Physikalisches Schulversuchspraktikum Katharina Wieser - 9855124 WS 00/01 Wärmelehre Schülerversuche und Arbeitsblätter für ein physikalisches Labor Lehrplan: vor allem 3. und 6. Klasse (7. und 10. Schulstufe) -1- Physikal. Schulversuchspraktikum WS 00/01 Katharina Wieser, 9855124 Inhaltsverzeichnis I. Einleitung...............................................................................3 Didaktische Hinweise ................................................................................3 II. Spezifische Wärme – Kalorimetrie .............................................4 Grundlagen..............................................................................................4 Arbeitsblatt „Spezifische Wärme und Kalorimetrie“ .......................................6 III. Wärmeleitung .......................................................................7 Grundlagen..............................................................................................7 Arbeitsblatt „Wärmeleitung“.......................................................................8 IV. Wärmedämmung ...................................................................9 Grundlagen..............................................................................................9 Arbeitsblatt „Wärmedämmung“ ................................................................10 V. Wärmestrahlung ................................................................... 11 Grundlagen............................................................................................11 Arbeitsblatt „Wärmestrahlung“ .................................................................12 -2- Physikal. Schulversuchspraktikum WS 00/01 Katharina Wieser, 9855124 I. Einleitung Ich verzichte auf die allgemeinen Grundlagen der Wärmelehre und gehe nur auf die spezifischen theoretischen Teile – passend zu den Versuchen – ein. Didaktische Hinweise Die in diesem Protokoll behandelten Versuche zur Wärmelehre können eigentlich nur in einem physikalischen Praktikum – z.B. in einer Laborklasse oder ähnlichem – verwendet werden, da ansonsten die Zeit oder die notwendige Menge an Materialien nicht vorhanden ist. Im Labor hat man ja die Möglichkeit, die Schüler das ganze Kapitel stationsweise bearbeiten zu lassen, d.h. jede Arbeitsgruppe beschäftigt sich mit einem anderen Versuch, und im Lauf der Einheit(en) kommt jeder Gruppe einmal zu jedem Versuch. Verwendbar sind alle Versuche sowohl in Ober- als auch Unterstufe. Natürlich ist die Gestaltung der dazugehörigen Grundlagen immer schulstufenspezifisch anzupassen. Vorausgesetzt wird überall Basiswissen in der Wärmelehre (Grundbegriffe,...). -3- Physikal. Schulversuchspraktikum WS 00/01 Katharina Wieser, 9855124 II. Spezifische Wärme – Kalorimetrie Grundlagen „ Wie schnell erwärmen sich Körper? Geben gleiche Massen bei gleicher Abkühlung die gleiche Wärmemenge ab?“ Ziel: Die Schüler sollen den Begriff spezifische Wärme mit dem Begriff der Energie in Verbindung setzen können und das Prinzip der Kalorimetrie verstehen. Die Schüler sollen das Prinzip der Kalorimetrie in der Praxis verwenden und verstehen können. Führt man einem Körper Wärme zu, so erhöht sich seine Temperatur. Wie schnell dieser Prozess vor sich geht, hängt von dem Material des Körpers ab. Bringt man nämlich einen Tauchsieder in ein Gefäß mit 1 kg Wasser, so dauert die Erwärmung um 1 oC wesentlich länger, als wenn das Gefäß ½ kg Eisen und ½ kg Wasser enthält. Die spezifische Wärme eines Stoffes ist jene Energie, die notwendig ist, um 1 kg dieses Stoffes um 1 oC zu erwärmen. Die spezifische Wärme von Wasser ist 4.187 J (= 1 Kalorie). Sie ist im Vergleich zu anderen Stoffen besonders groß. Wasser dient daher sehr oft entweder als Wärmespeicher oder als Kühlungsmittel. Das ist die Grundlage der Kalorimetrie: Will man die Wärmekapazität eines Körpers ermitteln, dann erwärmt man ihn auf irgendeine gut zu messende Temperatur und gibt ihn dann in ein Wasserbad, dessen Füllmenge und Temperatur genau bekannt ist. Dann wartet man das thermische Gleichgewicht ab und misst die Temperatur des Wasserbades mit dem Körper. Ist das Gefäß, das so genannte Kalorimeter gut isoliert, dann entspricht die Wärmemenge, die der Körper abgab, derjenigen, die das Kalorimeter (Wasser und Behälter) aufgenommen hat. Nachdem die Wärmemenge, die der Körper abgegeben hat, gleich der sein muss, die das Kalorimeter aufnahm, gilt: -4- Physikal. Schulversuchspraktikum WS 00/01 Katharina Wieser, 9855124 Qabgegeben = Qabgegeben mKörpercKörper (TKörper − TEnd ) = mH 2O cH 2O (TKalorimeter − TEnd ) Q...Wärmemenge c...Spezifische Wärme m...Masse T...Temperatur Mit diesem Versuch kann man die spezifische Wärme unterschiedlicher Stoffe bestimmen. Um ein Gefühl für die Größe der spezifischen Wärme zu bekommen, sollte man die einzelnen c in Beziehung zu cWasser setzen. -5- Versuchsauswertung Anschließend werten wir den Versuch mithilfe der Formel Arbeitsblatt „Spezifische Wärme und Kalorimetrie“ mKörper cKörper (TKörper − TEnd ) = mH 2O cH 2O (TKalorimeter − TEnd ) aus – wir berechnen die spezifische Wärme c der einzelnen Materialien. Versuchsaufbau Mittels einer Stativstange wird 1 Wärmeschutznetz über einem Brenner montiert. Darauf befindet sich ein Becherglas mit Wasser. In dieses Becherglas werden Quader verschiedenster Materialien gehängt. Die Schnurenden sollen über den Becherrand ragen. Dazu müssen wir die Formel umformen: cKörper = Dann setzen wir die uns bekannten Größen ein: mH2O = 0,1 kg TKalorimeter =....................................... oC cH2O = 4.187 J / kg oC TKörper =....................................... oC Material Außerdem benötigt man ein Kalorimeter mit genau 100 ml kaltes Wasser, in dem ein Thermometer steckt. Versuchsdurchführung Wir bringen das Wasser in dem Becherglas zum Kochen und messen die Temperatur. Dann lesen wir die Temperatur des Kalorimeters ab. Jetzt geben wir den ersten Quader aus dem Becherglas in das Kalorimeter. Nach 1 Minute entfernen wir den Quader, mischen das Wasser des Kalorimeters durch und stellen die Temperaturerhöhung fest. Dasselbe machen wir mit den anderen Quadern auch noch. -6- mKörper TEnd cKörper Physikal. Schulversuchspraktikum WS 00/01 Katharina Wieser, 9855124 III. Wärmeleitung Grundlagen „Wie wird Wärme weitergeleitet?“ Ziel: Die Schüler sollen das System der Wärmeleitung verstehen und auch den Unterscheid zwischen Leitern und Isolatoren. Wärmeenergie kann sich durch Wärmeleitung ausbreiten. Der Energietransport erfolgt durch Wechselwirkung zwischen den Molekülen oder Atomen, die aber nicht selbst transportiert werden. An der Erwärmungsstelle beginnen die Teilchen stärker zu schwingen. Dadurch regen sie die Nachbarteilchen zu Schwingungen an. Schließlich schwingen alle Teilchen schneller – die Temperatur steigt. Alle Metalle leiten die Wärme gut. Am besten Silber, Kupfer, Gold, Aluminium,.. . Metalle sind gute Leiter, weil die freien Elektronen in ihnen während ihrer Bewegung ständig mit den Atomen zusammenstoßen, deren thermische Energie aufnehmen, dadurch ihre eigene kinetische Energie erhöhen und sie dann durch Stöße mit anderen Atomen wieder abgeben. Nichtmetalle wie Wasser, Holz, Textilien, Kunststoffe, Steine und alle Gase leiten die Wärme schlecht. Man bezeichnet sie als Wärmeisolatoren. In Gasen wird die Wärme durch die Stöße der Gasmoleküle übertragen. Die Moleküle im wärmeren Teil des Gasvolumens haben eine höhere mittlere kinetische Energie als die im kälteren Teil und geben ihre Energie bei den Stößen teilweise an die langsameren Moleküle ab. -7- Arbeitsblatt „Wärmeleitung“ Benötigte Materialien 1 Reagenzglas, 1 Reagenzglashalter 1 Kerze oder 1 Bunsenbrenner Eiswürfel oder Schnee, Wasser, Schraubenmutter oder Kugel Versuchsdurchführung Einige Eisstücke oder Schnee werden in das Reagenzglas gefüllt und mit der Schraubenmutter oder etwas ähnlichem beschwert. Das Reagenzglas wird mit kaltem Wasser aufgefüllt. Nun fasst man das Glas mit dem Halter und erhitzt das Wasser mit der Kerzenflamme oder dem Bunsenbrenner. Dabei muss man aufpassen, das Wasser beginnt schnell zu kochen und kann herausgeschleudert werden. Unsere Beobachtungen mit der Beschwerung ...................................................................................... ...................................................................................... ...................................................................................... Daraus folgern wir, dass ...................................................................................... ...................................................................................... Führt den Versuch jetzt noch einmal ohne der Beschwerung durch. Was ist jetzt anders ? Überlegt warum! ...................................................................................... ...................................................................................... ...................................................................................... -8- Physikal. Schulversuchspraktikum WS 00/01 Katharina Wieser, 9855124 IV. Wärmedämmung Grundlagen „ Wozu brauchen wir ein Dämmmaterial?“ Ziel: Die Schüler sollen die Wichtigkeit der Wärmedämmung und die damit verbundene Möglichkeit des Energiesparens erkennen und verstehen. In unseren Wohnungen wollen wir es im Winter warm, im Sommer angenehm kühl haben, d.h. im Winter soll sich die Heizwärme im Haus halten, im Sommer die Hitze draußen bleiben. Dies erreicht man durch gute Wärmedämmung, das heißt durch die Verwendung von Baumaterialien, die Wärme möglichst schlecht weiterleiten, also Wärmeisolatoren. Die Wärmeleitfähigkeit von Gasen ist wesentlich geringer als die von Flüssigkeiten oder Festkörpern. Daher ist Luft ein recht gutes Isolationsmaterial. Häufig macht man davon Gebrauch: Doppelfenster, Lochziegel, Stroh, Schaumstoffe,... enthalten alle luftgefüllte Zwischenräume. Auch Mensch und Tier nutzen die Luft: Zwischen den Textilfasern der Kleidung, in den Fellen und im Federkleid der Tiere ist Luft eingeschlossen und behindert die Wärmeabgabe an die Umgebung. -9- Versuchsauswertung Arbeitsblatt „Wärmedämmung“ Benötigte Materialien 1 Gefäß, 1 zweites gleich großes Gefäß mit einem IsolierStyropor-Einsatz (ansonsten ein dickes Tuch oder ein Schal zur Isolierung), Wasser, 1 Bunsenbrenner, 1 Stativ mit einem Wärmeschutznetz, 2 Thermometer Zeitpunkt Tisoliert Tnicht isoliert o o o o o o o o o o o o o o o o o o o o C C C Versuchsaufbau und -durchführung C Mittels Stativ, Wärmeschutznetz und Bunsenbrenner wird in einem Gefäß Wasser zum Kochen gebracht. C C C C Anschließend wird das Wasser gleichmäßig auf die beiden Gefäße verteilt. C C C C C C C C C C C C In welchem Gefäß kühlt das Wasser schneller ab und warum? Eines der beiden wird in die Isolierung gesteckt (bzw. isoliert). In beide Gefäße kommt ein Thermometer. ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... Welchen Vorteil bringt uns also die Wärmedämmung? ...................................................................................................................... ...................................................................................................................... Wir beobachten nun die Abkühlung des Wassers in den beiden Gefäßen und vergleichen diese miteinander. ...................................................................................................................... - 10 - Physikal. Schulversuchspraktikum WS 00/01 Katharina Wieser, 9855124 V. Wärmestrahlung Grundlagen „ Wie viel Energie schickt uns die Sonne?“ Ziel: Die Schüler sollen die Energie der Sonnenstrahlen bemerken und ihre Auswirkungen – wie Lagerung von Lebensmitteln, Farbe der Kleidung im Hochsommer,... – verstehen. Die Wärme der Sonne kommt von sehr weit zu uns. Im Vakuum ist weder Wärmeleitung noch Wärmestrahlung möglich: Die Sonnenenergie breitet sich durch Wärmestrahlung aus. Diese ist eine Infrarotstrahlung und ist daher für das menschliche Auge nicht sichtbar. Wie das Licht und die Röntgenstrahlung gehört sie zur „Familie“ der elektromagnetischen Wellen, die sich geradlinig und mit Lichtgeschwindigkeit (300.000 km/s) ausbreiten. Jeder Körper sendet nicht nur Strahlung aus, er nimmt auch jederzeit Strahlung auf. Die Strahlung selbst ist weder kalt noch warm; erst durch die Absorption (Aufnahme) der Strahlung erwärmt sich ein Körper. Schwarze, matte Körper nehmen mehr Strahlung als blanke, glänzende auf, geben aber auch mehr Strahlung ab. Wärmestrahlen können wie Lichtstrahlen umgelenkt, zurückgeworfen oder gebündelt werden. - 11 - Versuchsauswertung Arbeitsblatt „Wärmestrahlung“ Benötigte Materialien Zeitpunkt 2 Gefäße, Wasser, etwas Tinte, etwas Milch, 2 Thermometer, Sonne bzw. Lampe Thell Tdunkel o o o o o o o o o o o o o o o o o o o o C C C C C C C C C Versuchsaufbau und -durchführung C C Wir füllen beide Gefäße mit Wasser, färben eines mit Milch hell, das andere mit Tinte dunkel und stecken in jedes Gefäß ein Thermometer. C C C C C C C C Dann setzen wir die Gefäße einer Wärmestrahlung aus (Stellen auf das Fensterbrett in die Sonne) und lesen in regelmäßigen Abständen die Temperatur ab. C Welches Gefäß erwärmt sich schneller und warum? ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... ...................................................................................................................... Welche Auswirkungen Menschen? hat dieser Effekt auf uns ...................................................................................................................... ...................................................................................................................... Man kann statt den Gefäßen mit Milch und Tinte auch schwarze und weiße Blechdosen benutzen. ...................................................................................................................... - 12 -