AOC I: Teil „Umweltradioaktivität“ • • • • • • • • • • • • Historie Isotope Arten der radioaktiven Strahlung Zerfallsgesetz Radioaktives Gleichgewicht Natürliche Zerfallsreihen Von welchen Strahlenquellen geht unsere Belastung aus? Das Radon-Problem Natürliche Radionuklide im Trinkwasser Kernspaltung, Kernreaktor Anthropogene Radionuklide Der Reaktorunfall von Chernobyl und seine Auswirkungen auf Österreich • Belastungspfade • Die Bombenpeaks Uranglas Historischer Rückblick 1828 Berzelius: Thorium 1879 Klaproth: Uran Verwendung des Urans: Färben von Gläsern und Keramik größter Lieferant: Bergbau in St. Joachimsthal / Jachimov 1895: Röntgen arbeitet über Floureszenzerscheinungen von Kathodenstrahlen X-Strahlen 1896: H. Becquerel arbeitet über die Floureszenz von Uranmineralien Uransalz auf Photoplatte, die lichtdicht in schwarzes Papier eingewickelt ist; Sonnenlicht regt Floureszenz an, Platte ist dann geschwärzt Henri Becquerel Marie und Pierre Curie Marie Curie untersucht die Ionisation von Luft durch verschiedene Präparate: metallisches Uran und Uransalze aus abgetrenntem Uran nicht besonders aktiv im Vergleich zu Pechblende = natürliches Uranmineral U3O8 Strahlung kommt nicht vom Uran selbst !!! Aufarbeitung von 11 Tonnen Pechblende-Abraum (4 Jahre): findet 2 neue Elemente: Polonium (Tellur-Fraktion) Radium 85 mg (Barium-Fraktion) - Atomgewicht Nobelpreis für Physik 1903: Entdeckung der Radioaktivität Becquerel, M. und P. Curie Nobelpreis für Chemie 1911: Entdeckung von Po und Ra und Untersuchung der Chemie des Ra M. Curie 1907 ca. 40 radioaktive „Körper“ bekannt im Periodensystem aber nur mehr 12 Plätze frei! manche dieser „Körper“ haben unterschiedliche Lebensdauern und versch. Zerfallsprodukte, lassen sich aber chemisch nicht trennen! z.B. Thorium (232), Radiothorium (228), Ionium (230) alle mit Ordnungszahl 90! weiteres Problem mit Periodensystem: nicht-ganzzahlige Atomgewichte kommen vor, z.B. Chlor 35,453 PSE um 1907 1913 F. Soddy: Isotopie es gibt Atome gleicher Kernladungszahl (und damit des gleichen Elements) von verschiedenem Atomgewicht; jedes solche, durch die Zahl seiner Protonen und Neutronen eindeutig bestimmte Atom nennt man ein Nuklid Verschieden schwere, aber chemisch identische Atomarten heißen Isotope Periodensystem → Nuklidkarte E. Rutherford 1898 E. Rutherford die neue Strahlung besteht aus 3 unterschiedlichen Komponenten, Unterschiedlich bezüglich Reichweite / Durchdringungsfähigkeit α Helium-Ionen β Elektronen 1902 Rutherford + Soddy: radioaktiver Zerfall verbunden mit Elementumwandlung! γ elektromagnetische Strahlung Folge eines α- oder β-Zerfalls Emanation: Entdeckung des radioaktiven Edelgases Radon Das radioaktive Zerfallsgesetz Zerfallskonstante λ: ein Maß für die Wahrscheinlichkeit des Zerfalls in der Zeiteinheit Einheit: 1 / sec oder s-1 dN = - λ N dt N(t) = N(0) e-λt Halbwertszeit T1/2 Aktivität A = Anzahl der Zerfälle pro Zeiteinheit A = λ N = λ (m/M) NL Aktivität von 1g Ra = 1 Ci = 3,7*1010 s-1 Radioaktives Gleichgewicht Radioaktives Gleichgewicht: Mutternuklid sehr langlebig, Tochternuklid rel. kurzlebig Mutternuklid rel. kurzlebig, Tochternuklid noch deutlich kurzlebiger Ra 228 Thorium-Reihe 5.7 a ← Th 232 1.4*1010a Ac 228 6.13 h Pb 212 10.6 h Tl 208 3.1 m ← ←36% Bi 212 Pb 208 ← Stabil 60.6 min Po 216 0.15 s ← Rn 220 55.6 s ← Ra 224 3.64 d ← Th 228 1.9 a 64% β Po 212 0.3 µs Th 234 24.1 d ← U 238 4.5*109a Pa 234 1.2 m Pb 214 26.8 m ← Po 218 3.05 m ← Rn 222 3.8 d ← Ra 226 1600 a ← Th 230 7.5*104a ← Bi 214 19.8 m Pb 210 22 a ← Po 214 162 µs Bi 210 Uran-Reihe 5.0 d Pb 206 stabil ← Po 210 138.4 d U 234 2.5*105a Wie liest man die Karten mit den Zerfallsreihen? Rechts oben das jeweils langlebigste Nuklid ist das Mutternuklid, das noch von der Elementsynthese aus der „Geburtsstunde“ unseres Sonnensystems übrig ist (vor ca. 4-5 Milliarden Jahren) Der Pfeil 2 Felder nach links bedeutet: α-Zerfall Der Pfeil 1 Feld nach unten und 1 Feld nach rechts: β-Zerfall (dieser Pfeil fehlt leider manchmal, bitte selbst ergänzen) Es gibt noch eine 3. Zerfallsreihe ausgehend von U-235 Verhältnis U-235/U-238= 0.007, d.h. U-235 ist sehr selten Eine 4. Zerfallsreihe ausgehend von Np-237 ist bereits ausgestorben, da die HWZ der Mutter nur 2,14 Millionen Jahre beträgt (seit der Elementsynthese sind also bereits 1000 HWZ vergangen…) Radon Rn-222- Konzentrationen im Freien: 4-10 Bq/m3 (1 Bq = 1 Zerfall pro Sekunde) In Häusern kann die Rn-Konzentration viel höher sein: Ab 400 Bq/m3 müssen Maßnahmen zur Reduktion ergriffen werden, wie z.B. Keller besser abdichten, Bodenluft unter dem Haus absaugen… Neubauten sollten 200 Bq/m3 nicht überschreiten Eine Konzentration von 60 Bq/m3 bewirkt eine jährliche Dosis von 1 mSv. Die jährliche mittlere Strahlenbelastung beträgt bei uns 2-3 mSv (alles zusammen, wie im Bild vorher angegeben), kann aber aufgrund unterschiedlicher Wohnverhältnisse auf bis zu 70 mSv ansteigen. Ra 228 Thorium-Reihe 5.7 a ← Th 232 1.4*1010a Ac 228 6.13 h Pb 212 10.6 h Tl 208 3.1 m ← ←36% Bi 212 Pb 208 ← Stabil 60.6 min Po 216 0.15 s ← Rn 220 55.6 s ← Ra 224 3.64 d ← Th 228 1.9 a 64% β Po 212 0.3 µs Th 234 24.1 d ← U 238 4.5*109a Pa 234 1.2 m Pb 214 26.8 m ← Po 218 3.05 m ← Rn 222 3.8 d ← Ra 226 1600 a ← Th 230 7.5*104a ← Bi 214 19.8 m Pb 210 22 a ← Po 214 162 µs Bi 210 Uran-Reihe 5.0 d Pb 206 stabil ← Po 210 138.4 d U 234 2.5*105a Das „Radon-Problem“ Rn-220: sehr kurzlebig (HWZ 55 s), d.h. bis es aus dem Boden herausdiffundiert, ist schon das meiste zerfallen Rn-222: 3,8 d HWZ, entweicht aus dem Boden Edelgas, d.h. wird wieder ausgeatmet; Wahrscheinlichkeit, dass es in der Lunge zerfällt, ist gering, ABER: Seine Folgeprodukte sind Metalle, diese lagern sich in der Luft an Aerosole an und werden mit diesen eingeatmet; je kleiner die Aerosole (1µm und kleiner), desto tiefer gehen sie in die Lunge und desto länger bleiben sie dort. Die beiden α-Strahler Po-210 und Po214 können dabei Strahlenschäden induzieren - Krebsvorstufen Rn-222: 5,49 MeV Po-218: 6,00 MeV Po-214: 7,69 MeV α-Spektrum von Rn-222 und seinen Töchtern Trinkwasseruntersuchungen Bestimmung natürlicher Radionuklide im Trinkwasser Ra 228 Thorium-Reihe 5.7 a ← Th 232 1.4*1010a Ac 228 6.13 h Pb 212 10.6 h Tl 208 3.1 m ← ←36% Bi 212 Pb 208 ← stabil 60.6 min Po 216 0.15 s ← Rn 220 55.6 s ← Ra 224 3.64 d ← Th 228 1.9 a 64% β Po 212 0.3 µs Th 234 24.1 d ← U 238 4.5*109a Pa 234 1.2 m Pb 214 26.8 m ← Po 218 3.05 m ← Rn 222 3.8 d ← Ra 226 1600 a ← Th 230 7.5*104a ← Bi 214 19.8 m Pb 210 22 a ← Po 214 162 µs Bi 210 5.0 d Pb 206 stabil ← Po 210 138.4 d Uran-Reihe U 234 2.5*105a EU-Trinkwasserrichtlinie (1998) Richtdosis: 0.1 mSv/a Beiträge sämtlicher Nuklide mit Ausnahme von Tritium, 40K, 222Rn und 222Rn-Folgeprodukte Trinkwasser: Ra, U, (210Pb, 210Po) Empfehlung der Kommission (2001): max. Konzentration 210Pb: 200 mBq/L max. Konzentration 210Po: 100 mBq/L WHO 2004: max. 15 µg/L Unat.↔185 mBq/L 238U ↔12µSv/a 238U+ 234U: 24µSv/a Uran: chem. Toxizität viel höher als Radiotoxizität, darum WHOGrenzwert als Masse und nicht als Aktivität oder Dosis. Zielorgan: Niere Radium: wird in die Knochen eingelagert Ra-228 (β-Strahler) gefährlicher als Ra-226 (α-Strahler), da es eher an der Knochenoberfläche bleibt, wo es blutbildende Organe schädigen kann; das langlebigere Ra-226 geht tiefer in den Knochen Pb-210: β-Strahler, geht auch in die Knochen, dort wächst dann auch noch Po-210 nach Po-210: α-Strahler, sehr radiotoxisch (Litwinenko-Affäre)! Verteilt sich auf alle Organe Die Dosiskonversionsfaktoren zeigen die relative Gefährlichkeit der Nuklide an. Für Kleinkinder sind alle toxischen Substanzen noch gefährlicher als für Erwachsene, da sie aufgrund ihrer hohen Wachstumsraten die Nahrung besser auswerten müssen. Dosiskonversionsfaktoren (Sv/Bq), IAEA 1996 Dosis (Sv/a) = Akt.konz(Bq/L).x Trinkwasserkonsum(L/a) x f(Sv/Bq) Erwachsene Kinder 1a (3m) U-238 4.5*10-8 1.2*10-7 U-234 4.9*10-8 1.3*10-7 Ra-226 2.8*10-7 9.6(47)*10-7 Pb-210 6.9*10-7 3.6*10-6 Po-210 1.2*10-6 8.8*10-6 Ra-228 6.9*10-7 6.0(31)*10-6 Messung der verschiedenen Radionuklide alle Nuklide werden aus derselben Probe bestimmt (1-1.5 L) Radium und 210Pb: Flüssigszintillationsspektrometrie 210Po: Spontandeposition, α-Spektrometrie Uran: Ionenaustausch, Mikropräzipitation, α-Spektrometrie Radium-Isotope in Waldquelle Mineralwasser Österreichisches Trinkwasser Nur die Ra-Isotope liefern relevante Beiträge zur Effektivdosis! 210Pb und 210Po jeweils < 5 mBq/L Ra-226: 9 von 100 Proben über 10 mBq/L Waidhofen/Th. 110 mBq/L ↔ 0.02 mSv/a (0.13 mSv/a 3m) Retz 80 Eberstein K. 48 Hermagor K. 38 Heilstollen 32 Eisgarn, Horn 30 Schrems 23 Freistadt 19 Ra-228: 17 von 23 Proben im Waldviertel 10-26 mBq/L Kamegg 10 mBq/l ↔ 0.005 mSv/a (0.08 mSv/a 3m) Forstau S. 17 Aktivitätskonzentrationen (mBq/L) in Mineralwässern Ra-226 Ra-228 Pb-210 Po-210 U-238 Gasteiner 14.6 ±1.5 25 ±2.5 17 ±2 Johannisb. 150 ±2.0 135 ±4.0 — 2.4 ±0.3 1.2 ±0.2 1.4 ±0.2 78 ±2.0 70 ±2.0 ≤3 1.4 ±0.2 2.4 ±0.2 3.1 ±0.2 Peterquelle 211 ±3.0 236 ±6.0 — 0.7 ±0.1 1 ±0.1 1.5 ±0.2 Preblauer 3.7 ±0.8 5.8 ±0.6 4.6 ±2 1.2 ±0.2 2.4 ±0.2 2.6 ±0.2 Römerquelle 31 ±2.0 5.5 ±0.5 5 ±1 6.1 ±0.4 35.8 ±1.4 37.6 ±1.4 Severin-Vita. 4.8 ±1.0 — — 0.4 ±0.1 1.4 ±0.2 1.5 ±0.2 Urquelle 33 ±3.0 18 ±1.0 6 ±1 1.5 ±0.3 1.8 ±0.2 3.4 ±0.3 Vöslauer 43 ±3.0 — 3.3 ±1 0.5 ±0.1 36.1 ±1.3 54.4 ±1.9 Waldquelle 92 ±2.0 62 ±2.0 — 0.6 ±0.1 12.5 ±0.6 44.1 ±1.6 Juvina 4.0 ±0.4 73.6 ±3.8 U-234 79 ±4 Effektivdosen von 226Ra, 228Ra, 210Pb, 210Po, 234U und 238U in österr. Mineralwässern (Erwachsene) 0,01 Ra-226 0,015 ~ 0,009 Ra-228 Pb-210 Po-210 0,007 U-238 0,006 U-234 0,005 0,004 0,003 0,002 0,001 le W al dq ue l V ös la ue r le U rq ue l re bl au er R öm er S qu ev el er le in -V it a qu el le P et er qu el le n Ju vi na P Jo ha n ni sb ru nn e ei ne r 0 G as t Effektivdosis /mSv/a) 0,008 Mineralwasser auch hier liefern die Ra-Isotope die größten Dosisbeiträge Achtung: Baby-Nahrung sollte nicht mit Mineralwasser zubereitet werden!!! weitere Risikogruppe: Jugendliche (10-15 a) aufgrund der hohen Wachstumsraten hohe Dosiskonversionsfaktoren 30-er Jahre: auf der Suche nach Transuranen Man bestrahlte Uran mit langsamen Neutronen: U-238 + n → U-239 β-Strahler mit23,5 min HWZ zerfällt in Np-239, dieses in Pu-239 ABER: es passiert noch etwas anderes! Im natürlichen Uran befindet sich auch U-235, das durch langsame Neutronen gespalten wird!!! O. Hahn (Chemiker!) konnte nachweisen, dass sich die Produkte der Reaktion mit den Neutronen chemisch wie Barium verhalten und nicht wie Transurane (Ende 1938) Bei der Spaltung werden wieder 2-3 Neutonen frei → Kettenreaktion!!! Außerdem ca. 200 MeV Energiegewinn pro Spaltung!!! 1g U-235: 7,9*1010 J 1g C: 4*102 J Die Bindungsenergie pro Nukleon als Funktion der Massenzahl Der Kernreaktor U-235 muss auf ca. 3% angereichert werden 2 von den 3 entstehenden Neutronen müssen absorbiert werden – wird vom U-238 erledigt; damit nicht alle 3 Neutronen absorbiert werden muss der Querschnitt der Brennelemente rel. klein sein Die Neutronen müssen auf thermische Energien abgebremst werden, damit sie das U-235 spalten können – Moderator Wasser (Graphit) Das Wasser wird erhitzt, gibt seine Energie über einen Wärmetauscher an einen Sekundärkreislauf ab → Turbine Ein gut gewartetes KKW gibt weniger Radioaktivität an die Umwelt ab als ein Kohlekraftwerk! Atombombe: reines U-235 oder Pu-239 Anthropogene Nuklide: Spaltprodukte: I-131, Cs-137, Sr-90,….. Aktivierungsprodukte: Co-60,…Pu-Isotope Bombe: durch den hohen Neutronenfluss Bildung von AktivierungsProdukten direkt in der Atmosphäre, z.B. C-14, H-3, I-129…… Verteilen sich mit den Luftströmungen über die ganze Nordhalbkugel Die Lage der Spaltprodukte in der Nuklidkarte Der Reaktorunfall von Chernobyl, 26. April 1986 Radioaktive Stoffe in der Luft: Nuklid Jod-131 Die Radionuklide wurden vor allem durch Niederschläge ausgewaschen Natürlicher Hintergrund: 0,20 µSv/h (Wien) Nach dem Unfall: Erhöhung um Faktor 3-5, Höchster Wert: 2,7 µSv/h HWZ 8,04 d Cäsium-137 30 a Cäsium-134 2,1 a Strontium-90 28,5 a Strontium-89 51 d Ruthenium-103 39,5 d Ruthenium-106 368 d Tellur-132 78 h Belastung im ersten Jahr nach dem Reaktorunfall Die Zufuhr radioaktiv verseuchter Lebensmittel verursachte ca. 80% der Gesamtdosis Pflanzen, die direkt dem fallout ausgesetzt waren, waren stark belastet; über das Futter besonders Milch, Milchprodukte und Fleisch belastet. I-131 nur kurzfristig problematisch, allerdings Anreicherung in der Schilddrüse! Cs-137 und Cs-134 längerfristig am wichtigsten; durch Fütterung mit unbelastetem Futter einige Wochen vor der Schlachtung starke Reduzierung der Fleisch-Belastung Die Radionuklide werden im Boden fest gebunden, werden dann kaum mehr von den Pflanzen aufgenommen Österreich: die Belastung durch den Reaktorunfall in Chernobyl war ungefähr so groß wie am Beginn der 60er-Jahre die Belastung durch den fallout von den Kernwaffenversuchen!!! Die „Bombenpeaks“ N-14 + n → C-14 + p HWZ (C-14)= 5730 a geht auch mit therm. Neutronen N-14 + p → H-3 + Fragmente HWZ (H-3)=12,3 a En>4,5 MeV