Wie ist die Treibkraft definiert und was sagt sie aus? Treibkraft = 0: Zustand des Gleichgewichts bzw. der Stabilität: Sei G die Gibbs’sche Freie Enthalpie. Welche Phase liegt vor, wenn Gfest − Gschmelze < 0 Spontanes Schmelzen Spontane Erstarrung (G ist ein Stabilitätsmaß) Warum sinkt die Gibbs’sche Freie Enthalpie mit steigender Temperatur? Mit steigender Temperatur steigt auch die Entropie G nimmt also mit steigender Temperatur ab, die Steigung der Kurve G(T) ist −S. Was ist die Entropie? W… Zustandswahrscheinlichkeit kB… Boltzmann-Konstante Die Entropie (S) ist ein Maß für die Unordnung eines Systems: Wo ist die Entropie höher: im Festkörper, der Schmelze oder im Gas? Was versteht man unter Allotropie? Allotropie: Erscheinung, wenn chemisches Element im gleichen Aggregatzustand in mehreren Strukturformen auftritt (z.B. Fe, C). Wo liegen die allotropen Haltepunkte des Eisens? Allotrope Haltepunkte bei Eisen: α -> γ: γ -> δ: 911°C 1392°C Betrachten Sie folgendes Blei-ZinnZustandsdiagramm: Welche Linien in dem Zustandsdiagramm sind 1. Soliduslinien, 2. Liquiduslinien, 3. Die Löslichkeitsgrenze von Zinn in festem Blei, 4. Die Löslichkeitsgrenze von Blei in festem Zinn? Liquiduslinie (2) Soliduslinie (1) Löslichkeitsgrenze von Zinn in festem Blei (3) Die Löslichkeitsgrenze von Blei in festem Zinn (4) Betrachten Sie folgendes Blei-ZinnZustandsdiagramm: Betrachten Sie eine Legierung mit 30 Masse-% Zinn. 1. Wie viel Masse-% Zinn sind bei einer Temperatur von 225°C in der Schmelze gelöst? 2. Wie groß ist der Sn-Gehalt in der αPhase? 3. Wie groß ist der Phasenanteil der Schmelze PS an dem Zweiphasensystem? 4. Wie viel Atom-% Zinn enthält die eben betrachtete Legierung mit 30 Masse-% Zinn? 1) Masse-% Zinn in Schmelze gelöst: 2) Masse-% Zinn in der α-Phase: 3) Phasenanteil der Schmelze 4) Atom-% Zinn: Wie lautet die Gibbs’sche Phasenregel? Wie lautet die modifizierte Gibbs’sche Phasenregel für p =const.? Gibbs‘sche Phasenregel: Modifizierte Gibbs‘sche Phasenregel (falls p = konst.): F… Anzahl Freiheitsgrade (Anzahl Zustandsgrößen (wie x, c, T, p), die veränderbar sind ohne P zu verändern) P… Anzahl Phasen (s, f, α, β, etc.) K… Anzahl Komponenten Was ist eine Konode? Konode: Linie im Phasendiagramm (waagrecht), verbindet die im Gleichgewicht befindlichen Zusammensetzungen der beiden Phasen. Dient zur Bestimmung der beiden Phasen (-> Hebelgesetz) Konode 1. Wie lautet eine eutektische Reaktion für ein Zweistoffsystem A, B? 2. Wodurch zeichnet sich ein Eutektikum aus? 3. Warum ist es von großer technischer Bedeutung? 4. Wo finden Sie im Fe-Fe3C Schaubild einen eutektischen Punkt, und was ist dessen technische Relevanz? 1. Eutektische Reaktion: 2. Eutektikum: Dreiphasen Gleichgewicht: • Eindeutig bestimmbarer Schmelzpunkt • Schmelzpunkt ist der niedrigste aller Mischungen aus denselben Bestandteilen 3. Technische Bedeutung: • Feines, gleichmäßiges Gefüge • Schmelzpunkt unter dem der reinen Metalle -> typische Lötlegierung, wirtschaftliches Einschmelzen • U.a. glattwandige Erstarrung der Schmelze -> große gießtechnische Bedeutung 4. Eutektikum des Fe-C-Systems bei 4,3 % Kohlenstoff, 1147°C (Ledeburit) • Gusseisen vorzugsweise eutektisch 1. Wie lautet eine eutektoide Reaktion für ein Zweistoffsystem A, B ? 2. Wodurch zeichnet sich ein Eutektoid aus? 3. Wo finden Sie im Fe-Fe3C Schaubild einen bedeutenden eutektoiden Punkt und was ist dessen technische Relevanz? 1. Eutektoide Reaktion: 2. Phasenübergang im festen Zustand 3. Eutektikum des Fe-C-Systems bei 0,8 % Kohlenstoff, 723°C (Perlit) • Umwandlung von Fe-C-Mischkristallen (γ) zu Perlit • Fein ineinander verteilte Phasen 1. Wie lautet eine peritektische Reaktion für ein Zweistoffsystem A, B? 2. Wodurch zeichnet sich ein Peritektikum aus? 1. Peritektische Reaktion: 2. Flüssige Phase S und feste Phase α befinden sich im thermodynamischen Gleichgewicht mit fester Phase β Skizzieren Sie das Eisen-Kohlenstoff-Phasendiagramm im Bereich Kohlenstoffgehalt < 2 Masse-%, Temperatur < 1147◦C. Benennen Sie die auftretenden Phasenbereiche und geben Sie charakteristische Temperaturen sowie Kohlenstoffgehalte an. Das Fe-Fe3C-Diagramm Diskutieren Sie das metastabile FeFe3C-Schaubild. • Kohlenstoff im gebundener Form (Fe3C bzw. Zementit) • Kohlenstoffgehalt von 0 bis 6,67 % (entspricht 100% Zementit) • Die Linien stellen die zu anderen Temperaturen verschobenen Haltepunkte bzw. Knickpunkte dar und grenzen die einzelnen Phasenfelder voneinander ab • Stahl: Fe mit <2,06 % C • Gusseisen: Fe mit >2,06% C Was ist Perlit? Erklären Sie die plattenartige Struktur. • Perlit ist ein lamellar angeordneter, eutektoider Gefügebestandteil des Stahles • Gefüge verarmt lokal an Kohlenstoff, welcher sich durch Diffusion an den Nachbargebieten sammelt -> Abwechslung von C-reichen und C-armen Gebieten => Lamellen − C-arm: ab 0,02% C klappt Gefüge in Ferrit (α) um − C-reich: steigt bis 6,67% C -> Sekundärzementit Warum ist die Löslichkeit von C im Austenit höher als im Ferrit? Im Kubisch Raumzentrierten Gitter (krz) von Ferrit (α) hat die größte Gitterlücke einen Radius r= 0,36 Angström. Im Kubisch Flächenzentrierten Gitter (kfz) von Austenit (γ) hat die größte Gitterlücke einen Radius von r=0,52 Angström und ist somit größer als im KRZ Ferrit Was versteht man unter Sekundärzementit? Sekundärzementit (Fe3CII) entsteht nicht primär aus der Schmelze, sondern durch Ausscheidung aus dem Austenit (Tertiärzementit (Fe3CIII) entsteht durch Ausscheidung aus Ferrit) Warum sollte die Ausscheidung von Sekundärzementit an den Korngrenzen vermieden werden? • Korngrenzenzementit hat Einbußen der Festigkeit zur Folge (Gefüge wird porös), entsteht bei Stahl mit mehr als 0,8 % Kohlenstoff (sog. übereutektoider Stahl) • Stahl wird dagegen auch härter Was versteht man unter Diffusion? Diffusion: Vorgänge des Stoff- bzw. Materialtransports, verbunden mit der Wanderung von Atomen, Ionen, Molekülen in Gasen, Flüssigkeiten und Festkörper => Thermisch aktivierte Platzwechsel Nennen Sie drei Diffusionsmechanismen. Platzwechselmechanismus Leerstellenmechanismus Zwischengittermechanismus Oberflächendiffusion Korngrenzendiffusion (Oberfläche = „sehr viele Leerstellen“) (Korngrenzen = „große Zwischengitterplätze“) Was versteht man unter pipe-diffusion (Schlauchdiffusion)? Pipe-Diffusion (Schlauchdiffusion): Erhöhter Diffusionskoeffizient entlang der aufgelockerten Gitterstruktur im Zentrum von Versetzungen Wie lauten das 1. und 2. Fick’sche Gesetz, und wann werden diese jeweils verwendet? 1. Fick‘sche Gesetz j(x)… Teilchenstrom, Diffusionsstrom [Atome/m²s] D… Diffusionskoeffizient [m²/s] c… Konzentration [Atome/m³] dc/dx…Konzentrationsgradient (<0) Beschreibt die Geschwindigkeit des Diffusionsvorgangs in x-Richtung. 2. Fick‘sche Gesetz Beschreibt die Änderung des Konzentrationsprofils in x-Richtung mit der Zeit (für D=konst. -> unabhängig von c) Warum ist der Diffuionskoeffizient von z.B. H, C, Fe im krz-Gitter größer als im kfz-Gitter? Packungsdichten: kfz: 0,74 krz: 0,68 Packungsdichte von kfz größer als von krz, daher Diffusion im krz-Gitter günstiger. Warum weisen peritektisch erstarrte Kristalle starke Konzentrationsschwankungen auf? Am Beispiel des Fe-C-Diagramms: Schmelze und feste δ-Phase reagieren am Peritektikum miteinander bis fester γMischkristall entsteht. Der neu entstehende GammaMischkristall lagert sich um den bestehenden δ -Mischkristall herum an -> der angelagerte γ -Mischkristall wirkt als Diffusionsbarriere ( ) Beschreiben Sie mögliche Keimbildungsmechanismen. Homogene Keimbildung: • erfolgt im freien Raum (Schmelze) • statistisches Zusammentreffen von Teilchen Heterogene Keimbildung: • Keimbildung an schon vorhandenen Oberflächen (z.B. Korngrenzen) oder Teilchen • diese wirken als Keimbildungskatalysator Welche Bedingung muss erfüllt sein, damit ein zufällig gebildeter Keim ‚überlebt’? Keim benötigt mindestens kritischer Keimradius Wie können Sie die Keimbildungsrate beeinflussen? Einfluss auf Keimbildungsrate haben: • Temperatur • Versetzungskonzentration • Fremdatome Was versteht man unter einer martensitischen Umwandlung und unter welchen Bedingungen kann sie erfolgen? Martensitische Umwandlung: • Diffusionslose Phasenumwandlung im Festkörper Bedingung: • Temperaturänderung bei Abkühlung so rasch, dass Diffusion ausgeschaltet wird (Umwandlungsgeschwindigkeit nahezu die Schallgeschwindigkeit des Kristalls) Wie verändert sich die Kristallstruktur bei der martensitischen Umwandlung des Eisens qualitativ? Umwandlung von kfz (γ, Austenit) in trz (α’, Martensit) und krz (α, Ferrit) Worauf basiert die große Härte des Martensits in Fe-C-Legierungen? Umgewandelte Bereiche sind stark verspannt -> wirkungsvolle Versetzungshindernisse Was bedeuten die Abkürzungen Ms und Mf und wovon sind die Größen abhängig? Ms: Martensitbildung-Starttemperatur Mf: Martensitbildung-Endtemperatur (f: finish) Abhängig vom C-Gehalt: Die Wärmebehandlung eines Stahls liefert ein Gefüge aus Martensit und Restaustenit. Was müssen Sie tun, um den Martensitanteil zu erhöhen? Stahl über Ms erhitzen und anschließen unter Mf abschrecken! Erläutern Sie Unterschiede und Anwendungsfälle für kontinuierliche und isotherme ZTU-Schaubilder Kontinuierliche ZTU-Schaubilder: • Festlegung von Wärmebehandlung bei kontinuierlicher Ab-kühlung • Bestimmung von Gefügeanteilen • Bestimmung der Härte des Gefüges am Ende der Ab-kühlung Isotherme ZTU-Schaubilder: • Bestimmung von Umwandlungszeiten • Härte nach isothermer Wärmebehandlung Welche festigkeitssteigernden Mechanismen kennen Sie? Welcher physikalische Mechanismus bewirkt jeweils die Festigkeitssteigerung? Geben Sie formelmäßig an, welche Festigkeit bzw. Festigkeitssteigerung jeweils erwartet werden kann. Erläutern (definieren) Sie die verwendeten Symbole. Bezeichnung Physik. Mechanismus σ bzw. Δσ Mischkristallhärtung Mischkristallhärtung ~ √c Kaltverfestigung Versetzungshärtung ~ √ρ Kornfeinung Feinkornhärtung ~ 1/√d Ausscheidungshärtung Ausscheidungshärtung ~ √VT∙rT und ~1/(Λ-2rT) Dispersionshärtung Dispersionshärtung ~ 1/(Λ-2rT) c… Konzentration der im Gitter gelösten Fremdatome ρ... Dichte der Versetzungen d… mittlere Korngröße VT… Volumenanteil der als Teilchen ausgeschiedene Fremdatome rT… mittlere Teilchenradius Λ… mittlere Teilchenabstand Erläutern Sie die Wirkung von Fremdatomen auf die Werkstofffestigkeit. Geben Sie jeweils Beispiele von Elementpaarungen an, welche (a) Substitutionsmischkristalle und (b) Einlagerungsmischkristalle bilden. Zwischengitter-/Substitutionsatome verzerren das Kristallgitter und behindern somit die Gleitbewegung im Kristall -> Gleitbewegungen müssen Gleitebene wechseln, dies erfordert höhere Energie => Verfestigung a) Substitutionsmischkristalle, z.B.: • Ni-Au • Fe-Cr • Al-Si b) Einlagerungsmischkristalle, z.B.: • Fe – C, N, O, H • Ti – C, V, O, H Warum ist Lithium als Legierungselement für Aluminium interessant? Hohe E-Modul-Steigerung bei geringem Li-Gehalt. Erläutern Sie die hohe theoretische Schubspannung des perfekten Kristalls. Warum ist der perfekte Einkristall dennoch nicht die Lösung für die Suche nach höchstmöglicher Festigkeit technischer Werkstoffe? Perfekter Kristall: • keine Gitterfehler, keine Korngrenzen, keine Versetzungen Versetzungen können nicht entstehen bzw. gleiten Einkristall nicht möglich bzw. nicht in großen Mengen produzierbar. Nennen Sie Voraussetzungen für Ausscheidungshärtung. Voraussetzungen für Ausscheidungshärtung: • Mischkristallbildung (z.B. B gelöst in α-Mischkristall) • Abnehmende Löslichkeit mit sinkender Temperatur • Bildung einer Ausscheidungsphase (z.B. β, oft AxBy) Erläutern Sie die Versetzungsmechanismen, die die Festigkeitssteigerung bei ausscheidungsgehärteten Werkstoffen beschreiben und quantifizieren Sie diese. Unterscheiden Sie zwischen kohärenten und inkohärenten Ausscheidungen. Wie entwickeln sich die Mechanismen im Laufe der Zeit? Kelly-Fine-Mechanismus: Schneiden von kohärenten Ausscheidungen Orowan-Mechanismus: Umgehen von inkohärenten Ausscheidungen Erläutern Sie den Unterschied zwischen Ausscheidungs- und Dispersionshärtung. Dispersionshärtung: • Ausscheidungen verteilen sich flächenförmig um Korngrenzen verhindert Korngrenzen-Gleitung Ausscheidungshärtung: • feinverteilte Ausscheidungen Hindernis für Versetzungen Beurteilen Sie, ob folgende Aussagen korrekt sind: x x x x x x x x Beurteilen Sie die Richtigkeit folgender Aussagen zum Restaustenit: x x x x x Welche Wärmebehandlungsprozesse können Kohlenstoff-Stähle prinzipiell durchlaufen? • Beseitigung der Kaltverfestigung durch Rekristallisationsglühen • Korngrößenänderung durch Grobkornglühen und Normalglühen • Verbesserung der Verformbarkeit durch Weichglühen • Entfestigung für eine verbesserte spanende Formgebung durch Weichglühen und Grobkornglühen • Ausgleich von Gefügeinhomogenitäten durch Diffusionsglühen • Beseitigung von Eigenspannungen durch Spannungsarmglühen • Erhöhung der Werkstofffestigkeit durch Härten, Anlassen und Einsatzhärten