Zellbiologie_Zusa

Werbung
Zellbiologie
Zellbiologie
Inhaltsverzeichnis
Bausteine der Zelle ....................................................................................................................... 4
Proteine ............................................................................................................................................... 4
Primärstruktur ................................................................................................................................. 4
Sekundärstruktur ............................................................................................................................. 4
Tertiärstruktur ................................................................................................................................. 4
Quartärstruktur ............................................................................................................................... 5
Nukleinsäuren ..................................................................................................................................... 5
Basen ............................................................................................................................................... 5
Zucker .............................................................................................................................................. 5
Nucleotid ......................................................................................................................................... 5
DNA.................................................................................................................................................. 5
DNA Replikation ........................................................................................................................... 6
Beginn der Replikation ........................................................................................................................ 6
Synthese der DNA................................................................................................................................ 6
Okazaki-Fragmente.......................................................................................................................... 6
Trennen der DNA-Stränge ................................................................................................................... 6
Transkription................................................................................................................................ 7
Die 3 Phasen der Transkription ........................................................................................................... 7
Prokaryonten ....................................................................................................................................... 7
Eukaryonten .................................................................................................................................... 7
RNA processing & export .............................................................................................................. 8
5‘ Capping ............................................................................................................................................ 8
3‘ Polyadenylierung ............................................................................................................................. 8
Splicing................................................................................................................................................. 8
Genetischer Code & Translation .................................................................................................... 9
benötigte Proteine/RNAs .................................................................................................................... 9
Initiation .............................................................................................................................................. 9
Elongation: 4 Translationsschritte ..................................................................................................... 10
Termination ....................................................................................................................................... 10
Proteinabbau im Cytosol ............................................................................................................ 11
Faltungsprozess ................................................................................................................................. 11
Zellzyklus & Mitose .................................................................................................................... 12
Phasen der Mitose............................................................................................................................. 12
1
Zellbiologie
1.
Interphase ............................................................................................................................. 12
2.
Prophase ................................................................................................................................ 12
3.
Prometaphase ....................................................................................................................... 12
4.
Metaphase............................................................................................................................. 12
5.
Anaphase ............................................................................................................................... 12
6.
Telophase .............................................................................................................................. 12
7.
Cytokinese ............................................................................................................................. 12
Centrosomen ..................................................................................................................................... 12
Kinetochor ......................................................................................................................................... 13
Anaphase ....................................................................................................................................... 13
Cytokinese ......................................................................................................................................... 13
Kontrollsystem des Zellzyklus ............................................................................................................ 13
Structure, Function & Biogenesis of cellular Organelles ............................................................... 14
General Organisation ........................................................................................................................ 14
Origin of organelles ........................................................................................................................... 14
Plasma membrane: example of an organelle membrane ................................................................. 14
Sorting (how do proteins find their appropriate location)................................................................ 15
Endoplasmatic reticulum (ER) ........................................................................................................... 15
Golgi complex .................................................................................................................................... 16
Exocytosis .................................................................................................................................. 17
Transport-routes in the exocytic pathway ........................................................................................ 17
Exit from the ER ................................................................................................................................. 17
Protein-Foldung, Olgomerization & Transport-Competence ........................................................ 17
Retention of Proteins in the ER ..................................................................................................... 17
Biochemical approach in the intact cell (to study exocytosis) ...................................................... 17
Morphological approach ............................................................................................................... 17
Genetic approach .......................................................................................................................... 17
From the ER to the Golgi ................................................................................................................... 18
Budding.......................................................................................................................................... 18
Docking .......................................................................................................................................... 18
Fusion ............................................................................................................................................ 18
Snares ............................................................................................................................................ 18
Membrane transport in the early secretory pathway................................................................... 18
Protein sorting in the TGN (Trans-Golgi network) ............................................................................ 18
3 Transport routes from the Golgi (TGN) ...................................................................................... 18
Endocytosis ................................................................................................................................ 19
Structure of the endocytic Pathway .................................................................................................. 19
Coated Pits / Coated Vesicles ............................................................................................................ 19
2
Zellbiologie
Coated Vesicles.............................................................................................................................. 19
Receptor-mediated Endocytosis & Cholesterole .............................................................................. 19
Endocytosis motives & receptor fates .............................................................................................. 20
Receptor fate ................................................................................................................................. 20
Endocytosis & virus infection ............................................................................................................ 20
Transcytosis ....................................................................................................................................... 21
Phagocytosis ...................................................................................................................................... 21
Cavolae .............................................................................................................................................. 21
Experiment: Caveolin-I knock out mice ......................................................................................... 21
Cytoskeleton .............................................................................................................................. 22
Microtubules (MT)............................................................................................................................. 22
Structure ........................................................................................................................................ 22
Movement of Cilia ......................................................................................................................... 22
Organelle Transport along MT ...................................................................................................... 22
Dynamic Instability ........................................................................................................................ 23
Cell control of MT .......................................................................................................................... 23
MT in cell division .......................................................................................................................... 23
Microfilaments .................................................................................................................................. 23
Actin, Myosin & muscle motion .................................................................................................... 23
Intermediate filaments .................................................................................................................. 24
Cell contacts, extracellular matrix & tissue organization .............................................................. 25
Cell contacts ...................................................................................................................................... 25
Tight junctions ............................................................................................................................... 25
Anchoring contacts ........................................................................................................................ 25
Gap junctions................................................................................................................................. 25
Extracellular matrix ........................................................................................................................... 25
Collagen ......................................................................................................................................... 26
Elastin ............................................................................................................................................ 26
Fibronectin .................................................................................................................................... 26
Glycosaminoglycans & Proteoclycans ........................................................................................... 27
Bridging the ECM and the cytoskeleton ........................................................................................ 27
Cell-Cell contact: main concepts ....................................................................................................... 27
extracellular matrix: important concepts.......................................................................................... 27
Tissues & Organes ............................................................................................................................. 27
3
Zellbiologie
Bausteine der Zelle
Übersicht
 Proteine (Enzyme, Strukturproteine…)
o Untereinheit: Aminosäuren
 Nukleinsäuren (DNA, RNA)
o Untereinheit: Nukleotide
 Membrane (Plasma, ER, Golgi, …)
o Untereinheit: Lipide ( Fettsäuren)
 Polysaccharide
o Untereinheit: Zucker
Proteine
Aminosäure:
(kommt nur in L-Form vor, nicht D)
Glutamic acid (Glu, E) fängt Ammoniak ab
Essentielle AS: Ile, Leu, Lys, Met, Phe, Thr, Trp, Val (können wir nicht selbst produzieren)
Fusion von Aminosäuren:
 Neue Aminosäure immer an C-Seite angehängt
 lineares Peptidrückgrad
Primärstruktur
nichtkovalente Bindungen zwischen Seitenketten
 ionische Wechselwirkungen
 Wasserstoffbrücken
 van der Waals
hydrophobe Seitenketten werden im Inneren des Proteins versteckt
Disulfidbrücken bei Cystein
 intermolekular
 intramolekular
Sekundärstruktur


α-Helix
o Prolin: „helix breakers“
 Ende der α-Helix
β-Faltblatt
o Wasserstoffbindungen
Tertiärstruktur
„funktionelle Domänen“  Mischung aus mehreren α und/oder β Strukturen
könnte an sich alleine sein  stabil
4
Zellbiologie
Quartärstruktur
 mehrere identische oder unterschiedliche Tertiärstrukturen
Spezifische Bindung eines Moleküls (Ligand) an ein Protein: Protein kann aufgrund Ligand
Konformation ändern (z.B. GTPase)
Nukleinsäuren
Base + Zucker = Nukleosid
Base + Zucker + Phosphat = Nukleotid
Basen
Zucker
Nucleotid
ATP: adenosine triphosphat
ADP: adenosine diphosphat
AMP: adenosie monophosphat
analog bei anderen Basen
adenosine: ribose + adenin  Nukleosid
DNA



Wasserstoffbrücken zwischen Basenpaaren (AT: 2, GC: 3)
kleine / grosse Furche bei Doppelhelix
DNA ist um Nucleosomen (Histone) gewickelt
 muss zur Transkription gelockert werden
Unterschiede von RNA
 Uracil statt Thymin
 OH-Zucker statt H
 einzelsträngig (meistens, Doppelstrang auch möglich)
 Intramolekulare Basenpaarung, Bsp: tRNA
5
Zellbiologie
DNA Replikation
zirkuläres Chromosom: Replikationsgabeln laufen in entgegengesetzter Richtung.
Anfang, an dem die Replikation stattfinden kann: Replikationsorigin
Die DNA-Replikation ist semikonservativ  1 alter & 1 neuer Strang pro neue DNA-Doppelhelix
Beginn der Replikation
DNA-Primase erzeugt einen RNA-Primer an der Origin (ca. 10 Nucleotide). Auf diesen Primer kann
sich die DNA-Polymerase setzten
Grund für den Primer: am Anfang passieren viele Fehler. Mit dieser Methode wird der Primer
nachher entfernt und neu gemacht
Synthese der DNA
Ablesen:
3‘ -> 5‘
DNA-Synthese: 5‘ -> 3‘
Okazaki-Fragmente
Primer wird (meist) entfernt, bevor nächstes Okazaki-Fragment an diese Stelle kommt  kann bis
ans Ende laufen
 sealing der verschiedenen Okazaki-Fragmente mit DNA-Ligase (relativ reparaturbedürftig)
Trennen der DNA-Stränge
zuständiges Protein: DNA-Helikase
Einzelstrang-bindende Proteine verhindern, dass die aufgetrennte DNA Sekundärstrukturen bildet
( v.a. beim Folgestrang wichtig)
6
Zellbiologie
Transkription
zuständiges Protein: RNA-Polymerase
 DNA-Sequenzen zwischen Genen regulieren, wie, wann, wie oft Gene abgelesen werden.
 Transkription macht mehr Fehler, weil es keine Korrekturmechanismen gibt
 Transkriptionseinheiten sind oft verschieden orientiert. Die Richtung der Transkription kann
von Gen zu Gen wechseln
 Start-Codon: ATG
Die 3 Phasen der Transkription



Initiation
o RNA Polymerase findet Promoter (Anfang des Gens) mittels
 σ-Faktor bei Bakterien (dockt am Anfang & Ende des Promoters an)
 TATA Box bei Eukaryonten
o trennt DANN am start (Transcription bubble)
o erzeugt initial rNTPs
Elongation
o RNA wird in Richtung 5‘-3‘ erzeugt (DNA in Richtung 3‘-5‘ gelesen)
Termination
o bei Stopsequenz wird RNA freigelassen, RNA Polymerase geht von DANN weg
Prokaryonten
in Operons strukturiert
Kontrolle über Transkription
 negati v  Repressor-Proteine
 positiv  Aktivator-Proteine
Eukaryonten
gleiches Prinzip wie bei Prokaryonten, nur etwas komplizierter
TFIID
- TBP  erkennt TATA Box
TFIIB
 positioniert RNA-Polymerase
TFIIF
 stabilisiert InteraktionRNA Pol ym. – TBP/TFIIB
 zieht TFIIE & TFIIH an (reguliert TFIIH)
TFIIE
 zieht TFIIH an & reguliert es
TFIIH
 entwirrt DANN am Start
 befreit RNA Polymerase von Promoter
Kontrolle über Transkription im Eukaryonten immer über
Aktivator!
7
Zellbiologie
RNA processing & export
Bei Eukaryonten wird das primäre Transkript modifiziert, bevor es den Kern verlässt
1. Capping
2. Polyadenylierung
3. Splitting
5‘ Capping
alle mRNAs im Eukaryonten müssen gekappt werden
5‘-5‘ Bindung ist einzigartig
3‘ Polyadenylierung
Poly-A Signal ist in der DNA codiert
ohne 3‘ Polayadenylierung wird mRNA abgebaut
Splicing
Introns werden aus Prä-mRNA entfernt
 Introns: intervenierende Sequenzen
 Exons: exprimierende Sequenzen
Introns erlauben Expression von verschiedenen Isoformen eines Proteins  1 Gen ≠ 1 Protein
katalysiert durch Spleissosom
Nach der Modifizierung wird die mRNA aktiv ins Cytosol transportiert, wo die Translation stattfindet
 5‘ & 3‘ Modifizierung erhöhen Lebensdauen von mRNA
8
Zellbiologie
Genetischer Code & Translation
Der genetische Code ist redundant (für gleiche Aminosäuren gibt es verschiedene Codons).
Er enthält auch keine „Kommas“  überlappend (CUCAG  CUC/AG, CU/CAG, C/UCA/G)
3 Stop-Codons: UAA, UAG, UGA
benötigte Proteine/RNAs
tRNA
C
G
A
U
G
C
U
U
A
G
I
C
A
U
C
G
I
A
U
I
G
C
U
U
A
G
I
 Bindung 1. & 2. Base stark, die 3. Bindung ist schwächer  an 3. Stelle muss nicht zwingend das
Komplement sein
Aminosäuren werden mit ATP und 2P adenyliert und unter Freilassung von AMP und D-ribose-adenin
an die tRNA gekoppelt (mittels 20 spezifischer tRNA-Aminoacylsynthenasen)
Ribosom:
eukaryontisch
 40 RNAs
 über 80 Proteine
rRNA



bildet zusammen mit Proteinen das Ribosom
katalysiert die Assemblierung der Aminosäuren in Polypeptiden
grosse und kleine ribosomale Untereinheiten haben unterschiedliche RNA
Initiation
kleine ribosomale Untereinheit erkennt Met( AUG-Sequenz)  gr. rib. Untereinheit kann andocken
9
Zellbiologie
Elongation: 4 Translationsschritte
- tRNA 2 tritt aus
- tRNA 4 tritt ein
- AS 3&4 werden
verbunden
- obere ribosomale
Untereinheit
bewegt sich
- untere ribosomale
Untereinheit
bewegt sich
Bei Bakterien kann das Transskript mehrere Ribosombindestellen haben, aus dem mehrere Proteine
entstehen
Termination
Rolle der 5’Cap & des 3‘-PolyA-Endes in der Translation: ringförmige Polyribosomen
(an 3’PolyA und 5’Cap binden jeweils Moleküle welche noch miteinander binden  Ring)
 mRNA kann von vielen Ribosomen gleichzeitig translatiert werden
 schnelles Recycling der Untereinheiten
10
Zellbiologie
Proteinabbau im Cytosol
Faltungsprozess




Ionen  irreversibel
N-Acetylierung (am N-Terminus)
N-Glycosylierung ( Zucker wird an Protein gehängt=
O-Gylcosylierung (bei Ser/Thy)
Falsche Konformationen können mithilfe von
Chaperonen korrigiert werden
 Hitzeschokproteine (hsp70
machinery)  erkennen u.a
hydrophobe Regionen
 Chaperonin (HSP60 Familie)
Unvollständig gefaltete oder missgefaltete Proteine werden von Proteasomen im Cytoplasma
abgebaut. Zuvor werden sie entfalten.
 es entstheen Oligopepide von 4-24 AS
Ubiquitin ist Signal für Abbau (hat hydrophobes „Herzsstück, an HOOC-Ende können LysinSeitenketten andocken)
E1: Ubiquitin aktivierendes Element
E2: Ubiquitin konjugierendes Element
E3: Ubiquitin Ligase
 Polyubiquitylation
Abhängigkeiten bei der Konzentration eines Proteins
 Transkription
 Modifizierung des primären Transkripts
 Stabilität der mRNA
 Translation
 Faltung
 Proteinstabilität
11
Zellbiologie
Zellzyklus & Mitose
Start: hat eine Zelle diesen Punkt überschritten,
muss sie sich teilen
G1/G2: GAP’s
 trennen S & M – Phasen
Phasen der Mitose
1. Interphase
2. Prophase


Chromosomen-Kondensation
Ausenanderwachsen der duplizierten Centrosomen
3. Prometaphase



Auflösung der Kernmembran
Positionierung der Spindel
am Kinetochore können Mikrotubuli angreifen
4. Metaphase


Spindelausbildung
Chromosomen-Aufreihnung auf der Spindel  Metaphasenplatte
5. Anaphase
a) – Trennung der Schwesternchromatiden
– Bewegung der Schwesternchromatiden zu den beiden Polen
b) Pole gehen auseinander
6. Telophase

Dekondensation der Chromosomen & Bildung der Kernmembran
7. Cytokinese

Trennung der beiden Zellhälften durch den Artymesinring
Centrosomen
= Mikrotubuli-Organisationszentren (MTOCs)
1. Mikrotubuli
2. pericentrioläre Matrix
3. Centriolenpaare
Centrosomen verdoppeln sich 1x pro Zellzyklus (semikonservative Duplikation)
 Mutter- & Tochterzentriolen sind unterschiedlich (Mutter hat zusätzliche Strukturen)
12
Zellbiologie
Kinetochor
Das Kinetochor erlaubt die (De)Polymerisation von Tubulinuntereinheiten
Anbinden an Mikrotubuli:
Das Kinetochor bindet seitlich an ein astrales Mikrotuuli, das Chromosm slydet gegen den Spindelpol,
die Verbindung wird in eine vertikale umgewandelt
Anaphase
Chromatid wird zum Pol gezogen
 Depolymerisation vom +Ende des Kinetochor-Mikrotubulis
 Hilfsprozesse:
o ATP-betriebenes Motor-Protein  verstärkt Depolymerisation & Bewegung zum Pol
o Protein mit hoher Affinität zu polymerisiertem Tubulin  Bewegung wird verstärkt
bei Depolymerisation
 Trennung der Schwesternchromatiden erfolgt synchron, durch APC induziert
Cytokinese
 der „kontraktile Ring“ teilt die Zelle in 2 Teile
Der kontraktile Ring besteht aus Actin & Myosin Filamenten


tierische Zellen: Formveränderung während Teilung
Pflanzenzellen: Bildung einer neuen Zellwand mittels „Phragmoplasten“
Es gibt auch Zellteiliung ohne Cytokinese
Kontrollsystem des Zellzyklus
Das Zellzyklus-Kontrollsystem kann den Zyklus an zahlreichen Kontrollpunkten anhalten:
Cypline: Proteine, die periodisch im Zellzyklus auftreten
benötigt noch CdKs
 M-CdK  Trigger für Mitose (mitiotic Cdk + M-cyclin)
 S-CdK  Trigger für DANN-Replikation (S-phase CdK + S-cyclin)
 CdKs regulieren den Zellzyklus
CdK (Cyclin-abhängige Kinase): Zwei-Komponenten Kinase, deren Aktivität streng reguliert wird:
1. Phosphorylierung
2. Inhibitoren
3. Ubiquitylierung und Proteindegradation
13
Zellbiologie
Structure, Function & Biogenesis of cellular
Organelles
General Organisation
organelle
 Cytosol
 Nucleus
 ER

Golgi



Lysosomes
Endosomes
Mitochondrion
main function
Metabolic pathways, protein synthesis
Genome, DNA & RNA synthesis
Most lipid synthesis, synthesis of Proteins in
secretory pathway
Protein modification, sorting & packaging for
delivery to cell surface or another organelle
intracellular degradation
sorting of endocytosed material
ATP synthesis, Calcium storage, induction of
apoptosis
Origin of organelles


ER  membrane folded into inner side of the cell
Mitochondrium endosymbiosis
Plasma membrane: example of an organelle membrane
Funtions of the plasma membrane:
 permeability-barrier, defines smallest unit of life
 regulated or constitutive secretion, e.g. of hormones & enzymes
 uptake of nutriens (endocytosis), particles
(phagocytosis) and liquids (pinocytosis)
 signal transduction, e.g. hormonal signals
 Contact zone to the outside
o to other cells
o to the extracellular matrix
Self-organisation of phospholipids in water:
 Micelle
 Liposome
 Bilayer sheet
Main plasma lipids
 phospholipid
o cis doublebond:
lowers melting temperature  fluid in body
increase flexibility (if not there, fatty acids would attract each other)
 cholesterol
 glycolipids
 others, e.g. phosphoinositol
14
Zellbiologie
The membrane is flexible because lipids diffuse freely: interaction between lipids is low
the formation of the monolayer does not happen via mutual attraction of the lipids but via a
repulsive reaction adverse to the water
Almost all phospholipids feature at least one unsaturated fatty acid, which underlines the
importance of the flexibility
Permeability of an artificial lipid membrane
 pass: gases, small uncharged polar molecules, (water)
 not pass: large uncharged polar molecules (Glucose), Ions, charged polar molecules (AS, ATP)
Transport proteins:
1. Carrier
2. Ion channels
Anchoring of Proteins within the lipid bilayer
Sorting (how do proteins find their appropriate location)
2 Main Routes:
 Cytosol
 ER
Nucleus
nuclear envelope contains pores
Mitochondria
Import through special signal sequence
 rechognized by receptor protein on outer mitochondria membrane
 imported by protein translocator
 capping of signal sequence
Peroxisomes (detoxification, degradation of fatty acids, important for synthesis of special
phospholipids of myelin)
targeting sequens: C-terminal SKL-CCOH
Endoplasmatic reticulum (ER)
Main functions
 Protein synthesis (rough ER)
 glycosylation of proteins (rough ER)
 quality control of newly synthesized secretory proteins
 lipid & steroid synthesis (smooth ER)
 calcium storage: important for the transmission of extracellular signals into the cell
 detoxification of organic molecules, e.g. drugs (smooth ER)
15
Zellbiologie
Important challenges in membrane/secretory protein synthesis
 Targeting of nascent polypeptides to the ER membrane
o signal sequence of secretory proteins recognizes ER & guides protein through a
cannel in the ER
o signal sequence cleaved
o protein folding in ER
 all happens cotransalationally
 Attachment of carbohydrates to proteins  ER is site of the N-glycosylation of proteins
Function of N-Glycosilation
o folding
o stability
o quality control
o cell adhesion / ligand binding
o protein targeting
 Steps of biosynthesis of N-linked Oligosaccharides ( monosaccahrides linked through
glycosic bindings)
o assembly of a precursor oligosaccharide on the lipid carrier dolichol phosphate in ER
membrane
o cotranslational transfer of the oligosaccharide from precursor to the protein
o processing of the oligosaccharide by trimming & addition of new residues in ER/Golgi
 Quality control
1. Trimming two outermost residues by luminal glucosidases I & II  binding of protein
to calnexin & calreticulin (recognizes monoglucosylated oligosaccharides)
2. Glucosidase II removes remaining glucose residue  protein dissociates from these
lections
3. if incompletely folded, enzyme UDP-glycose is called: adds a glucose residue back in
original place  protein goes back to lectins
4. cycle till protein is folded  leaves ER unless is retained by other chaperones
Golgi complex
Main functions
 sorting station for proteins
- Golgi
- plasma membrane
- secretory granules
- Endosomes & Lysosomes
- retrograde transport to ER
 modification station for proteins
- glycosylation
- proteolytic cleavage
- phosphorylation
- sulphation
 lipid synthesis
- sphingomyelin
- glycolipids
O-Glycosilation
 Initialized in Golgi via Serine & Threonine
 sugars are transformed sequentially via glycosyl-transferases, one at a time!
 mucus of the gastro-enteral tract is heavily o-glycosylated
We don’t know whether the compartments of the Golgi are stable or maturate
16
Zellbiologie
Exocytosis
Transport-routes in the exocytic pathway
Exit from the ER
Protein-Foldung, Olgomerization & Transport-Competence


Folding (=tertiary structure)
o determined by primary structure
o requires enzymes & chaperones
o not properly folded molecules remain associated with chaperons
o defective folding induces degradation in the cytosol
Oligomerization (= quarternary structure)
o often required prior to ER export
Retention of Proteins in the ER
There is a return pathway from Golgi (cis-, stack- & trans-) to the ER. ER-proteins with KDE-signal are
recognized by a KDEL-receptor on the ER and are included in the ER again
Retention-signal: -X-Lys-Lys-X-X-COOH || -Lys-X-Lys-X-X-COOH (4 3 / 5 3)
Biochemical approach in the intact cell (to study exocytosis)
1. add radioactive precursor for short period (pulse)
2. wash out and replace with non-radioactive form of same precursor (chase)
3. at various intervals fix cells and determine location of radioactive molecules within cell by
auto radiography
Morphological approach



usage of GFP-conjugated reported proteins
usage of mutant molecules that accumulate at low temperature in the ER
upon shift to higher temperature, the molecules are transportet
Genetic approach
radiation / chemical mutation so that all proteins are stuck outside of ER
 isolate gene if this happens: which protein has been altered?
 you get the protein that imports proteins to ER
17
Zellbiologie
From the ER to the Golgi
3 Phases of vesicular transport
1) Budding
2) Docking of vesicles to target organelle
3) fusion of vesicle with target organelle
Budding
trigger: change of GTP to GDP by ARF
 ARF binds to membrane
Docking
fusion pore
binding between t- & v-SNARE form very tight complex
 membranes are pressed together  fusion
Fusion
NSF (N-Ethylmalemide-sensitive factor)
 makes proteins unfunctional
Snares
 v-SNARE: vesicular SNARE (vesicle SNAP receptor)
 t-SNARE: target membrane SNARE (target SNAP receptor)
essential for fusion (but maybe not only component)
With specific pairs of v-/t-SNARE, we ensure the protein goes from the ER to Golgi and nowhere else
 some ca 20 differen SNARE-pairs!
Membrane transport in the early secretory pathway
ER to Golgi
Golgi to ER


COP II vesicle
COP I vesicle
Protein sorting in the TGN (Trans-Golgi network)
3 Transport routes from the Golgi (TGN)
1. constitutive secretion
2. regulated secretion  hormones
3. Lysosomal transport  degradation
 mannose 6-phosphate (M6P) is attached  Phosphotransferase
 in subdomain of golgi: binding to M6P receptor
 in Lysosome low Ph  dissociation of phosphate
18
Zellbiologie
Endocytosis
Structure of the endocytic Pathway


Endocytosis (Pinocytosis): small vesicles
o Clathin-dependent endocytosis
o Clathin-independent endocytosis
o internalization vie Caveolae
Phagocytosis: large vesicles
< 150 nm
>150 nm
Coated Pits / Coated Vesicles
(similar to budding)
 bending initialized by Clathrin
 dynamine pinches the vesicle off (“squeezes neck”)
 adaptor only bindes if cargo is there (in most cases). If cargo & receptor binds, the receptor
often changes conformation so the adaptin recognizes it.
Clathrin triskeleton:
Coated Vesicles
Clatrhin & Adaptin I
COP I
COP II
Golgi
PM
ERGIC
Golgi
Endosome
ER
Lysosome via Endosome
Endosome
ER, Golgi
ER
Golgi via ERGIC
Receptor-mediated Endocytosis & Cholesterole
Defective LDL-receptor (low-density lipoprotein) function in familial Hypercholesterolemie
 too much blood cholesterol
 early onset arteriosclerosis
 death through Heart Attack at young age
mutations causing FH: 1)Synthesis 2)Transport ER->Golgi 3)Binding of LDL 4)Clustering in coated pits
19
Zellbiologie
Endocytosis motives & receptor fates
Endocytosis-signals in receptors
 NPXY
 YXXφ
X = any amino acid; φ= hydrophobic amino acid
 LL or LI
N-end extracellulary
C-end in cytoplasm
Receptor fate
Endocytosis & virus infection
green arrows: COP II dependen process
 viruses have SNARE-like glycoproteins
Cure: find out which glycoprotein a virus has & try to block them
20
Zellbiologie
Transcytosis
 brings material from one side of the cell to another
 secreted IgA: basolateral  apical (protein is first brought to basolateran membrane, then
packed in a coated pit again and transported by an endosome to the apical membrane,
where it’s released)
 maternal IgG: apical  basolateral
o very important in newborns!
Phagocytosis
 cells that eat
Important for
 Immune system
 Embryotic development
 Adult: clearing “old” cells & material
Cavolae
 don’t bind Clathing
 cholesterol-rich
Experiment: Caveolin-I knock out mice
proposed function
 endothelial transcytosis
 signaling
 lipid regulateion
caveolin-deficient mice
 lack of caveolae
 cardio vascular defects
 nitric oxide abnormalities
 lung pathology & physical weakness
 smaller
 nothing wrong with endocytosis!
21
Zellbiologie
Cytoskeleton
Cytoskeletal Elements
1. Micro filaments (actin)
2. Microtubules
3. Intermediate Filaments
Microtubules (MT)
Structure
Movement of Cilia
dynein-dependent Cilia-movement with ATP hydrolysis
 were the microtubules-doublets free, they would move
upwards
 are they held in cilium by cross links, they move sidewards
Organelle Transport along MT


Kyesins  to plus end
Dyneins  to minus ends
Cargos
 organelles (mitochrondria, endosomes, lysosomes(
 chromosomes
 ER, Golgi (positioning in cell)
 secretory vesicles (axonal transport in neurons)
Energy source: ATP
22
Zellbiologie
Dynamic Instability
During polymerization, both the α- & β-subunits of the tubulin dimer are bound to a molecule of
GTP. The GTP-bound to α-tubulin is stable, whether the GTP bound to β-tubulin may be hydrolyzed
to GDP shortly after assembly  prone to polymerization
The GTP-tubulins form a “cap” that stabilizes the microtubule. When GTP becomes limiting, the
microtubules disassemble & shrink rapidly
Cell control of MT
MTOC  MicroTubule Organisation Center (at minus end of microtubule)
MT length controlled through proteins that
 bind unpolymerized tubulin, e.g. Stathmin
 bind to free MT-ends & stabilize/destabilize MTs, e.g. Cathastrophin
Lateral stability is achieved through MAPs = Microtubule Associated Proteins, e.g. Tau
MT in cell division



segregation  mitiotic spindle, with aid of kiosin & dyenin
inactivation of MAPs through phosphorylation  microtubule dynamics increases
 equilibrium goes towards destabilization
Novel tubulin dimmers are attached at the +end in the kinetochor region  pushing
chromosomes to the central region of the cell
Microfilaments
Actin, Myosin & muscle motion
Skeletal muscle cells:
 can be up to several cm in length
 synthesize enormous amounts of actin, myosin and a few accessory proteins
Actin & Myosin are packed into filaments, readily to be observed by EM
unit of such a package: Sacromere, bounded by two Z-lines & divided into I-&A-band
Myosin-II molecule:
23
Zellbiologie
Mechanism of Muscle contraction
Modell of a thin atin-filament
 binding site for myosin is
blocked by Tropomyosin
released
in not contracted cell there is enough ATP available  binds with
myosin  myosin no longer attached to actin
cocked
hydrolation of ADP & Pi (still attached to myosin)
myosin Is ready to bind with action, but actin binding site
blocked by Tropomyosin
force-generating
weak binding of myosin to new site on actin filament  release
of Pi
attached
release of Ca2+-Ions by nerve stimulus  binds Troponin
 Troponin changes conformation and pulls Tropomyosin
deeper between actin strand  myosin binding site free
 change of conformation by myosin (power stroke)
 pulls action into A-band
Control of Actin Polymerization
 by actin-binding proteins
 proteins that bind G-actin (e.g. Thymosin) block polymerization
 proteins that bind the plus end (“cap”) block growth of filament
 proteins that break actin filaments, e.g. Gelsolin
Actin and cellular structure
2 types of actin crosslinking proteins
 actin bundling; short proteins
 actin in network formation; long proteins
Intermediate filaments
 connect Desmosomes
Types
component polypeptides
nuclear
lamins A,B,C
vitamin-like vitamin
desmin
epithelial
type I keratins (adicdic)
type II keratins (basic)
axonal
neurofilament proteins
cellular position
nuclear lamina (inner lining of nuclear envelope
many cells of mesenchymal origin
muscle
epithelial cells & their derivates (e.g. hair & nails)
neurons
24
Zellbiologie
Cell contacts, extracellular matrix & tissue
organization
Cell contacts
1) tight junctions
sealing contracts
2) cell anchors
 actine = “adherens junction”
o cell-to-cell: adherens zone
o cell-matrix: focal contact
 intermediate filaments
o cell-to-cell: desmosomes
o cell-matrix: hemidesmosomes
3) gap junctions: communication contacts
Tight junctions
Seal cell-complex to the outside
 ptrotein transport (e.g. Glucose) through cell, not between cells
Anchoring contacts
Gap junctions
not all cell types have gap junctions
connexon is composed of six subunits
two connections in register form an open channel between adjacent
cells
in plants: plasmodesmate
Extracellular matrix


Proteins, such as Collagen, Elastin, Fibronectin, Laminin
Glycosaminoglycans (GAGs): polysaccharide consisting of unbranched repetitive
disaccharides
25
Zellbiologie
Collagen
Types
Firbil-forming
network-forming
I
II
III
VII
bone, skin, tendon (90% of body collagen)  “gelatin”
cartilage
blood vessels
beneath stratified squamous epithelia
biosynthesis of collagen
1) synthesis of Pro-α chain
2) hydroxylation of selected
prolines & lysines (needs
vitamin C)
3) glycosilation of selected
hydroxlylysines
4) secretion
5) cleavage of propeptides
6) self-assembly into fibril
7) aggregation of collagen
fibrils to form a collagen
fiber
Diseases related to Collagen-Metabolism
 pro-collagen-synthesis
osteogen imperfect
 proline-hydroxilation
scurvy (Skorbut)  vit. C. deficiency
 lysine hydroxylation
Ehles-Danlos Typ VI
 procollagen cleavage
Ehlers-Danlos Typ VII
the building of networks by type IV collagen
Elastin
Elastin has many hydrophobic AS. If it is stretched (by muscle
contraction) the hydrophobic parts are exposed to water  when the
muscle relaxes, Elastin contracts again so the hydrophobic parts are
hidden
Fibronectin
 binds cell to matrix
both subunits possess binding sites to
collagen/Heparin/fibronectinreceptor
RDG-Signal (Arg-Gly-Asp)  cell binding
26
Zellbiologie
Glycosaminoglycans & Proteoclycans
Glycosaminoglycans (GAGs)
 unbranched Polysaccharides made up of repetitve dissacharides
 strongly negatively chargend  hydrophilic
 streched & very large
 can form gels  keep jour joints in the position they are
 fill up large spaces and make sure the tissues have compressibility (e.g. in knee joints)
Example for GAGs: Prteoglycan
Basal lamin
 40-120 nm thick
 has either epithel cells on it or is between musle & fat cells
 moluecules of asal lamin synthesized by adjacent cells
Bridging the ECM and the cytoskeleton
Integrins (e.g. fibronectin-receptor) anchor the actin cytoskeleton
with the extracellular matrix
Cell-Cell contact: main concepts



Cells within a tissue are kept together through cell-cell & cell-matrix contacts
seals- (tight junction), anchor- and communication- (gap junction) contacts are important for
the function of epithelial cells
gap junctions allow regulation of the communication within an epithelium through exchange
of small molecules
extracellular matrix: important concepts






ECM is the basic substance between the cells
ECM forms the nerves, bones and cartilage (Knorpel)
consists of proteins, GAGs and proteoglycans
important proteins: type I & IV collagen; elastin
GAGs & proteoglycans have structural, lubricating (schmierend) and filling function
integrins anchor extracelluar matrix and cytoskeleton
Tissues & Organes
Tissues
Muscle tissue
Nerve tissue
Blood
Lymph
Connective tissue
Epithelium (Deck & Drüsengewebe)
Organs
Heart
Lung
Liver
Spleen (Milz)
Gut (Darm)
Brain
27
Herunterladen