Abi 94 AUFGABE II 2 In einem kartesischen Koordinatensystem sind

Werbung
Abi 94
AUFGABE II 2
In einem kartesischen Koordinatensystem sind die Punkte A (-3/8/1), B(6/- 4/12)
und C(0/4/3) sowie die Ebene E1: 2x1 + x2 + 2x3 = 6 gegeben. Die Ebene E2 enthält
die Punkte A, B und C.
a) Bestimmen Sie eine Koordinatengleichung von E2.
Unter welchem Winkel schneiden sich E1 und
E2? Stellen Sie die Ebenen E1 und E2 mit Hilfe
ihrer Spurgeraden in einem Koordinatensystem
dar. (Längeneinheit l cm; Verkürzungsfaktor in
1
x1-Richtung
2)
2
Bestimmen Sie eine Gleichung der
Schnittgeraden s von E1 und E2. Zeichnen Sie s
in das vorhandene Koordinatensystem ein
 3
 − 3
 
 
(Teilergebnisse: E2 : 4x1 + 3x2 = 12; s: x =  0  + t ⋅  4 
0
 1 
 
 
12 VP
b) Zeigen Sie, daß die Kugel K: (x1 + l)2 + (x2 - 2)2 + (x3 - 6)2 = 4 die Ebenen E1 und E2
berührt, und berechnen Sie die Koordinaten des Berührpunktes auf E2. Bestimmen Sie eine
Koordinatengleichung der Ebene W, die die Schnittgerade s aus Teilaufgabe a) und den
Mittelpunkt von K enthält.
Begründen Sie ohne weitere Rechnung, daß W Symmetrieebene des Ebenenpaares E1, E2
ist.
8 VP
(Teilergebnis: W: 11x1 + 7 x 2 + 5 x3 − 33 = 0 )
c) Die Kugel K aus Teilaufgabe b) rollt nun in einer Rinne, deren Seitenflächen in den
Ebenen E1 und E2 liegen. Diese rollende Kugel wird durch eine Kugelschar beschrieben.
Geben Sie eine Gleichung für diese Kugelschar an.
Eine weitere in der Rinne liegende Kugel K* mit Radius r* wird in ihrem Berührpunkt
B(6/-4/12) auf E2 befestigt.
Bestimmen Sie den Mittelpunkt und den Radius r* von K*.
10 VP
Zeigen Sie, dass die rollende Kugel nicht mit K* kollidieren kann.
Herunterladen