3.1 IceCube Abbildung 13: Errechnete Flugbahn von Neutrinos, Daten vom 4. Juni 2010 Niederenergetische Neutrinos aus Supernova-Ereignissen können ebenfalls detektiert werden, dazu nutzt man die Reaktion mit Protonen: ν̄e + p → n + e+ (4) Abbildung 12: Schematischer Aufbau des IceCube Detektors Abbildung Nr (14) zeigt ein detektiertes Supanovaereignis. Gut zu erkennen ist der Der Detektor IceCube, an dem auch plötzliche Anstieg der Detektionen und die die Universität Mainz beteiligt ist und der innerhalb von etwa 10 Sekunden abklingen2011 fertig gestellt werden soll, besteht de Zahl der Neutrinos. 7 sechs Stunden vor sichtbarem Licht die Erde erreichen. 48000 DOM Hits ( 20ms binning) 46000 No Oscillation Scenario A (NH) Scenario B (IH) 44000 4 Quellen 42000 40000 • Buch Oberhummer „Kerne und Sterne“ Johann Ambrosius 38000 36000 • Barth 34000 32000 • http://icecube.wisc.edu/ 30000 0 0.5 1 1.5 2 Time Post-Bounce [s] 2.5 • http://www.hubblesite.org 3 • http://www.astronomia.de Abbildung 14: Detektiertes SupernovaEreigniss • http://www.ogonek.net • http://www.wikipedia.org Mit Hilfe der in Detektoren beobachteten Ereignisse können Astronomen frühgewarnt werden, da Neutrinos aufgrund der geringen Wechselwirkung mit Materie etwa • http://www.Uni-Bonn.de • http://www.nasa.gov 8