Skript Topologie Universität Basel FS 2015 Philipp Habegger 2. März 2015 Inhaltsverzeichnis 0 Einführung 0.1 Einleitung 0.2 Notation . 0.3 Varia . . . 0.4 Literatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 6 6 6 1 Grundbegriffe 1.1 Topologische Räume . . . . . . . . 1.2 Basis einer Topologie . . . . . . . . 1.3 Stetige Abbildungen . . . . . . . . 1.4 Konstruktion topologischer Räume 1.4.1 Die Teilraumtopologie . . . 1.4.2 Die Produkttopologie . . . . 1.4.3 Die Quotiententopologie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 12 15 20 20 22 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 Einführung 0.1 Einleitung Aus der Analysis kennen wir verschiedene Normen auf dem Rn , bspw. die Supremumsnorm k(x1 , . . . , xn )k∞ = max{|x1 |, . . . , |xn |} oder die `p -norm für p ≥ 1 k(x1 , . . . , xn )kp = (|x1 |p + · · · + |xn |p )1/p . Bezüglich einer beliebigen Norm k · k auf dem Rn gibt es einen Stetigkeitsbegriff. Definition. Eine Abbildung f : Rn → R heisst k · k-stetig, falls es zu jedem x ∈ Rn und zu jedem > 0 ein δ > 0 gibt, mit |f (x0 ) − f (x)| < für alle x0 ∈ Rn mit kx0 − xk < δ. Hier bezeichnet |t| = max{t, −t} den Standardabsolutbetrag für t ∈ R. Wir kennen alle den folgenden Satz. Satz. Je zwei Normen auf dem Rn sind äquivalent. D.h. für zwei Normen k · k und k · k0 auf dem Rn gibt es eine Konstante c > 0 mit c−1 kxk ≤ kxk0 ≤ ckxk für alle x ∈ Rn . Hieraus folgt, dass die genaue Wahl der Norm in unserem Stetigkeitsbegriff unerheblich ist. Korollar. Seien k·k und k·k0 zwei Normen auf dem Rn . Für jede Abbildung f : Rn → R gilt f ist k · k-stetig ⇐⇒ f ist k · k0 -stetig. Es stellt sich deshalb die Frage, ob es einen von der Norm losgelösten Begriff der Stetigtkeit gibt. Ebenfalls aus der Analysis kennen wir das Konzept von punktweiser Konvergenz von Funktionenfolgen. Sei dazu X = {f : R → R} die Menge aller Selbstabbildungen der reellen Zahlen. 5 0 Einführung Definition. Sei (fn )n≥1 eine Folge von Elementen aus X. Die Folge (fn )n≥1 konvergiert punktweise gegen f ∈ X, falls limn→ fn (x) = f (x) für jedes x ∈ R gilt. Mit Hilfe des Konvergenzbegriffes können wir ebenfalls von Stetigkeit sprechen. Obwohl wir nicht über eine Norm auf dem R-Vektorraum X verfügen, können wir die punktweise Konvergenz benutzen. Definition. Eine Abbildung F : X → R heisst stetig, falls für jedes f ∈ X und für jede Folge (fn )n≥1 aus X die punktweise gegen f konvergiert, lim F (fn ) = F (f ) n→+∞ gilt. Beispiel. Die Vorschrift F (f ) = f (0) definiert eine stetige Abbildung X → R. Die Topologie bietet eine einheitliche Sprache, die alle Stetigsbegriff oben umfasst. Sie geht jedoch über Beispiele aus der Analysis hinaus und wird in vielen Teilbereichen der Mathematik verwendet. 0.2 Notation Wir werden durchwegs naive Mengenlehre betreiben. Die Menge der natürlichen Zahlen {1, 2, 3, . . .} wird mit N bezeichnet. Für eine Menge X ist X N die Menge aller Abbildungen N → X. In anderen Worten, X N ist die Menge aller Folgen mit Folgenglieder in X. 0.3 Varia Dieses Skript entstand im Laufe des Sommersemester 2014 an der TU Darmstadt als die Grundlage einer zweistündigen Vorlesung. Es wird nun, im Frühjahrsemester 2015, laufend auf die vierstündige Vorlesung an der Universität Basel angepasst. Ich bedanke mich ganz herzlich bei Stefan Schmid dafür, dass er die erste Version aufmerksam mitgelesen hat und viele Fehler entdeckte. Für die verbleibenden Fehler mathematischer und sprachlicher Natur bin ich verantwortlich, daher: Benutzung auf eigene Gefahr! Verbesserungsvorschläge können an [email protected] geschickt werden. 0.4 Literatur Beim Erstellen dieses Skripts waren die folgenden Quellen geholfen. (i) Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. (ii) James R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975. 6 1 Grundbegriffe 1.1 Topologische Räume Am Anfang steht der Begriff des topologischen Raumes. Er umschreibt in kondensierter Form Konzepte, die in vielen Bereichen der Mathematik eine wichtige Rolle spielen. Definition 1.1. Ein topologischer Raum ist ein Paar (X, τ ) bestehend aus einer Menge X und einer Menge τ von Teilmengen von X. Dabei müssen die folgenden Eigenschaften erfüllt sein. (i) Es gilt ∅ ∈ τ und X ∈ τ . (“Die leere Menge und X sind offene Teilmengen von X.”) (ii) Für alle U, V ∈ τ gilt U ∩ V ∈ τ . (“Der Schnitt zweier offener Mengen ist offen.”) (iii) Für M ⊆ τ gilt offen.”) S U ∈M U ∈ τ . (“Die Vereinigung beliebig vieler offener Mengen ist Die Elemente von X heissen Punkte des topologischen Raums und die Mengen in τ heissen deren offenen Teilmengen. Das System von Teilmengen τ nennt man die Topologie des Paars (X, τ ) und τ nennt man oft auch eine Topologie auf X. Ein einfache Induktion zeigt, dass der Schnitt endlich vieler offener Teilmengen eines topologischen Raums auch offen ist. Beispiele 1.2. (i) Als erstes wollen wir ein uns aus der Analysis bekannten topologischen Raum studieren. Sei dazu X = R und τ die Teilmengen U ⊆ R, für die die folgende Eigenschaft erfüllt ist. Für jedes x ∈ U gibt es ein > 0 mit x0 ∈ U falls |x0 − x| < . Dass (R, τ ) die drei Axiome eines topologischen Raums erfüllt, lässt sich schnell zeigen. Für U = ∅ und U = R gibt es nichts zu zeigen. Also ist die erste Eigenschaft gezeigt. Seien U, V ∈ τ und x ∈ U mit U > 0 und V > 0 wie in der Definition von τ . Dann reicht = min{U , V } > 0 aus, um U ∩ V ∈ τ zu zeigen. Schliesslich ist das dritte Axiome offensichtlich erfüllt. Man nennt τ auch die Standardtopologie auf R. 7 1 Grundbegriffe (ii) Sei jetzt X = Rn und τk·k wie in Beispiel (i) wobei wir | · | durch eine beliebige Norm k·k auf dem Rn ersetzen. Wie im ersten Beispiel erfüllt (Rn , τk·k ) alle nötigen Axiome, um einen topologischen Raum zu sein. Die Tatsache, dass alle Normen auf dem Rn äquivalent sind, impliziert dass τk·k von k · k unabhängig ist. Dies werden wir in einer Übungsaufgabe beweisen. Wir nennen τk·k die Standardtopologie auf dem Rn . Für n = 1 stimmt sie mit der in (i) definierten Topologie auf R überein. (iii) Wir müssen uns aber nicht auf die reellen Zahlen beschränken. Sei jetzt X eine beliebige Menge. Jede Topologie auf X muss ∅ und X als offene Teilmengen enthalten. Die zwei reichen sogar aus, d.h. τ = {∅, X} ist eine Topologie auf X wie man sofort überprüft. Sie heisst die triviale Topologie auf X. (iv) Wieder ist X beliebig. Im anderen Extrem bildet die Potenzmenge von X P(X) = {U ⊆ X} eine Topologie auf X. Sie heisst die diskrete Topologie. Jede Teilmenge von X ist offen bezüglich der diskreten Topologie. (v) Auf der leeren Menge ∅ gibt es nur eine Topologie τ = {∅}. Das Paar (∅, τ ) heisst leerer Raum und hat besitzt Punkte X = ∅. Die Topologie ist zugleich diskrete und trivial. (vi) Auf einer einelementigen Menge X = {∗} gibt es nur eine Topologie τ = {∅, {∗}}. Wir nennen ({∗}, τ ) auch den einpunktigen Raum und er wird oft mit ∗ bezeichnet. (vii) Gibt es zwei Punkte X = {s, η} so haben wir mehrere Möglichkeiten für die Topologie. Ein interessantes Beispiel aus der algebraischen Geometrie ist τ = {∅, X, {η}} . Die Axiome lassen sich auch hier leicht überprüfen. Man nennt η generischer Punkt von X und s heisst spezieller Punkt. (viii) Sei X wieder eine beliebige Menge. Für U ⊆ X definieren wir U ∈τ ⇐⇒ U =∅ oder X r U ist endlich. Sicher gilt ∅ ∈ τ und X ∈ τ . Für U, V ⊆ X gilt X r (U ∩ V ) = (X r U ) ∪ (X r V ). Also ist X r (U ∩ V ) endlich, falls U, V ∈ τ nicht leer sind. Schliesslich ist die Vereinigung von Mengen aus τ entweder leer, also in τ , oder hat endliches Komplement in X, d.h. auch in τ . Wir nennen τ die kofinite Topologie auf X. 8 1.1 Topologische Räume (ix) Sei X wieder eine beliebige Menge. Eine Abbildung d : X × X → [0, +∞) heisst Metrik auf X, falls für alle x, y, z ∈ X (P) (Positivität) d(x, y) = 0 genau dann, wenn x = y, (S) (Symmetrie) d(x, y) = d(y, x), (D) (Dreiecksungleichung) d(x, z) ≤ d(x, y) + d(y, z) gilt. Falls k · k eine Norm auf dem Rn ist, so definiert (x, y) 7→ kx − yk eine Metrik auf Rn . Die Metrik definiert wie folgt eine Topologie. Für U ⊆ X definieren wir U ∈ τd ⇐⇒ für alle x ∈ U gibt es > 0 mit x0 ∈ U falls d(x0 , x) < . Wie in Beispiel (i) zeigt man, dass τd tatsächlich eine Topologie auf X ist. Stammt die Topologie eines topologischen Raums von einer Metrik, so nennt man den Raum metrisierbar, das Paar (X, d) heisst metrischer Raum. Vorsichtig: verschiedene Metriken können die gleiche Topologie liefern. Also lässt sich die Metrik im Allgemeinen nicht eindeutig aus der Topologie gewinnen. (x) Sei n ≥ 0 eine ganze Zahl. Wie viele Topologien a(n) gibt es auf der endlichen Menge X = {1, 2, . . . , n}? Für kleine n kann man a(n) leicht bestimmen: a(0) = 1, a(1) = 1, a(2) = 4. Für n ≤ 1 gibt es nur die diskrete Topologie. Sie stimmt mit der trivialen Topologie überein. Für n = 2 sind diskrete und triviale Topologie verschieden. Dazu kommt die Topologie in Beispiel (vii). Vertauscht man die Rolle des generischen und speziellen Punkts, erhält man die vierte und letzte Topologie auf {1, 2}. Daher a(2) = 4. Für grössere n ist die Situation weniger übersichtlich. Die folgenden Werte werden wir nicht nachrechnen: a(3) = 29, .. . a(10) = 8977053873043. Können wir etwas über das Wachstum von a(n) in n sagen? Um a(n) gegen unten abzuschätzen, müssen wir Topologien auf X = {1, . . . , n} konstruieren. Sei dazu U ⊆ X eine nicht leere Menge. Wir setzen τU = {V ⊆ X; V ⊇ U } ∪ {∅} 9 1 Grundbegriffe und überprüfen, dass τU eine Topologie ist. Weiterhin gilt τU = τV =⇒ U = V, falls V ⊆ X nicht leer ist. Diese Konstruktion liefert 2n −1 paarweise verschiedene Topologie τU . Also a(n) ≥ 2 2n − 1 für alle n ≥ 0. Es gilt sogar die bessere untere Schranke a(n) ≥ 2(n −1)/4 , die wir hier nicht beweisen. Um a(n) gegen oben abzuschätzen, kann man wie folgt vorgehen. Per Definition ist jede Topologie τ auf X ein Element von P(P(X)), die Potenzmenge der Pon tenzmenge von X. Also a(n) ≤ 22 . In den Übungen werden wir die bessere Ungleichung a(n) ≤ 2n(n−1) zeigen. Konvention 1.3. Wir identifizieren oft einen topologischen Raum (X, τ ) mit der Punktmenge X. Hinter dieser Konvention lauert auch Gefahr, da es auf X mehrere Topologien geben kann. Definition 1.4. Eine Teilmenge A ⊆ X eines topologischen Raums X heisst abgeschlossen, falls X r A offen ist. Bemerkung. In jedem topologischen Raum X ist ∅ offen und abgeschlossen. Die gesamte Menge X geniesst auch diesen Doppelstatus. Es gibt sogar topologische Räume, die neben ∅ und X weitere Mengen besitzen, die sowohl offen wie auch abgeschlossen sind. Mehr dazu später. Definition 1.5. Seien τ und τ 0 zwei Topologien auf einer Menge X. Dann heisst τ feiner als τ 0 , falls τ ⊇ τ 0 . In diesem Fall nennen wir τ 0 auch gröber als τ . Ist τ feiner als τ 0 , so ist jede offene Teilmenge bezüglich τ 0 auch offen bezüglich τ . Beispiele 1.6. (i) Sei (X, τ ) ein topologischer Raum. Die diskrete Topologie auf X ist feiner als τ und die triviale Topologie ist gröber als τ . D.h. auf einer gegebenen Menge ist die diskrete Topologie die feinste Topologie und die triviale Topologie die gröbste Topologie. (ii) Die kofinite Topologie auf R ist gröber als die Standardtopologie. Zum Beweis sei U ⊆ R offen bezüglich der kofiniten Topologie. Gilt U = ∅, so ist U auch offen bezüglich der Standardtopologie. Falls U 6= ∅, ist R r U endlich und daher abgeschlossen in der Standardtopologie. Es folgt, dass U offen in der Standardtopologie auf R ist. (iii) Zwei Topologien τ und τ 0 auf einer Menge müssen nicht notwendigerweise kommensurabel sein. Es kann passieren, dass τ nicht feiner als τ 0 ist, ohne dass τ gröber als τ 0 ist. Als Beispiel nehme man X = {1, 2} und die zwei Topologien τ = {∅, X, {1}} 10 und τ 0 = {∅, X, {2}}. (1.1) 1.1 Topologische Räume Die folgenden Begriffe erinnern stark an entsprechende Spezialfälle in der reellen Analysis. Definition 1.7. Sei X ein topologischer Raum und M ⊆ X eine Teilmenge. (i) Der Abschluss von M (in X) ist \ M= A. M ⊆A⊆X A ist abgeschlossen in X Wir sagen, dass M dicht in X liegt, falls M = X. (ii) Das Innere von M (in X) ist [ M̊ = U. U ⊆M U ist offen in X (iii) Der Rand von M (in X) ist ∂M = M r M̊ . Das folgende Lemma enthält einige einfache Eigenschaften. Lemma 1.8. Sei X ein topologischer Raum und M ⊆ X eine Teilmenge. Dann sind M und ∂M abgeschlossen in X und M̊ ist offen in X. Ist M eine dichte Teilmenge von X und ist U ⊆ X offen und nicht leer, so gilt M ∩ U 6= ∅. Beweis. Dass M̊ offen ist, folgt aus der Tatsache, dass eine beliebige Vereinigung offener Mengen wieder offen ist. Betrachtet man das Kompliment, ist ein beliebiger Schnitt abgeschlossener Mengen wieder abgeschlossen. Daher sind M und ∂M abgeschlossen in X. Für den Beweis der letzten Aussage sei M ⊆ X dicht und U ⊆ X offen. Falls M ∩ U = ∅ liegt M im Komplement X r U . Aber X r U ist abgeschlossen, da U offen ist. Also M ⊆ X r U . Nach Voraussetzung gilt M = X und daher U = ∅. Beispiel 1.9. Sei X = R mit der Standardtopologie. Für M = (0, 1] und N = Q gilt M = [0, 1], M̊ = (0, 1), ∂M = {0, 1} und N = R, N̊ = ∅, ∂N = R. Die rationalen Zahlen liegen dicht in den reellen Zahlen. Definition 1.10. Sei X ein topologischer Raum und x ∈ X ein Punkt. Eine Umgebung von x (in X) ist eine offene Teilmenge U ⊆ X mit x ∈ U . Bemerkung. In einigen Texten wird nicht verlangt, dass eine Umgebung offen ist. Eine alternative Definition die man oft antrifft lautet, dass eine Umgebung von x ∈ X eine Teilmenge V ⊆ X ist, die eine offene Teilmenge U mit x ∈ U enthält. In der Praxis spielt diese Diskrepanz meist keine Rolle. 11 1 Grundbegriffe 1.2 Basis einer Topologie Die Topologie eines topologischen Raums kann aus sehr vielen offenen Teilmengen bestehen. Eine Basis einer Topologie ist eine Ansammlung von offenen Menge, welche die Topologie festlegt, jedoch in vielen Fällen deutlich einfacher zu handhaben ist. Beispiel 1.11. In der Standardtopologie auf den reellen Zahlen ist das Intervall (x, x + 1) offen für jedes x ∈ R. Es gibt also mindestens überabzählbar unendlich viele offene Teilmengen von R. Ist U ⊆ R eine beliebige offene Teilmenge und x ∈ U , so gibt es per Definition > 0 mit (x − , x + ) ⊆ U . Da Q dicht in R liegt, enthalten beide Intervall (x − , x) und (x, x + ) wegen Lemma 1.8 rationale Zahlen: a ∈ (x − , x) ∩ Q und b ∈ (x, x + ) ∩ Q. Es gilt x ∈ (a, b) ⊆ (x − , x + ). Diese Argument lässt sich auf jeden Punkt x ∈ U anwenden. Es folgt, dass U eine Vereinigung von offenen Intervallen mit rationalen Endpunkten ist. Wie wir bald sehen werden, bilden die Intervalle (a, b) mit a < b rational eine Basis der Standardtopologie auf R. Eine erstaunliche und nützliche Eigenschaft ist, dass diese Basis abzählbar unendlich ist. Definition-Lemma 1.12. Sei X eine Menge. Eine Subbasis einer Topologie auf X ist eine Menge B von Teilmenge von X, die die folgende Eigenschaft erfüllt. (i) Die Vereinigung aller Mengen in B ist X. D.h. jedes Element von X ist in einer Menge aus B enthalten. Wir nennen B eine Basis einer Topologie auf X, falls zusätzlich gilt: (ii) Seien B, B 0 ∈ B. Zu jedem Punkt x ∈ B ∩ B 0 gibt es B 00 ∈ B mit x ∈ B 00 und B 00 ⊆ B ∩ B 0 . Sei B eine Basis einer Topologie auf X. Die Elemente von B heissen Basiselemente. Wir nennen eine beliebige Teilmenge U ⊆ X offen bezüglich der Basis B, falls es zu jedem Element x ∈ U ein B ∈ B gibt, mit x ∈ B und B ⊆ U . Dann ist τB = {U ⊆ X; U ist offen bezüglich B} eine Topologie auf X und heisst die von B erzeugte Topologie. Man sagt auch, dass B eine Basis von (X, τB ) ist. Weiterhin ist jedes Basiselement offen in dieser Topologie. Beweis. Wir überprüfen zuerst, dass τ = τB eine Topologie auf X ist. Sicher liegt ∅ in τ . Aber X ∈ τ wegen (i). Aus (ii) folgt, dass U ∩ V ∈ τ , falls U, V ∈ τ . Schliesslich folgt völlig formal, dass eine beliebige Vereinigung von Mengen in τ wieder in τ liegt. Die letzte Aussage, d.h. B ⊆ τ folgt, da in der Definition von τ für gegebenes U ∈ B die Wahl B = U möglich ist. 12 1.2 Basis einer Topologie Beispiele 1.13. (i) Alle offenen Intervalle B = {(a, b); a, b ∈ R und a < b} bilden eine Basis einer Topologie. Eigenschaft (i) folgt, da (−1, 1) ∪ (−2, 2) ∪ (−3, 3) ∪ · · · = R. Da der Schnitt zweier offener Intervalle wieder ein offenes Intervall ist, folgt (ii). Die von B erzeugt Topologie ist die Standardtopologie auf R. (ii) Ein topologischer Raum kann verschiedene Basen besitzen, diese können sogar unterschiedlich Kardinalitäten besitzen. Die offenen Intervalle B = {(a, b); a, b ∈ Q und a < b} mit rationalen Endpunkten bilden ebenfalls eine Basis, die R mit der Standardtopologie erzeugt und nur abzählbar unendlich viele Elemente enthält. Definition 1.14. Ein topologischer Raum X erfüllt das zweite Abzählbarkeitsaxiom, falls X von einer Basis mit höchstens abzählbar unendlich vielen Elementen erzeugt wird. Beispiel 1.15. Der Raum der reellen Zahlen mit der Standardtopologie erfüllt das zweite Abzählbarkeitsaxiom. Weiter unten werden wir in Beispiel 1.17 einen Raum kennenlernen, welcher das zweite Abzählbarkeitsaxiom nicht erfüllt. Lemma 1.16. Sei X eine Menge und B eine Basis, welche die Topologie τ erzeugt. Die offenen Teilmengen von (X, τ ) sind genau die Vereinigungen von Elementen in B. Beweis. Wir haben bereits oben festgestellt, dass die Elemente in B offen in (X, τ ) sind. Sei umgekehrt U ⊆ X offen. Für jedes x ∈ U existiert Bx ∈ B mit x ∈ Bx und Bx ⊆ U . Also [ U= Bx , x∈U was zu zeigen war. Beispiel 1.17. Wir behaupten, dass die reellen Zahlen mit der diskreten Topologie das zweite Abzählbarkeitsaxiom nicht erfüllt. Sei B eine Basis dieses Raums. Für jede reelle Zahl x ∈ R ist {x} offen in der diskreten Topologie. Wegen Lemma 1.16 muss {x} ein Basiselement sein. Also enthält B überabzählbar unendlich viele Basiselemente, da es überabzählbar unendlich viele reelle Zahlen gibt. Wie kann man feststellen, ob eine Ansammlung offener Teilmengen eines topologischen Raums, eine Basis bildet, die den Raum erzeugt? Das nächste Lemma liefert dafür ein griffiges Kriterium. Lemma 1.18. Sei X ein topologischer Raum und B eine Menge offener Teilmengen von X mit der folgenden Eigenschaft. Für jede offene Teilmenge U ⊆ X und für jeden Punkt x ∈ U gibt es B ∈ B mit x ∈ B und B ⊆ U . Dann ist B eine Basis, welche die Topologie auf X erzeugt. 13 1 Grundbegriffe Beweis. Da die besagt Eigenschaft für U = X zutrifft, muss jeder Punkt aus X in einem Element aus B enthalten sein. Hieraus folgt (i) in der Definition der Basis. Seien B, B 0 ∈ B wie in (ii) der Definition und x ∈ B ∩ B 0 . Wir können die Voraussetzung auf die offene Teilmenge B ∩ B 0 von X anwenden. Es gilt also B 00 ∈ B mit x ∈ B 00 und B 00 ⊆ B ∩ B 0 . Also erfüllt B die nötigen Eigenschaft, um eine Basis einer Topologie auf X zu sein. Als letztes müssen wir noch zeigen, dass B die gegebene Topologie τ auf X erzeugt. Weil die Mengen aus B in τ liegen, erzeugt B eine Topologie auf X, die gröber als S τ ist. Sei U ∈ τ , also ist U offen in X. Nach Voraussetzung ist U eine Vereinigung U = x∈U Bx , wobei Bx ∈ B für jedes x ∈ U . Wegen Lemma 1.16 ist U offen in der von B erzeugten Topologie auf X. Bemerkung. Für jeden topologischen Raum (X, τ ) ist die Topologie τ eine Basis, die τ erzeugt. Auch mit einer Subbasis lässt sich eine Topologie erzeugen. Lemma 1.19. Sei X eine Menge und S eine Subbasis einer Topologie auf X. Die Menge aller endlichen Schnitte von Elemente in S B = {S1 ∩ · · · ∩ Sn ; S1 , . . . , Sn ∈ S} ist eine Basis einer Topologie auf X. Beweis. Wegen B ⊇ S ist die Vereinigung aller Mengen in B ganz X. Also ist B zumindest eine Subbasis. Wieso ist Eigenschaft (ii) in Definition-Lemma 1.12 erfüllt? Elemente B, B 0 ∈ B sind von der Gestalt B = S1 ∩ · · · ∩ Sn und B 0 = S10 ∩ · · · ∩ Sn0 0 mit S1 , . . . , Sn , S10 , . . . , Sn0 0 ∈ S. Wir bilden den Schnitt und erhalten mit B ∩ B 0 = S1 ∩ · · · ∩ Sn ∩ S10 ∩ · · · ∩ Sn0 0 erneut ein Element aus B. Diese Menge erfüllt die Rolle als B 00 in (ii). Also ist B eine Basis. Definition 1.20. Seien X, S und B wie im Lemma oben. Die von B erzeugte Topologie τ auf X heisst die von S erzeugte Topologie auf X. Man sagt auch, dass S eine Subbasis des topologischen Raums (X, τ ) ist. Beispiel 1.21. Sei X eine Menge und d eine Metrik auf X. Die offene Kugel im a ∈ C mit Radius r ist Br (a) = {x ∈ X; d(x, a) < r}. (1.2) Die Menge aller solcher Kugeln {Br (a); r > 0 und a ∈ X} bildet eine Subbasis, da jeder Punkt a in B1 (a) liegt. Diese Ansammlung ist sogar eine Basis. Hier ist der Beweis. Angenommen x ∈ Br (a)∩Br0 (a0 ). Wir zeigen Br00 (x) ⊆ Br (a)∩Br0 (a0 ) mit r00 = min{r − 14 1.3 Stetige Abbildungen d(x, a), r0 − d(x, a0 )} > 0. Aus dieser Inklusion folgt, dass die Kugeln eine Basis bildet. Um sie zu zeigen sei y ∈ Br00 (x). Die Dreiecksungleichung liefert d(y, a) ≤ d(y, x) + d(x, a) < r00 + d(x, a) ≤ r − d(x, a) + d(x, a) = r, also y ∈ Br (a). Völlig analog erhalten wir d(y, a0 ) < r0 und damit y ∈ Br0 (a0 ), was zu zeigen war. Dass die Kugel die Topologie τd auf X erzeugen, folgt aus der Definition in Beispiel 1.2(ix). 1.3 Stetige Abbildungen Das Studium topologischer Räume wird erst ab der Einführung Struktur erhaltender Abbildungen interessant. Es handelt sich um die stetigen Abbildungen. Diese umfassen die uns bereits bekannte Klasse der stetigen Abbildungen R → R, wobei R mit der Standardtopologie ausgestattet ist. Auf dem ersten Blick scheint die Definition ungewohnt und mysteriös. Aber im allgemeinen Kontext des topologischen Raums sind -δ Argumente Tabu, da wir keine Möglichkeit haben, Abstände zu messen. Man kann einen Stetigkeitsbegriff mittels Folgen einführen (und wir werden diesen auch untersuchen), aber er ist weniger elegant und hat einige Nachteile. Definition 1.22. Seien X und Y topologische Räume. Eine Abbildung f : X → Y heisst stetig, falls für jede offene Teilmenge V ⊆ Y das Urbild f −1 (V ) eine offene Teilmenge von X ist. Beispiele 1.23. (i) Sei X ein topologischer Raum. Dann ist die Identitätsabbildung id : X → X stetig. (ii) Seien X und Y topologische Räume. Jede konstante Abbildung X → Y ist stetig, da das Urbild einer offenen Teilmenge von Y entweder X oder ∅ ist. (iii) Ob eine Abbildung stetig ist, hängt auch von der Topologie auf Bild- und Urbildraum ab. Sei X eine Menge und τ, τ 0 zwei Topologien auf X. Die Identitätsabbildung id : X → X ist eine stetig Abbildung zwischen (X, τ ) und (X, τ 0 ) genau dann, wenn τ feiner als τ 0 ist. Besitzt X mehr als ein Element, so ist die Identitätsabbildung keine stetige Abbildung zwischen (X, τtrivial ) und (X, τdiskret ). (iv) Wir betrachten R2 mit der Standardtopologie und zeigen, dass die durch π(x, y) = x definierte Projektion π : R2 → R stetig S ist. Wegen Beispiel 1.11 ist jede offene Teilmenge U ⊆ R eine Vereinigung i∈I (ai , bi ) von Intervallen, hier bezeichnet I eine Indexmenge. Es gilt ! [ [ [ π −1 (U ) = π −1 (ai , bi ) = π −1 (ai , bi ) = (ai , bi ) × R. i∈I i∈I i∈I 15 1 Grundbegriffe Die Menge rechts ist offen in R2 . Also ist π stetig. Mit einem ähnlichen Argument kann man zeigen, dass jede Projektionsabbildung Rm → R stetig ist. (v) Für die Freunde der Kategorientheorie noch ein letztes Beispiel zum Anfangs- und Endobjekt: Für jeden topologischen Raum X gibt es genau eine stetige Abbildung ∅ → X vom leeren Raum und umgekehrt gibt es genau eine stetige Abbildung X → ∗ zum einpunktigen Raum, vgl. Beispiele 1.2(v) und (vi). Wir halten eine formale Eigenschaft von stetigen Abbildungen fest. Lemma 1.24. Seien X, Y, und Z topologische Räume. Die Verknüpfung zweier stetiger Abbildungen f : X → Y und g : Y → Z ist eine stetige Abbildung g ◦ f : X → Z. Beweis. Seien f und g stetig und sei U eine offene Teilmenge von Z. Das Urbild g −1 (U ) = V ist offen in Y und es gilt (g ◦ f )−1 (U ) = f −1 (g −1 (U )) = f −1 (V ). Also ist (g ◦ f )−1 (U ) offen in X. Lemma 1.25. Seien X und Y topologische Räume und S eine Subbasis von Y . Für eine Abbildung f : X → Y sind die folgenden Eigenschaften äquivalent. (i) Die Abbildung f ist stetig. (ii) Für jedes B ∈ S ist f −1 (B) offen in X. (iii) Zu jedem x ∈ X und jeder Umgebung V ⊆ Y von f (x) gibt es eine Umgebung U ⊆ X von x mit f (U ) ⊆ V . (iv) Für jede abgeschlossene Teilmenge A ⊆ Y ist f −1 (A) abgeschlossen in X. Beweis. Die Implikation “(i)=⇒(ii)” ist klar, da Elemente einer Subbasis offene Teilmengen der Topologie sind. Der Beweis der umgekehrten Implikation “(i)⇐=(ii)” ähnelt dem Argument in Beispiel 1.23(iv). Wegen Lemma 1.19 bilden alle endlichen Schnitte B = B1 ∩ · · · ∩ Bn mit B1 , . . . , Bn ∈ S eine Basis B von Y . Es gilt die Identität f −1 (B) = f −1 (B1 ∩ · · · ∩ Bn ) = f −1 (B1 ) ∩ · · · ∩ f −1 (Bn ). −1 Also ist S f (B) offen in X für jedes B ∈ B. Jede offene Teilmenge U von Y −1hat die Form (U ) = i∈I Bi mit Bi ∈ B und I eine Indexmenge. Wie in Beispiel 1.23(iv) gilt f S −1 −1 f (B ) und daher ist f (U ) offen. Da U beliebig war, folgt die Stetigkeit von f. i i∈I Die Implikation “(i)=⇒(iii)” ist nicht weiter schwierig. Eine Umgebung V von f (x) ist per Definition offen in Y . Da f stetig ist, ist f −1 (V ) offen in X. Sicher gilt x ∈ f −1 (V ), also ist U = f −1 (V ) eine geeignete Umgebung von x. 16 1.3 Stetige Abbildungen Nun beweisen wir “(i)⇐=(iii)”. Sei V ⊆ Y eine beliebige offene Teilmenge. Zu jedem x ∈ f −1 (V ) gibt es eine Umgebung Ux ⊆ X von x mit f (Ux ) ⊆ V . Die Menge Ux ist offen in X per Definition, also ist auch [ Ux x∈f −1 (V ) offen in X. Diese Vereinigung ist aber gleich f −1 (V ) und damit ist gezeigt, dass f −1 (V ) offen ist. Schliesslich ist die Äquivalenz “(i)⇐⇒(iv)” eine einfache Folgerung von der rein mengentheoretischen Identität X r f −1 (A) = f −1 (Y r A). Die Charakterisierung der Stetigkeit in Teil (iii) des Lemmas soll an die -δ Definition der Stetigkeit in der Analysis erinnern. Die Umgebung V spielt die Rolle von und U entspricht δ. Wir machen diese vage Beobachtung nun etwas präziser. Lemma 1.26. Seien X und Y topologische Räume, deren Topologien von Metriken dX bzw. dY auf den Punktmenge von X bzw. Y induziert werden, vgl. Beispiel 1.2(ix). Für eine Abbildung f : X → Y sind die folgenden Eigenschaften äquivalent. (i) Die Abbildung f ist stetig. (ii) Sei x ∈ X beliebig. Zu jedem > 0 gibt es ein δ > 0, so dass dY (f (x), f (x0 )) < falls dX (x, x0 ) < δ. Beweis. Wir zeigen zuerst “(i)⇐=(ii)” und hierfür werden wir die Eigenschaft (iii) in Lemma 1.25 überprüfen. Sei x ∈ X und V eine Umgebung von f (x). Wegen der Definition von der durch dY erzeugten Topologie existiert > 0, so dass y ∈ V für alle y ∈ Y mit dY (f (x), y) = dY (y, f (x)) < . Wir wählen δ wie in Teil (ii) dieses Lemmas und erhalten dY (f (x), f (x0 )) < falls dX (x, x0 ) < δ. Mit y = f (x0 ) folgt y ∈ V . In anderen Worten f {x0 ∈ X; dX (x, x0 ) < δ} ⊆ V. {z } | =U Wir sehen, dass U die gesuchte Umgebung von x ist. Also ist f stetig. Die umgekehrte Richtung “(i)=⇒(ii)” beruht auch auf der Charakterisierung in Teil (iii) von Lemma 1.25. Sei x ∈ X und > 0. Die Menge V = {y ∈ Y ; dY (f (x), y) < } ist eine Umgebung von f (x) in Y . Also gibt es wegen der Stetigkeit von f eine Umgebung U von x in X mit f (U ) ⊆ V . Es gibt ein δ > 0 mit {x0 ∈ X; dX (x, x0 ) < δ} ⊆ U . Also gilt dY (f (x), f (x0 )) < falls dX (x, x0 ) < δ. 17 1 Grundbegriffe Bemerkung. Mit diesem Lemma erhalten wir, zusammen mit unserem Vorwissen aus der Analysis, dass die klassischen Abbildungen auf Rm mit der Standardtopologie stetig sind. D.h. die folgenden Abbildungen R → R sind stetig: x 7→ p(x) mit p ein Polynom sowie x 7→ ex , x 7→ sin(x), x 7→ cos(x), .... Aus der Einführung in die Algebra kennen wir den wichtigen Begriff des Gruppenisomorphismus. Sind zwei Gruppen isomorph, so haben beide die gleichen algebraischen Eigenschaften. Einen ähnlichen Begriff gibt es in der Topologie. Definition 1.27. Seien X und Y topologische Räume. Eine Abbildung f : X → Y heisst Homöomorphismus, falls f stetig und bijektiv ist und falls die Umkehrabbildung f −1 : Y → X stetig ist. In diesem Fall sagen wir, dass X zu Y homöomorph ist. Bemerkungen. (i) Ist X zu Y homöomorph vermöge eines Homöomorphismus f : X → Y , so ist auch Y zu X vermöge f −1 : Y → X homöomorph. Homöomorph zu sein ist symmetrisch. Wir sagen in Zukunft, dass X und Y homöomorphe Räume sind. (ii) Die wohldefinierte Verknüpfung zweier Homöomorphismen ist ein Homöomorphismus. Homöomorph zu sein ist transitiv. Beispiele 1.28. (i) Für jeden topologischen Raum X ist die Identitätsabbildung id : X → X ein Homöomorphismus. (ii) Seien X und Y topologische Räume mit gleicher Punktmenge {1, 2} aber verschiedenen Topologien τX = {∅, X, {1}} und τY = {∅, X, {2}}. Die durch f (1) = 2 und f (2) = 1 gegebene Abbildung f : X → Y ist ein Homöomorphismus. (iii) Sei R mit der Standardtopologie ausgestattet. Auf (0, +∞) betrachten wir die durch die Einschränkung der Metrik d(x, y) = |x−y| definierte Topologie. Wir betrachten die Abbildung f : R → (0, +∞), die durch f : x 7→ ex definiert ist. Wegen Lemma 1.26 ist f stetig. Sicher ist f auch bijektiv und die Umkehrabbildung f −1 (x) = log x ist ebenfalls stetig. Also ist f ein Homöomorphismus und daher sind R und (0, +∞) homöomorph. 18 1.3 Stetige Abbildungen (iv) Zwei Intervalle (a, b) und (a0 , b0 ) mit a < b und a0 < b0 sind homöomorph, auch hier benutzen wir die eingeschränkte Metrik, um die Topologie zu definieren. Es reicht zu zeigen, dass (0, 1) zu (a, b) homöomorph ist. Die Abbildung f (x) = (b − a)x + a ist ein Homöomorphismus f : (0, 1) → (a, b). Das grundlegende Problem in der Topologie ist es, alle topologischen Räume bis auf Homöomorphie zu klassifizieren. Es handelt sich um ein “wildes” Problem, d.h. die möglichen topologischen Räume sind zu divers. Man erwartet nicht, dass dieses Problem je gelöst werden kann. Die Frage wird aber zugänglicher und interessanter, wenn man sich auf spezielle Klassen von Räumen wie beispielsweise Mannigfaltigkeiten beschränkt. In den Beispielen oben haben wir die Homöomorphie von zwei Räumen festgestellt, in dem wir konkret Homöomorphismen konstruierten. In der Regel ist es schwieriger zu zeigen, dass zwei gegebene Räume nicht homöomorph sind. Unser Repertoire an Technik reicht noch nicht aus, um viele Beispiele zu gegeben. Beispiel 1.29. Eine stetige Bijektion f : X → Y zwischen zwei topologischen Räumen X und Y muss kein Homöomorphismus sein. D.h. die Umkehrabbildung f −1 : Y → X ist unter diesen Voraussetzungen nicht notwendigerweise stetig. Dazu betrachten wir [0, 1) und S 1 = {z ∈ C; |z| = 1} (beide mit der von der eingeschränkten Standardmetrik induzierten Topologie), hierzu identifizieren wir C mit R2 in dem wir eine komplexe Zahl mit dem Paar aus Real- und Imaginärteil identifizieren. Sei i ∈ C mit i2 = −1. Die Abbildung f (t) = e2πit für 0≤t<1 ist eine stetig Abbildung f : [0, 1) → S 1 . Falls f −1 stetig wäre, so wäre f (U ) = −1 (f −1 ) (U ) offen für alle offenen Teilmengen U ⊆ [0, 1). In der auf [0, 1) definierten Topologie ist [0, 1/2) eine offene Kugel um 0 mit Radius 1/2. Das Bild f ([0, 1/2)) ist der Halbkreis {e2πit ; 0 ≤ t < 1/2}. Es ist keine offene Teilmenge von S 1 , da jede Kugel in S 1 um 1 das Komplement S 1 r f ([0, 1/2)) trifft. Beispiele 1.30. In den Beispielen unten betrachten wir alle Teilmengen von Rm als topologische Räumen mit der durch die eingeschränkte Metrik induzierte Topologie. (i) Wir zeigen, dass der topologische Raum [0, 1] nicht zu R homöomorph ist. Aus der Analysis wissen wir, dass eine stetige Funktion f : [0, 1] → R beschränkt sein muss. Also kann f nicht surjektiv und daher auch kein Homöomorphismus sein. 19 1 Grundbegriffe (ii) Ist [0, 1] zu [0, 1]2 homöomorph? Bereits diese Frage ist heikler. Unsere Intuition suggeriert eine negative Antwort. Dennoch gibt es Grund zur Sorge, da es eine stetige und surjektive Abbildung [0, 1] → [0, 1]2 genannt Peano Kurve gibt. Es stellt sich aber heraus, dass sie nicht injektiv sind. Sie liefern kein Homöomorphismus zwischen [0, 1] und [0, 1]2 . In der Tat existiert kein Homöomorphismus zwischen diese Räume. Das werden wir in einigen Wochen beweisen können. (iii) Ist R2 zu R3 homöomorph? Auch hier sagt unsere Intuition klar nein. Aber sie beruht auf unser Verständnis von Dimension, ein Begriff den wir noch nicht angetroffen haben in der Topologie. Auch hier gilt: R2 und R3 sind nicht homöomorph. Der Beweis ist schwieriger als die entsprechende Nichtexistenz in (ii). Wir werden ihn hoffentlich gegen Ende des Semesters führen können. (iv) Ist R3 zu R4 homöomorph? Nein, aber der Beweis übersteigt den Rahmen dieser Vorlesung! Ganz allgemein gilt: Rm und Rn sind nur für m = n homöomorph. 1.4 Konstruktion topologischer Räume Wir haben bereits einige topologische Räume kennengelernt. Weiterhin haben wir Methoden studiert, topologische Räume zu generieren (beispielsweise durch eine Metrik). In den nächsten Unterabschnitten werden wir einige wichtige Konstruktionen kennenlernen, um aus topologischen Räume neue Räume zu kreieren. 1.4.1 Die Teilraumtopologie Bereits in Beispiel 1.28 haben wir die Standardmetrik auf den reellen Zahlen auf ein Intervall eingeschränkt, um dieses mit einer Topologie zu versehen. Beispiel 1.31. Sei [0, 1] mit der durch die eingeschränkte Standardmetrik d(x, y) = |x − y| ausgestattete Topologie. Die offene Kugel um 0 mit Radius 1/2 ist [0, 1/2). Insbesondere ist [0, 1/2) eine offene Teilmenge von [0, 1] (aber natürlich keine offene Teilmenge in R). Ganz offensichtlich gilt [0, 1/2) = {x ∈ R; |x| < 1/2} ∩ [0, 1]. Im Allgemeinen ist jede offene Teilmenge von [0, 1] von der Gestalt U ∩ [0, 1] (1.3) mit U offen in R. Motiviert durch die Aussage um (1.3) werden wir nun eine Teilmenge eines beliebigen topologischen Raumes mit einer “kanonischen” Topologie ausstatten. Definition-Lemma 1.32. Sei X ein topologischer Raum und M ⊆ X eine Teilmenge. Dann definiert {U ∩ M ; U offen in X} (1.4) eine Topologie auf M , die durch X induzierte Teilraumtopologie auf M . 20 1.4 Konstruktion topologischer Räume Beweis. Das Überprüfen der Topologie Axiome für (1.4) ist eine einfache Übungen. Beispiele 1.33. Wir betrachten R stets mit der Standardtopologie. (i) Die folgenden Mengen sind offen in X = [0, 1] ∪ [2, 3) ⊆ R ausgestattet mit der Teilraumtopologie: [0, 1] = (−1/2, 3/2)∩X, (1/2, 1]∪[2, 5/2) = (1/2, 5/2)∩X, [2, 3) = (3/2, 3)∩X. Insbesondere ist die Menge [0, 1] offen und abgeschlossen in X. (ii) Die offenen Teilmengen von (0, 1) ausgestattet mit der Teilraumtopologie induziert von R sind die offenen Teilmengen von R, die in (0, 1) liegen. Lemma 1.34. Sei X ein topologischer Raum, M ⊆ X eine Teilmenge und ι : M → X die Inklusionsabbildung. Wir betrachten M mit der von X induzierten Teilraumtopologie. (i) Die Abbildung ι : M → X ist stetig. (ii) Die Teilraumtopologie ist die gröbste Topologie auf M mit der Eigenschaft, dass ι stetig ist. (iii) Sei Y ein topologischer Raum und f : Y → X eine stetige Abbildung mit f (Y ) ⊆ M . Dann gibt es genau eine stetige Abbildung g : Y → M mit f = ι ◦ g. Beweis. Alle Eigenschaft sind formale Überprüfungen. Für (i) sei U offen in X. Dann ist ι−1 (U ) = U ∩ M offen in M per Definition. Also ist ι stetig. Sei ι bezüglich einer Topologie τ auf M stetig. Dann ist ι−1 (U ) = U ∩ M offen im Raum (M, τ ) für jede offene Teilmenge U ⊆ X. Also ist τ feiner als die Teilraumtopologie auf M , was für (ii) zeigen war. Seien schliesslich Y und f wie in (iii). Die Eindeutigkeit von g ist klar. Auch die Existenz ist einfach, wir nehmen für g die Abbildung f mit Zielraum M . Sicher gilt f = ι ◦ g. Da sich der Zielraum geändert hat, müssen wir Stetigkeit überprüfen. Jede offene Teilmenge von M ist von der Gestalt U ∩ M mit U ⊆ X offen. Es gilt g −1 (U ∩ M ) = f −1 (U ) da f (X) ⊆ M . Weil f stetig ist, ist g −1 (U ∩ M ) offen in Y . Bemerkung. Eigenschaft (iii) im letzten Lemma heisst universelle Eigenschaft der Teilraumtopologie. Dass die Teilraumtopologie transitiv ist, folgt aus dem nächsten Lemma. Lemma 1.35. Sei X ein topologischer Raum und M, N ⊆ X Teilmengen ausgestattet mit der Teilraumtopologie induziert von X. Gilt M ⊆ N so ist die von N induzierte Teilraumtopologie auf M gleich der Topologie auf M . Beweis. Die offenen Teilmengen der von N auf M induzierte Teilraumtopologie haben die Gestalt M ∩U wobei U in N offen ist. Aber U ist N ∩V mit V offen in X. Also ist M ∩U = M ∩(N ∩V ) = M ∩ V offen in M . Umgekehrt ist jede offene Teilmenge von M von dieser Gestalt und daher auch offen in der von N induzierte Teilraumtopologie. 21 1 Grundbegriffe Bemerkung. Ab jetzt werden wir oft stillschweigend einen Teilmenge eines topogischen Raumes mit der Teilraumtopologie als topologischen Raum betrachten. 1.4.2 Die Produkttopologie Wie der Name suggeriert werden wir dem kartesischen Produkt X × Y zweier topologischer Räume X und Y eine Topologie zuordnen. Auch hier lehnen wir uns einem bereits bekannten Fall an. Beispiel 1.36. Wir betrachten R und R2 = R×R mit der Standardtopologie. Jede offene Teilmenge von R2 ist eine Vereinigung [ (ai , bi ) × (a0i , b0i ) i∈I wobei I eine Indexmenge ist und ai , a0i , bi , b0i ∈ R. Für das Produkt zweier Räume ist dieses Beispiel wegführend. Eine offene Teilmenge eines Produkts zweier Räume wird Vereinigung von Produkten offener Mengen sein. Die Definition, die wir eben geben werden geht jedoch einen Schritt weiter. Wir definieren eine Topologie auf dem Produkt beliebig vieler Räume. Dafür Bedarf es etwas Sorge. Definition 1.37. Sei I eine Indexmenge und für jedes i ∈ I sei ein topologischer Raum Xi gegeben. Sei Y πj : X = Xi → Xj i∈I die Projektion auf den j-ten Faktor. Dann ist {πi−1 (U ); i ∈ I und U ⊆ Xi offen} (1.5) die Subbasis einer Topologie auf X. Diese Topologie nennen wir Produkttopologie auf X. Bemerkung. Die in der Definition beschriebene Subbasis erzeugt wegen Lemma 1.19 eine Basis auf X. Die Basiselement haben die Form Y Ui (1.6) i∈I wobei jedes Ui ⊆ Xi offen ist und Ui 6= Xi für höchstens endlich viele i ∈ I. In den Übungen wird die sogenannte Boxtopologie auf X untersucht, die von Basiselementen (1.6) ohne die Endlichkeitseigenschaft erzeugt wird. Q Lemma 1.38. Wie in der Definition betrachten wir ein Produkt X = i∈I Xi aus topologischen Räumen mit Projektionsabbildungen πi . (i) Jede Projektionsabbildung πi ist stetig. 22 1.4 Konstruktion topologischer Räume (ii) Die Produkttopologie ist die gröbste Topologie auf X, für die alle πi stetig sind. (iii) Sei Y ein topologischer Raum und für jedes i ∈ I eine stetige Abbildung fi : Y → Xi gegeben. Dann gibt es genau eine stetige Abbildung g : Y → X, die Produktabbildung, mit πi ◦ g = fi für alle i ∈ I. In anderen Worten, das Diagramm g Y fi / X Projektionsabb. πi Xi kommutiert für jedes i ∈ I. Beweis. Das Urbild unter πi einer offenen Teilmenge von Xi ist ein Element der Subbasis (1.5) und damit offen in X. Hieraus folgt (i). Sei τ eine Topologie auf X bezüglich deren alle Projektionen stetig sind. Dann gilt πi−1 (U ) ∈ τ für alle offenen Teilmengen U ⊆ Xi . Also enthält τ die Subbasis (1.5) und damit auch die Produkttopologie auf X. Also ist (ii) bewiesen. Schliesslich wenden wir uns zu (iii). Wie in Lemma 1.34(iii) ist die Eindeutigkeit klar und legt g punktweise fest. Konkret, es muss g(y) = (fi (y))i∈I ∈ X für alle y ∈ Y gelten. Diese Abbildung erfüllt πi ◦ g = fi für alle i ∈ I. Es reicht also Stetigkeit von g zu zeigen. Dank Lemma 1.25 müssen wir nur überprüfen, dass g −1 (S) offen in Y ist für jedes Element S der Subbasis (1.5). Aber S = πi−1 (U ) für ein i ∈ I und eine offene Teilmenge U ⊆ Xi . Also ist g −1 (S) = g −1 (πi−1 (U )) = (πi ◦ g)−1 (U ) = fi−1 (U ) offen in Y, was zu zeigen war. Bemerkung. Eigenschaft (iii) im letzten Lemma heisst universelle Eigenschaft der Produkttopologie. Bemerkung. Das kartesische Produkt topologischer RäumeQXi wird jetzt, falls nicht anders erläutert, mit der Produkttopologie versehen und mit i Xi bezeichnet. Beispiele 1.39. Sei R mit der Standarttopologie versehen. (i) Die Produkttopologie auf Rm = R × · · · × R ist gleich der Standardtopologie auf Rm . (ii) Die Additions- und Multiplikationsabbildungen +, · : R × R → R sind stetig. Die Inversionsabbildung x 7→ x−1 ist eine stetige Abbildung R r {0} → R r {0}. 23 1 Grundbegriffe 2 (iii) Die Matrizen Matm (R) können wir mit Rm identifizieren. Auch hier sind Summation und Produktbildung (A, B) 7→ A + B und (A, B) 7→ AB stetige Abbildungen Matm (R) × Matm (R) → Matm (R), da sie von Polynomen beschrieben werden. Die Gruppe GLm (R) wird durch das Nichtverschwinden der Determinantenabbildung, ein Polynom in den Einträgen, charakterisiert. Also ist GLm (R) offen in 2 Rm . In der Teilraumtopologie definieren die Vorschriften (A, B) 7→ AB und A 7→ A−1 stetige Abbildungen GLm (R)2 → GLm (R) und GLm (R) → GLm (R). Definition 1.40. Eine topologische Gruppe ist eine Gruppe (G, ·, e),1 so dass G ein topologischer Raum ist wobei G×G→G (g, h) 7→ g · h und G→G g 7→ g −1 stetige Abbildungen sind. In den Beispielen 1.39 (ii) und (iii) haben wir (R, +, 0), (Rr{0}, ·, 1) und (GLm (R), ·, En ) als topologische Gruppen erkannt. 1.4.3 Die Quotiententopologie Das dritte (und wichtige) Beispiel definiert eine Topologie auf den Klassen einer Äquivalenzrelation. Beispiel 1.41. Auf den reellen Zahlen R führen wir eine Äquivalenzrelation ∼ wie folgt ein. Es gilt x ∼ y genau denn, wenn x − y ∈ Z. Ausgehend von der Standardtopologie auf R werden wir nun eine Topologie auf den Äquivalenzklassen R/∼= R/Z einführen. Es wird sich zeigen, dass dieser topologische Raum zum Einheitskreis S 1 Homöomorph ist. Definition-Lemma 1.42. Sei X ein topologischer Raum und ∼ eine Äquivalenzrelation auf X. Die Menge der Äquivalenzklassen bezeichnen wir mit X/∼ und die Quotientenabbildung mit q : X → X/∼. Dann ist τ = {U ⊆ X/∼; q −1 (U ) offen in X} eine Topologie auf X/∼, genannt Quotiententopologie auf X. 1 G bezeichnet die Menge der Gruppenelemente, · ist die Verknüpfung und e ∈ G ist das Einselement 24 1.4 Konstruktion topologischer Räume Beweis. Wie üblich ist der Nachweis, dass es sich bei τ um eine Topologie handelt ein formales Spiel. Wir müssen lediglich die folgenden Identitäten benutzen ! ! [ [ \ \ q −1 (∅) = ∅, q −1 (X/∼) = X, q −1 Ui = q −1 (Ui ), und q −1 Ui = q −1 (Ui ) i i i i wobei Ui ein System von Teilmengen von X/∼ ist. Lemma 1.43. Sei ∼ eine Äquivalenzrelation auf einem topologischen Raum X und q : X → X/∼ die Quotientenabbildung. (i) Die Abbildung q ist stetig. (ii) Die Quotiententopologie auf X/∼ ist die feinste Topologie, so dass q stetig ist. (iii) Sei Y ein topologischer Raum und f : X → Y eine stetige Abbildung mit f (x) = f (x0 ) falls x ∼ x0 . Dann faktorisiert f durch die Quotientenabbildung. Präziser, es gibt genau eine stetige Abbildung g : X/∼→ Y mit g ◦ q = f , d.h. das Diagramm (1.7) X Quotientenabb. q f X/∼ ! g / Y kommutiert. Beweis. Teil (i) folgt direkt aus der Definition der Quotiententopologie. Ist τ eine Topologie auf X/∼ bezüglich deren q : X → X/∼ stetig ist, so ist q −1 (U ) offen in X für alle U ∈ τ . Aus der Definition der Quotiententopologie folgt hieraus, dass U offen in X/∼ ist. Also ist jede Menge in τ offen bezüglich der Quotiententopologie. Insbesondere ist τ gröber als die Quotiententopologie und hieraus folgt (ii). Um die Existenz in (iii) zu zeigen, setzen wir g(q(x)) = f (x) für x ∈ X. Da q surjektiv ist, und weil q(x) = q(x0 ) für x ∼ x0 gilt, ist g wohldefiniert als Abbildung X/∼→ Y . Wir müssen noch nachweisen, dass g stetig ist. Für eine offene Teilmenge U ⊆ Y ist f −1 (U ) = q −1 (g −1 (U )) offen in X, weil f stetig ist. Aus der Definition der Quotiententopologie folgt, dass g −1 (U ) offen in X/∼ ist. Also ist g stetig. Schliesslich folgt die Eindeutigkeitsbehauptung in (iii) aus der Tatsache, dass es nur eine Funktion g gibt, mit g(q(x)) = f (x) für alle x ∈ X. Bemerkung. Eigenschaft (iii) im letzten Lemma heisst universelle Eigenschaft der Quotiententopologie. Definition 1.44. Seien X und Y topologische Räume. Eine Abbildung f : X → Y heisst offen, falls f (U ) in Y offen ist für alle offenen Teilmengen U ⊆ X. Bemerkung. Eine stetige Bijektion ist genau dann ein Homöomorphismus, wenn sie offen ist. 25 1 Grundbegriffe Beispiele 1.45. Wir betrachten R mit der Standardtopologie. (i) Wie im ersten Beispiel dieses Abschnittes betrachten wir den Quotienten R/∼= R/Z wobei x ∼ x0 genau dann, wenn x − x0 ∈ Z. Wegen der universellen Eigenschaft faktorisiert die stetige Abbildung f : R → S1 f (x) = e2πix durch zu einer stetigen Abbildung g : R/Z → S 1 . Die Abbildung g ist surjectiv, da bereits f surjektiv war. Aber g ist auch injektiv, da e2πix = e2πiy genau dann, wenn x − y ∈ Z. Man kann sogar zeigen, dass g ein Homöomorphismus ist. Dazu müssen wir zuerst nachweisen, dass die Abbildung f offen ist. Die Intervalle (a, b) ⊆ R bilden eine Basis der Topologie auf R. Es reicht zu zeigen, dass f ((a, b)) offen in S 1 ist für alle reellen Zahlen a < b. Wegen f (x + x0 ) = f (x)f (x0 ) und f (1) = 1 können wir sogar annehmen, dass (a, b) = (−, ) gilt mit 0 < ≤ 1/2. D.h. wir können das Intervall (a, b) so verschieben, dass 0 in der Mitte liegt. Nun ist f ((−, )) offen in S 1. Sei nun U ⊆ R/Z offen, dann gilt wegen (1.7) g(U ) = f (q −1 (U )). Weil q stetig ist, ist q −1 (U ) offen in R. Weil f offen ist, ist das Bild dieser Menge unter f offen in S −1 . Also ist g(U ) offen. Hieraus folgt, dass g eine offene Abbildung ist. Also ist g wegen der Bemerkung oben ein Homöomorphismus. Insbesondere ist R/Z zum Einheitskreis homöomorph. (ii) Es gibt eine weitere Möglichkeit, den Einheitskreis S 1 zu als Quotienten zu präsentieren. Dazu führen wir auf [0, 1] die Relation x ∼ x0 ⇐⇒ x = x0 oder x, x0 ∈ {0, 1} ein. Im Quotienten X/∼ werden die Endpunkte des Einheitsintervalls [0, 1] verklebt. Die Abbildung f aus (i) faktorisiert ebenso hier, da f (0) = f (1). D.h. es gibt eine stetige Funktion g : [0, 1]/∼→ S 1 mit g ◦ q = f . Wie im ersten Beispiel beweist man, dass g eine Bijektion und sogar ein Homöomorphismus ist. (iii) Auf dem Einheitsquadrat [0, 1]2 führen wir die Äquivalenzrelation (x, y) ∼ (x0 , y 0 ) ⇐⇒ (x, y) = (x0 , y 0 ) oder (x, x0 ∈ {0, 1} und y = y 0 ) oder (y, y 0 ∈ {0, 1} und x = x0 ) oder {x, x0 } = {y, y 0 } = {0, 1}. D.h. zwei gegenüberliegende Kanten werden identifiziert. In den Übungen werden wir sehen, dass der Quotient [0, 1]2 /∼ zum Torus S 1 × S 1 homöomorph ist. 26 1.4 Konstruktion topologischer Räume (iv) Auf R2 führen wir die Äquivalenzrelation (x, y) ∼ (x0 , y 0 ) ⇐⇒ y = y0 ein. Die Projektion π1 : R2 → R auf die erste Koordinate ist konstant auf den Äquivalenzklassen. Sie faktorisiert wie im ersten Beispiel durch den Quotienten, d.h. g ◦ q = π1 für eine stetige Abbildung g : X/∼→ R. Die Abbildung g ist auch eine Bijektion und man kann den Argumenten in (i) folgend zeigen, dass g ein Homöomorphismus ist. Dazu muss man nur beobachten, dass π1 offen ist. Dies ist eine Konsequenz von der Bemerkung direkt nach der Definition der Produkttopologie. (v) In R2 betrachten wir die zwei Geraden X = R × {0, 1} = R × {0} ∪ R × {1} mit der Teilraumtopologie. Auf X führen wir die folgende Äquivalenzrelation ein (x, y) ∼ (x0 , y 0 ) ⇐⇒ (x, y) = (x0 , y 0 ) oder x = x0 6= 0. In Worten, wir identifizieren Punkte der zwei Geraden mit gleicher x Koordinate, ausser diese verschwindet. Der Quotient X/ ∼ sieht aus wie die reellen Zahlen, aber mit zwei Nullpunkten q(0, 0) und q(0, 1). Schauen wir uns die Situation etwas genauer an. Seien U und V Umgebungen in X/∼ von q(0, 0) resp. q(0, 1). Die Urbilder q −1 (U ) und q −1 (V ) sind offen in R × {0, 1} und enthalten (0, 0) resp. (0, 1). Es gibt also > 0 mit (−, ) × {0} ⊆ q −1 (U ) und (−, ) × {1} ⊆ q −1 (V ). Insbesondere gilt U ∩ V 6= ∅ da beispielsweise q(/2, 0) ein gemeinsamer Punkt dieser zwei Mengen ist. In X/∼ kann man die zwei Nullpunkten daher nicht durch hinreichend kleine offene Mengen trennen. Wir nehmen einige dieser Beispiele als Motivation für die nächste Definition. Definition 1.46. Sei X ein topologischer Raum und A ⊆ X eine Teilmenge. Wir definieren X/A als X/∼ wobei x ∼ x0 ⇐⇒ x = x0 oder x, x0 ∈ A. Beispiele 1.47. Wir betrachten R mit der Standardtopologie. (i) Im Quotienten R/[0, 1] wird das Interval [0, 1] zu einem Punkt kollabiert. Die durch : x < 0, x 0 : x ∈ [0, 1], f (x) = x−1 :x>1 27 1 Grundbegriffe definierte stetige Funktion f : R → R ist konstant auf [0, 1]. Daher faktorisiert sie durch eine stetige Funktion g : R/[0, 1] → R. Da f surjektiv ist, ist auch g surjektiv. Die Funktion g ist sogar bijektiv. Wir werden nun beweisen, dass g ein Homöomorphismus ist. Und dazu reicht es zu zeigen, dass g offen ist. Wir benutzen die Identität g(U ) = f (q −1 (U )) wobei q : R → R/[0, 1] die Quotientenabbildung bezeichnet. Nun ist V = q −1 (U ) offen in R und es gilt entweder V ∩ [0, 1] = ∅ oder [0, 1] ⊆ V entsprechend ob q(0) 6∈ U oder q(0) ∈ U . Das Bild unter f ist f (V ) = (V ∩ (−∞, 0)) ∪ (V ∩ {0}) ∪ (( V − 1} ) ∩ (0, ∞)). | {z {x−1; x∈V } Falls V ∩[0, 1] = ∅ so ist f (V ) offen. Im anderen Fall gibt es > 0 mit (−, 1+) ⊆ V . Wiederum sehen wir, dass f (V ) offen ist. (ii) Wie sieht es mit R/(0, 1) aus? Hier ist die Situation anders. Bezeichnet q : R → R/(0, 1) die Quotientenabbildung, so ist q −1 (U ) genau dann offen in R wenn U offen in R/(0, 1) ist. Sicher ist (0, 1) = q −1 (q(1/2)) offen in R, also ist die einelementige Menge q(1/2) (welche (0, 1) im Quotienten repräsentiert) offen in R/(0, 1). Da keine einelementige Menge von R offen ist, kann R/(0, 1) nicht zu R homöomorph sein. Definition-Lemma 1.48. Seien X und Y topologische Räume, die wir als disjunkt betrachten d.h. X ∩ Y = ∅, und X q Y ihre disjunkte Vereinigung. Dann definiert {U ⊆ X q Y ; U ∩ X offen in X und U ∩ Y offen in Y } eine Topologie auf X q Y . Beweis. Das Überprüfen der Axiome erfolgt in bekannter Weise. Bemerkung. Seien X und Y wie in der Definition. Die Inklusionsabbildungen X ,→ X q Y und Y ,→ X q Y sind stetig. Weiterhin gibt es auch hier eine universelle Eigenschaft. Diese Punkte werden in den Übungen behandelt. Wir werden X und Y als Teilmenge von X q Y betrachten. Die von X q Y auf X bzw. Y induziert Teilraumtopologie stimmt mit der gegebenen Topologie auf X bzw. Y überein. Wir verallgemeinern das Verkleben zweier Räume aus Beispiel 1.45(v). Definition 1.49. Seien X und Y topologische Räume, die wir als disjunkt betrachten, M eine Teilmenge von Y und f : M → X eine Abbildung. Die Verklebung von X und Y entlang f ist der Quotient X ∪f Y = X q Y /∼ wobei x∼x 0 ⇐⇒ x = x0 oder x ∈ X, x ∈ M, f (x ) = x oder x ∈ M, x0 ∈ X, f (x) = x0 oder x ∈ M, x0 ∈ f −1 (f (x)). 0 0 Entsprechend ist Beispiel 1.45(v) die Verklebung von R mit sich selbst entlang der Inklusion A = R r {0} ,→ R. 28 Index Abgeschlossene Menge, 10 Abschluss einer Menge, 11 Basis einer Topologie, 12 Basis eines topologischen Raums, 12 Basiselemente, 12 Boxtopologie, 22 Dichte Teilmenge, 11 Diskrete Topologie, 8 Einpunktiger Raum, 8 Feiner, 10 Gröber, 10 Homöomorphe topologische Räume, 18 Homöomorphismus, 18 Innere einer Menge, 11 Kofinite Topologie, 8 Quotiententopologie, 24 Rand einer Menge, 11 Standardtopologie auf R, 7 Standardtopologie auf Rn , 8 Stetige Abbildung, 15 Subbasis einer Topologie, 12 Subbasis eines topologischen Raums, 14 Teilraumtopologie, 20 Topologie, 7 Topologischer Raum, 7 Topologishe Gruppe, 24 Triviale Topologie, 8 Umgebung, 11 Universelle Eigenschaft der Produkttopologie, 23 Universelle Eigenschaft der Quotiententopologie, 25 Universelle Eigenschaft der Teilraumtopologie, 21 Leerer Raum, 8 Metrik, 9 Metrischer Raum, 9 Metrisierbar, 9 Verklebung zweier topologischer Räume, 28 zweites Abzählbarkeitsaxiom, 13 Offene Abbildung, 25 Offene Kugel, 14 Offene Menge, 7 Potenzmenge, 8 Produktabbildung, 23 Produkttopologie, 22 Punktweise Konvergenz, 6 29