Tipp: Das Online-Buch http://www.tigerjython.ch Algorithmus Ein Kochrezept, zum Beispiel: Kartoffelbrei Frage: Aus welchen zwei Teilen besteht ein Kochrezept ? Zutaten: 2 Kg Kartoffeln, 0,5 l Milch, 200 gr Butter, 1 TL Salz, 1 TLPfeffer, 1TL Muskat Zubereitung: Kartoffeln schälen, zerkleinern und in Salzwasser gar kochen. Mit dem Mörser zerstampfen und unter Hinzufügen der Butter und Milch mit dem Schneebesen schaumig schlagen und würzen. Ein Algorithmus ist - salopp ausgedrückt ein Kochrezept Präziser: Ein Algorithmus ist ein Verfahren zur Lösung eines gegebenen Problems. Er hat folgende Eigenschaften: • schrittweise • eindeutig • endlich Was "schrittweise" bedeutet, muss in der konkreten Situation geklärt werden: Bei einem modernen Rechner bedeutet ein Schritt z.B: - Addition zweier Zahlen - Subtraktion zweier Zahlen - Multiplikation zweier Zahlen - Division zweier Zahlen - Vergleich zweier Zahlen mit <, , <, Ein Schritt ist z.B. nicht der Vergleich dreier Zahlen wie z.B: 3 < 5 < 2 Aufgabe: Geben Sie ein Beispiel eines nicht endlichen "Kochrezepts": Auf der Suche nach einer Genehmigung in irgendeinem Amt: Der Pförtner schickt Sie ins Zimmer 10. Vom Zimmer 10 werden Sie ins Zimmer 17 geschickt. Vom Zimmer 17 werden Sie ins Zimmer 10 geschickt. 10 17 Frage: Welche Algorithmen haben Sie bis jetzt in der Schule kennengelernt ? - addieren, subtrahieren multiplizieren, dividieren, wurzelziehen kgV ggT Darstellungsmöglichkeiten eines Algorithmus • Flußdiagramm • Programmiersprache (z.B. C++) Elemente des Flußdiagramms Anfang bzw. Ende Anfang Ende Eingabe bzw. Ausgabe Anweisung Fallunterscheidung (Verzweigung) falsch Bedingung wahr kurz: f Bedingung w Flußrichtung Variablen (technisch gesehen sind dies Stellen im Arbeitsspeicher). Zum Beispiel wird eine Eingabe in einer Variablen gespeichert. Unter einer Variablen kann man sich einen Behälter vorstellen. In diesem Behälter wird ein Wert gespeichert (z.B. eine bestimmte Menge Flüssigkeit). Diese Menge bleibt solange konstant in diesem Behälter, solange sie nicht verändert wird. Diese Eigenschaft nennt man speichern. Es "verdunstet" deshalb auch nichts. Jede Variable hat einen Namen, den der Programmierer vergibt. Inhalt der Variablen z1 Inhalt der Variablen z2 z1 z2 Namen einer Variablen Namen einer Variablen Einer Variablen kann man einen Wert zuweisen (der Behälter kann gefüllt werden). Zum Beispiel: Variablen b wird der Inhalt 0,5 zugewiesen b := 0,5 Der (Der Behälter wird mit 0,5 gefüllt). 0,5 b Das Zeichen := bedeutet soviel wie "der Wert rechts von := wird der linken Variablen zugewiesen" und ist auf keinen Fall mit dem aus der Mathematik bekannten Gleichheitszeichen = zu verwechseln ! WICHTIG: Vor dieser Zuweisung hat die Variable b einen unbekannten Wert. Man sagt, die Variable hat einen undefinierten Wert. Einer Variablen kann man einen Wert zuweisen (der Behälter kann gefüllt werden). Zum Beispiel: b := 0,5 0,5 b Links des Zeichens := muss genau eine Variable stehen. Rechts davon muss ein Wert oder ein aus Variablen (und Werten) bestehender Term stehen, wie z.B. x+y*z oder x * 2 Wichtig: Umgekehrt gemacht, ist es falsch: 0,5 := b oder x + y + z := b ist falsch. Was bewirkt die gleich folgende weitere Anweisung ? b := 0,5 b := 0,3 0,5 b Der Variablen b wird der Inhalt 0,3 zugewiesen. Der alte Wert von 0,5 wird überschrieben und geht verloren. Was bewirkt folgende weitere Anweisung ? b := 0,5 b := 0,3 Der Variablen b wird der Inhalt 0,3 zugewiesen. Der alte Wert von 0,5 wird überschrieben und geht verloren. b Was bewirkt folgende weitere Anweisung ? b := 0,5 b := 0,3 0,3 b Der Variablen b wird der Inhalt 0,3 zugewiesen. Der alte Wert von 0,5 wird überschrieben und geht verloren. Was würde das Gleichheitszeichen = bewirken ? b = 0,5 b = 0,3 0,3 b 0,5 = 0,3 Man sieht jetzt auch genau, was passieren würde, wenn man in der letzten Folie statt := das Gleichheitszeichen = verwenden würde. Was würde mathematisch oben aus den zwei Gebilden folgen ? Also: Welche Werte haben die Variablen g und h ? g h Welche Werte haben die Variablen g und h ? ? ? g h Was bewirkt folgende Anweisung ? g := 0,3 ? ? g h Was bewirkt folgende Anweisung ? g := 0,3 ? g h Was bewirkt folgende Anweisung ? g := 0,3 0,3 ? g h Was bewirkt folgende weitere Anweisung ? g := 0,3 h := 0,5 0,3 ? g h Was bewirkt folgende weitere Anweisung ? g := 0,3 h := 0,5 0,3 g h Was bewirkt folgende weitere Anweisung ? g := 0,3 h := 0,5 0,3 0,5 g h Was bewirkt folgende weitere Anweisung ? g := 0,3 h := 0,5 g := h 0,3 0,5 g h Was bewirkt folgende weitere Anweisung ? g := 0,3 h := 0,5 g := h 0,5 g h Was bewirkt folgende weitere Anweisung ? g := 0,3 h := 0,5 g := h 0,5 g Der Wert von h - also 0,5 - wird von h in den Behälter g kopiert (nicht geleert, also nicht verschieben). Der alte Wert von g wird überschrieben (er geht verloren, d.h. er wird vorher gelöscht). D.h. nur der Wert der linken Variablen wird verändert. Der Wert der rechten Variablen bleibt unverändert. Dies entspricht also z.B. nicht den Erfahrungen eines durstigen, aber wenig Geld besitzenden Besuchers einer Trinkherberge, der in einem günstigen Augenblick den Inhalt des benachbarten Bierglases in den des seinen verschiebt. 0,5 h Bitte folgende Regel einhalten: Anfangsbuchstabe eines Variablennamens immer klein schreiben. Dies ist dem Compiler zwar egal, doch an diese Regel halten sich alle Programmierer. Aufgabe: Der Wasserstand des Neckars wird zweimal im Jahr (im Sommer und Winter) gemessen. Bestimmen Sie den maximalen Wasserstand, kurz ... Bestimmen Sie das Maximum zweier eingegebener Zahlen, wobei ... ... dies durch den Vergleich zweier Zahlen zu lösen ist. Auf einmal können nur 2 Zahlen verglichen werden, also keine 3 oder mehrere. Also, z.B: x<y möglich, x<y<z nicht möglich Anfang 1. Zahl eingeben: Eingabe(z1) 2. Zahl eingeben: Eingabe(z2) z1 < z2 f w max := z2 Das Maximum ausgeben: Ausgabe(max) max := z1 Das Zeichen := bedeutet soviel wie "der Wert der rechten Variablen wird der linken Variablen zugewiesen" und ist auf keinen Fall mit dem aus der Mathematik bekannten Gleichheitszeichen = zu verwechseln ! Ende Nachdem der Algorithmus entwickelt wurde, muss er einem “Crash-Test“ (Härte-Test, Stress-Test) unterzogen werden. Dieses Prinzip wird prinzipiell in der Wissenschaft verwendet: Man versucht eine aufgestellte Behauptung “kaputt zu testen“. Anschaulich gesprochen wird auf die aufgestellte Behauptung so lange eingedroschen, bis sie kaputt geht. Falls dies nicht gelingt, kann man davon ausgehen, ein gutes Produkt entwickelt zu haben. Wir testen den Algorithmus für die Eingabe konkreter Zahlen, wie z.B: Anfang 1. Zahl eingeben: Eingabe(z1) 2. Zahl eingeben: Eingabe(z2) Annahme (nach der Eingabe), also an dieser Stelle des Flußdiagramms: z1 = 3 z2 = 7 3 7 z1 < z2 7 w f 7 max := z2 max := z1 7 Das Maximum ausgeben: Ausgabe(max) Ende Welchen Wert hat max an dieser Stelle des Flußdiagramms ? max ist undefiniert, d.h. der Wert ist unbekannt. 8 Annahme: z1 = 8 z2 = 2 2 z1 < z2 f w max := z2 max := z1 8 Das Maximum ausgeben: Ausgabe(max) Ende 8 8 5 Annahme: z1 = 5 z2 = 5 5 z1 < z2 f w max := z2 max := z1 5 Das Maximum ausgeben: Ausgabe(max) 5 5 Bei allen folgenden Aufgaben müssen Test-Protokolle gemacht werden. Bei der Aufgabe das Maximum zweier Zahlen zu finden, sieht ein Test-Protokoll z.B. so aus: TESTPROTOKOLL Datum: 25.5.2024 Name des Erich Überflieger Entwicklers: Name des Ernst Bockelhart Testers: TESTDATEN z1 z2 Algorithmus richtig? 3 7 ja 8 2 ja 5 5 ja Aufgabe: Stellen Sie den Algorithmus durch ein Flußdiagramm dar, der das Maximum dreier in beliebiger Reihenfolge eingegebener Zahlen berechnet. Bemerkungen: 1) Nur der wichtigste Teil der Lösung wird hier und in den folgenden Lösungen dargestellt (z.B. wird der Eingabeteil weggelassen). 2) Im Verzweigungsteil wird w und f nicht immer angegeben 1. Lösung: z1 < z2 f w max1 := z2 max1 := z1 Zuerst wird - genau so wie ein paar Folien vorher - das Maximum von den Zahlen z1 und z2 berechnet. Dieses Maximum nennen wir das vorläufige Maximum (bezeichnet mit max1) , weil es noch nicht das endgültige Maximum von z1, z2 und z3 ist. Was muss man jetzt nur noch machen, um das endgültige Maximum zu berechnen? Man muss nur noch das Maximum von z3 und max1 berechnen! z1 < z2 f w max1 := z2 max1 < z3 max1 := z1 w f max2 := max1 Ausgabe(max2) Ende max2 := z3 Vorläufiges Maximum von z1 und z2, kurz: max1 =Maximum(z1, z2) Maximum von z3 und max1, also Maximum von z3 und z1 und z2, kurz: max2 = Maximum(z3, max1) = Maximum(z3, z1, z2) z1 < z2 f w max1 := z2 max1 < z3 max1 := z1 w f max2 := max1 Ausgabe(max2) Ende max2 := z3 Angenommen, man müsste Speicher sparen. Wie kann man den Algorithmus mit einer Variable (einem Behälter) weniger realisieren? 2. Lösung: 10 20 z1 < z2 20 f 20 w max := z1 max := z2 20 w max < z3 f 30 max := z3 30 30 30 Ausgabe(max) Ende Annahme: z1 = 10 z2 = 20 z3 = 30 10 20 z1 < z2 20 f 20 w max := z1 max := z2 20 w max < z3 f 30 max := z3 Annahme: z1 = 10 z2 = 20 z3 = 30 30 30 30 Wichtig: max kann also während des Programmablaufs verschiedene Werte annehmen. Ausgabe(max) Berechnet hier das (vorläufige) Maximum von z1 und z2. Ende Berechnet hier das (endgültige) Maximum von max (also z1 und z2) und z3. 70 60 z1 < z2 f w max := z1 max := z2 70 70 70 Annahme: z1 = 70 z2 = 60 z3 = 50 w max < z3 max := z3 Ausgabe(max) Ende 50 f 70 Aufgabe: Stellen Sie den Algorithmus durch ein Flußdiagramm dar, der drei in beliebiger Reihenfolge eingegebene Zahlen ihrer Größe nach aufsteigend sortiert und ausgibt. z1 < z2 f w z3 < z1 z3 < z2 a:=z3 b:=z1 c:=z2 a:=z3 b:=z2 c:=z1 z3 < z2 a:=z1 b:=z3 c:=z2 Ausgabe(a,b,c) a:=z1 b:=z2 c:=z3 z3 < z1 a:=z2 b:=z3 c:=z1 a:=z2 b:=z1 c:=z3 Aufgabe: Stellen Sie den Algorithmus durch ein Flußdiagramm dar, der für eine Klassenarbeit für jeden Schüler den Prozentsatz erreichter Punkte – auf die maximal möglich zu erreichende Gesamtpunktzahl bezogen - errechnet und ausgibt. a) Die Klasse besteht aus 1 Schüler. b) Die Klasse besteht aus „unendlich“ vielen Schülern. c) Die Klasse besteht aus 50 Schülern. d) Der Lehrer kann die Schüleranzahl eingeben. Lösung a) Anfang Eingabe (gesamtpunkte) Eingabe (punkte) p := punkte/gesamtpunkte*100 Ausgabe(p) Ende Lösung b) Anfang Eingabe (gesamtpunkte) Eingabe (punkte) p := punkte/gesamtpunkte*100 Ausgabe(p) Ende Was muss man machen, damit nochmals das gleiche für mehrere Schüler gemacht wird ? Man muss ein Schleife einbauen ! Anfang Eingabe (gesamtpunkte) Eingabe (punkte) p := punkte/gesamtpunkte*100 Ausgabe(p) Warum ist dies ein anwenderunfreundliche Lösung ? Weil der Anwender bei jedem Schüler die Gesamtpunkte nochmals eingeben muss, obwohl diese Zahl für jeden Schüler die gleiche ist. Welche Lösung wäre dann anwenderfreundlicher ? Anfang Eingabe (gesamtpunkte) Eingabe (punkte) p := punkte/gesamtpunkte*100 Ausgabe(p) Lösung c): (für 50 Schüler) Eingabe (gesamtpunkte) Was muß in diese Lösung noch eingebaut werden, damit genau 50 Schüler ausgegeben werden ? Eingabe (punkte) Ein Zähler und eine Verzweigung, die den Wert des Zählers überprüft. Anfang p := punkte/gesamtpunkte*100 Ausgabe(p) Eingabe(gesamtpunkte) zähler := 0 Eingabe (punkte) p := punkte/gesamtpunkte*100 Ausgabe(p) zähler := zähler + 1 w zähler < 50 f Ende PROBLEM: Woher kann man sicher sein, dass in der Verzweigung die Bedingung zähler < 50 heißt ? Warum könnte hier z.B. nicht stehen: zähler < 51 oder zähler 51 Im folgenden wird eine Möglichkeit dargestellt, wie man nachprüfen kann, ob das Programm das Gewünschte macht. Welcher Zusammenhang besteht Eingabe(gesamtpunkte) zwischen Schülerausgaben und zähler ? zähler := 0 Eingabe (punkte) p := punkte/gesamtpunkte*100 Ausgabe(p) Am roten Pfeil wird das Programm bei jedem Durchgang gedanklich angehalten und der Wert der Variablen zähler und die Anzahl der Schülerausgaben protokolliert (besonders der erste und der letzte Durchgang): Dieses schrittweise Abarbeiten des Programms nennt man auch "Schreibtischtest" zähler zähler := zähler + 1 w 1 2 zähler < 50 f Schülerausgaben = zähler ... letzter Durchgang: 50 Ende Schülerausgaben 1 2 ... 50 Was muß im Programm geändert werden, damit die Schüleranzahl eingegeben werden kann ? Eingabe(gesamtpunkte) zähler := 0 Eingabe (punkte) p := punkte/gesamtpunkte*100 Ausgabe(p) zähler := zähler + 1 w zähler < f Ende Eingabe(gesamtpunkte) Eingabe(anz) zähler := 0 Eingabe (punkte) p := punkte/gesamtpunkte*100 Ausgabe(p) zähler := zähler + 1 w zähler < anz f Ende Eingabe(gesamtpunkte) zähler := 0 Eingabe (punkte) p := punkte/gesamtpunkte*100 Ausgabe(p) zähler := zähler + 1 w zähler < 50 f Ende NOCHMALS PROBLEM: Woher kann man sicher sein, dass in der Verzweigung die Bedingung zähler < 50 heißt ? Warum könnte hier z.B. nicht stehen: zähler < 51 oder zähler 51 Im folgenden wird eine weitere Möglichkeit dargestellt, wie man nachprüfen kann, ob das Programm das Gewünschte macht. Eingabe(gesamtpunkte) zähler := 0 Eingabe (punkte) p := punkte/gesamtpunkte*100 Ausgabe(p) zähler := zähler + 1 w zähler < 50 f Ende Da es sehr aufwendig wäre, das ganze Programm (der Wert 50 ist sehr groß) bis zum Programmende am Schreibtisch durch zu gehen, nimmt statt 50 einfach einen kleinern Wert, wie z.B. 3 und führt das Programm bis zum Programmende am Schreibtisch durch. Außerdem muss natürlich ein Protokoll gemacht werden. Nach jedem Schritt des Programms wird der Wert der Variablen neben die Variable geschrieben Eingabe(gesamtpunkte) zähler := 0 Eingabe (punkte) p := punkte/gesamtpunkte*100 Ausgabe(p) zähler := zähler + 1 w zähler < f Ende Da es sehr aufwendig wäre, das ganze Programm (der Wert 50 ist sehr groß) bis zum Programmende am Schreibtisch durch zu gehen, nimmt statt 50 einfach einen kleinern Wert, wie z.B. 3 und führt das Programm bis zum Programmende am Schreibtisch durch. Außerdem muss natürlich ein Protokoll gemacht werden. Nach jedem Schritt des Programms wird der Wert der Variablen neben die Variable geschrieben 200 Eingabe(gesamtpunkte) 0 zähler := 0 20 30 50 Eingabe (punkte) 10 15 25 p := punkte/gesamtpunkte*100 10 15 25 Ausgabe(p) 1 2 3 zähler := zähler + 1 1 2 3 zähler < 3 f Ende w Da es nehmen sehr aufwendig Wir an, dasswäre, hier das ganze Programm (der wird. Wert200 50eingegeben ist sehr groß) bis zum Programmende am Wir nehmendurch an, dass hier Schreibtisch zu gehen, 20 statt eingegeben wird. nimmt 50 einfach einen kleinern Wert, wie z.B. 3 Wirführt nehmen an, dass hier und das Programm bis eingegeben wird. zum30 Programmende am Schreibtisch durch. Wir nehmen an,natürlich dass hier Außerdem muss 50 eingegeben wird. ein Protokoll gemacht werden. Nach jedem Schritt des Programms wird der Wert der Variablen neben die Variable geschrieben 200 Eingabe(gesamtpunkte) 0 zähler := 0 20 30 50 Eingabe (punkte) 10 15 25 p := punkte/gesamtpunkte*100 10 15 25 Ausgabe(p) 1 2 3 zähler := zähler + 1 1 2 3 zähler < 3 f Ende w Da esEssehr aufwendig wäre, wurden also bei das ganze Programm (der zaehler < 3 bis Wert 50 ist sehr groß) Ausgaben gemacht. zum3Programmende am Schreibtisch durch zu gehen, Also statt ist es50"einsichtig", nimmt einfach einen kleinern Wert, dass wie bei z.B. 3 und führt das Programm bis zaehler < 50 zum Programmende am 50 Ausgaben gemacht Schreibtisch durch. Außerdemwerden. muss natürlich ein Protokoll gemacht werden. Nach jedem Schritt des Programms wird der Wert der Variablen neben die Variable geschrieben Aufgabe: Siehe Übungsblatt Die 2. Möglichkeit, einen Algorithmus zu beschreiben ist die Programmiersprache. Eine Programmiersprache ist eine künstliche Sprache – im Gegensatz zu einer natürlichen Sprache (wie z.B. der englischen Sprache). Eine künstliche Sprache wird für spezielle Dinge - wie z.B. der Programmierung - benutzt, weil eine natürliche Sprache dazu zu ungenau wäre. Programmiersprache: • Syntax • Semantik Die Syntax definiert die äußeren Formgesetze dieser Programmiersprache (ähnlich den grammatikalischen Regeln einer natürlichen - wie z.B. der englischenSprache). Die Semantik ist der Bedeutungsinhalt (ähnlich der Bedeutung der einzelnen Worte einer natürlichen - wie z.B. der italienischen - Sprache) der einzelnen Objekte einer Programmiersprache. Eine "höhere" Programmiersprache (z.B: Java, C, Pascal, Cobol, Pascal, Prolog, usw.) kann zwar von einem Menschen verstanden werden ("menschengerecht"), doch nicht von einem Mikroprozessor (dem Herz des Computers), weil ein Mikroprozessor nur sogenannte Maschinenbefehle (bestehen aus 0 en und 1 en) versteht. Deshalb benötigt man einen Übersetzer (engl. Compiler), der einen in einer höheren Programmiersprache formulierten Text (ein sogenanntes Programm) in einen aus Maschinenbefehlen bestehenden Text (einem sogenannten Maschinenprogramm) verwandelt. Dieses kann dann vom Mikroprozessor abgearbeitet (ausgeführt) werden.