Beispiele

Werbung
Statistik Rechnerübungen
Beispiele für die Einführungsstunde
Prof. Dr. Peter Plappert
Fakultät Grundlagen
Für alle Beispiele benötigen Sie die Datei einf_daten.xls.
Für Beispiel 1 ist zusätzlich die Datei einf_b1.txt erforderlich.
Wenn Sie die Lösungswege nachvollziehen wollen:
In der Datei einf_beispiele_mit_lösungsweg.pdf stehen ebenfalls die unten genannten
Beispiele zusammen mit Lösungsvorschlägen.
Wenn Sie die Endergebnisse vergleichen wollen:
Die Datei einf_daten_mit_ergebnissen.doc sieht so aus, wie Ihre Datendatei
einf_daten.xls nach Bearbeitung der vier Beispiele aussehen sollte.
Damit keine Missverständnisse auftreten: Die hier genannten Beispiele sind nicht die TestatAufgaben sr_aufg_1 bis sr_aufg_4, die Sie selbständig bearbeiten sollen. Beachten Sie auch,
dass zwar in hier vorliegenden Beispielen einige wichtige Statistik-Funktionen von Excel
erläutert werden, aber nicht alle Funktionen und Optionen angesprochen werden, die bei der
Bearbeitung der Testataufgaben benötigt werden. Im Rahmen der Einführungsstunde kann
auch nicht auf die grundlegende Bedienung von Excel eingegangen werden.
Beispiel 1
In diesem Beispiel sollen die Noten und Punktzahlen einer Klausur ausgewertet werden.
Die dazu erforderlichen Daten stehen liegen noch nicht in Excel-Form vor. Sie stehen in der Datei
einf_b1.txt in drei Feldern (laufende Nummer, Punktzahl, Note), die durch Leerzeichen getrennt
sind. Die Daten sollen in die Datei einf_daten.xls kopiert und dort weiterbearbeitet werden.
Folgende Schritte sollen durchgeführt werden:
Textdatei einlesen
a) Starten Sie Excel und öffnen Sie die Datei einf_daten.xls.
b) Öffnen Sie die Datei einf_b1.txt mit Excel und kopieren Sie die Daten in das Tabellenblatt
„Noten-Daten“ der Datei einf_daten.xls, und zwar in die Felder A2 bis C43.
Häufigkeiten und Prozentanteile berechnen
c) Berechnen Sie die Häufigkeiten der Noten „sehr gut“ (1,0 und 1,3), „gut“ (1,7 bis 2,3),
„befriedigend“ (2,7 bis 3,3), „ausreichend“ (3,7 und 4,0) und „mangelhaft“ (4,7 und 5,0).
Die Ergebnisse sollen in den Feldern G3 bis G7 des Tabellenblatts „Noten-Daten“ stehen.
d) Ergänzen Sie bei c) die Summe.
e) Berechnen Sie, welche prozentualen Anteile auf die Notenstufen „sehr gut“ bis „mangelhaft“
entfallen. Geben Sie die Prozentzahlen als ganze Zahlen (ohne Nachkommastellen) an.
Säulendiagramm erstellen
f) Stellen Sie die Häufigkeiten aus c) mit einem Säulendiagramm dar. Geben Sie dem Diagramm
einen passenden Titel, beschriften Sie die Achsen und entfernen Sie die Legende. Fügen Sie das
Diagramm als neues Tabellenblatt in die Datei einf_daten.xls ein.
Statistik-Rechnerübungen Einführungsstunde
© P. Plappert 08.03.2006
einf_beispiele.pdf, Seite 1/4
g) Führen Sie in dem Diagramm die folgenden Umformatierungen durch:
g1) Die Farbe der Säulen soll dunkelblau sein.
g2) Jede Säule soll mit der zugehörigen Häufigkeit (wie oft gab es diese Note?) beschriftet
sein.
g3) Die Beschriftung aus g2) soll in Schriftgröße 14pt in Fettschrift erscheinen.
Kennzahlen berechnen
h) Berechnen Sie Mittelwert, empirische Varianz und empirische Standardabweichung der
Punktzahlen. Die Ergebnisse sollen in den Feldern H11 bis H13 des Tabellenblatts „NotenDaten stehen“ und mit 4 Nachkommastellen angegeben werden.
i) Berechnen Sie Median und Spannweite der Punktzahlen, ohne die Punktzahlenliste zu sortieren.
(Spannweite = größter Datenwert minus kleinster Datenwert.) Die Ergebnisse sollen in den
Feldern H14 und H15 des Tabellenblatts „Noten-Daten“ stehen.
j) Speichern Sie die geänderte Datei einf_daten.xls in Ihr persönliches Verzeichnis ab.
Beispiel 2
Die Daten, die diesem Beispiel zugrunde liegen, sind Angaben über die Weltproduktion von Mais
(Körnermais) in Millionen Tonnen. Sie stehen im Tabellenblatt „Mais-Daten“ der Datei
einf_daten.xls. (Quelle der Daten: Deutsches Maiskomitee; Stand: Oktober 2005.)
Streudiagramm zeichnen
a) Erstellen Sie ein Streudiagramm. Fügen Sie dabei das Diagramm als neues Tabellenblatt in die
Datei einf_daten.xls ein. Geben Sie dem Diagramm einen passenden Titel und beschriften Sie
Achsen und entfernen Sie die Legende.
Regressionsgerade einzeichnen
b) Zeichnen Sie in Ihr Diagramm aus a) die lineare Regressionsgerade ein. Im Diagramm sollen
außerdem die Gleichung der Regressionsgeraden und das Bestimmtheitsmaß R 2 erscheinen.
c) Ändern Sie die Schriftgröße der Gleichung der Regressionsgeraden auf 12pt.
Korrelationskoeffizienten berechnen
d) Berechnen Sie den empirischen Korrelationskoeffizienten r zwischen Jahr und produzierter
Maismenge. r soll im Feld G1 stehen. Geben Sie r mit 4 Nachkommastellen an.
e) Speichern Sie die geänderte Datei einf_daten.xls in Ihr persönliches Verzeichnis ab.
Andere Regressionskurven ausprobieren
f) Ändern Sie den Typ der Regressionskurve von linear in quadratisch.
g) Das Bestimmtheitsmaß R 2 gibt an, wie gut die Regressionskurve die Punktewolke beschreibt
(0 = gar nicht, 1 = alle Datenpunkte liegen auf der Regressionskurve). Bei quadratischer
Regression ist R 2 größer als bei linearer Regression. Warum ist bei diesem Datensatz trotzdem
eine lineare Regression sinnvoller als eine quadratische?
h) Machen Sie die Änderung aus f) wieder rückgängig.
i) Probieren Sie außerdem eine Regression mit einem Polynom sechsten Grades. Was stellen Sie
hier fest? Machen Sie auch diese Änderung anschließend wieder rückgängig.
Statistik-Rechnerübungen Einführungsstunde
© P. Plappert 08.03.2006
einf_beispiele.pdf, Seite 2/4
Beispiel 3
In diesem Beispiel lernen Sie einige Statistik-Funktionen kennen, mit denen man Berechnungen bei
den wichtigsten diskreten Wahrscheinscheinlichkeitsverteilungen (hypergeometrische
Verteilung, Binomialverteilung, Poissonverteilung) durchführen kann.
Genaueres über diese Verteilungen erfahren Sie später in der Vorlesung.
Hypergeometrische Verteilung
a) Sie erhalten eine Lieferung von 50 Glühbirnen. Daraus entnehmen Sie eine Stichprobe von 20
Glühbirnen und testen diese 20 Birnen auf Funktionsfähigkeit. Die Zufallsvariable X gebe die
Anzahl der defekten Birnen unter den 20 Glühbirnen der Stichprobe an.
Angenommen, in der Lieferung sind 5 defekte Glühbirnen. Unter unseren Annahmen folgt
X einer so genannten hypergeometrischen Verteilung X ~ H (20; 50; 5) . Berechnen Sie hierfür
a1) die Wahrscheinlichkeit, dass in Ihrer Stichprobe gar keine defekte Glühbirne ist;
a2) die Wahrscheinlichkeit, dass in Ihrer Stichprobe genau 1 defekte Glühbirne ist;
a3) die Wahrscheinlichkeit, dass in Ihrer Stichprobe genau 2 defekte Glühbirnen sind;
a4) die Wahrscheinlichkeit, dass in Ihrer Stichprobe genau 3 defekte Glühbirnen sind;
a5) die Wahrscheinlichkeit, dass in Ihrer Stichprobe höchstens 3 defekte Glühbirnen sind.
Die Ergebnisse sollen in den Feldern D3 bis D7 des Tabellenblatts „Diskrete Verteilungen“ der
Datei einf_daten.xls stehen und 4 Nachkommastellen haben.
Binomialverteilung
b) Bei der Massenproduktion bestimmter elektronischer Kleinteile entsteht eine Ausschussquote
von 10 %. Sie entnehmen der laufenden Produktion eine Stichprobe vom Umfang 20. Man kann
davon ausgehen, dass hierbei verschiedene Stichprobenteile unabhängig voneinander defekt
sind.
Die Zufallsvariable X gebe die Anzahl der defekten Kleinteile unter diesen 20 Glühbirnen an.
Unter den genannten Annahmen folgt X einer so genannten Binomialverteilung
X ~ B (20; 0,1) . Berechnen Sie hierfür
b1) die Wahrscheinlichkeit, dass in Ihrer Stichprobe genau 3 defekte Kleinteile sind;
b2) die Wahrscheinlichkeit, dass in Ihrer Stichprobe höchstens 3 defekte Kleinteile sind.
Die Ergebnisse sollen in den Feldern D11 und D12 stehen und 4 Nachkommastellen haben.
Poissonverteilung
c) Bei der Produktion einer bestimmten Textilart entstehen zufallsbedingt Gewebefehler. Im Mittel
sind es 2 Gewebefehler auf 1 m².
Sie entnehmen zufällig ein Textilstück von 1 m² und zählen, wie viele Gewebefehler auf diesem
Stück sind. Die Zufallsvariable X gebe die Anzahl festgestellten Gewebefehler an. Unter den
genannten Annahmen folgt X einer so genannten Poissonverteilung X ~ Po(2) , dabei ist
λ = 2 der Erwartungswert von X (mittlere, d. h. erwartete Anzahl von Fehlern).
Berechnen Sie hierfür
c1) die Wahrscheinlichkeit, dass in auf Ihrem Textilstück genau 3 Gewebefehler sind;
c2) die Wahrscheinlichkeit, dass in auf Ihrem Textilstück höchstens 3 Gewebefehler sind.
Die Ergebnisse sollen in den Feldern D16 und D17 stehen und 4 Nachkommastellen haben.
d) Speichern Sie die geänderte Datei einf_daten.xls in Ihr persönliches Verzeichnis ab.
Statistik-Rechnerübungen Einführungsstunde
© P. Plappert 08.03.2006
einf_beispiele.pdf, Seite 3/4
Beispiel 4
In diesem Beispiel lernen Sie einige Statistik-Funktionen kennen, mit denen man Berechnungen bei
der wichtigsten stetigen Wahrscheinscheinlichkeitsverteilung, nämlich der Normalverteilung,
durchführen kann. Genaueres über die Normalverteilungen erfahren Sie später in der Vorlesung.
Eine Maschine füllt Zucker in Packungen. Die Füllmenge variiert zufällig. Die Zufallsvariable X
gebe die Füllmenge [in g] einer zufällig ausgewählten Zuckerpackung an.
Wir gehen in diesem Beispiel davon aus dass die Zufallsvariable X einer Normalverteilung
X ~ N (1000; 9) folgt. In diesem Beispiel ist also der Erwartungswert der Füllmenge µ = 1.000 [g],
Varianz der Füllmenge σ 2 = 9 [g²] und Standardabweichung der Füllmenge σ =
9 = 3 [g].
a) Berechnen Sie die Wahrscheinlichkeit, dass die Füllmenge einer zufällig ausgewählten
Zuckerpackung bei höchstens 994 g liegt. Das Ergebnis soll im Feld D3 des Tabellenblatts
„Normalverteilung“ der Datei ein_daten.xls stehen und 4 Nachkommastellen haben.
b) Berechnen Sie das 1-%-Quantil der Normalverteilung N (1000; 9) . Das ist diejenige Füllmenge,
die von einer zufällig ausgewählten Zuckerpackung nur mit einer Wahrscheinlichkeit von 0,01
unterschritten wird. Das Ergebnis soll im Feld D5 stehen und 4 Nachkommastellen haben.
c) Schauen Sie in der Excel-Hilfe nach, mit welcher Funktion kann die Quantile der so genannten
t-Verteilung berechnen kann. (Es ist nur nach dem Namen der Funktion gefragt. Die Quantile
der t-Verteilung werden in Kapitel 5 der Vorlesung genauer erläutert.)
In der Datei einf_beispiele_mit_lösungen.pdf finden Sie außer dem Namen der gesuchten
Funktionen noch eine Anmerkung zur Syntax.
d) Zeichnen Sie die Dichtefunktion der Zufallsvariablen X im Intervall [990, 1010].
e) Speichern Sie die geänderte Datei einf_daten.xls in Ihr persönliches Verzeichnis ab.
Statistik-Rechnerübungen Einführungsstunde
© P. Plappert 08.03.2006
einf_beispiele.pdf, Seite 4/4
Herunterladen