Kapitel II Kontinuierliche Wahrscheinlichkeitsraume 1. Einfuhrung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT c Susanne Albers 1.1 Motivation 195/460 Beispiel 78 Wir betrachten das Szenario: Bei einem Druckerserver kommen Auftrage in einer Warteschlange an, die alle 1=n Zeiteinheiten vom Server abgefragt wird. Der Server nimmt also zu den diskreten Zeitpunkte 1=n; 2=n; 3=n; : : : neue Auftrage entgegen. Durch den Grenzwert n ! 1 verschmelzen\ diese diskreten Zeitpunkte zu einer " kontinuierlichen Zeitachse, und fur die Zufallsvariable T , welche die Zeitspanne bis zum Eintreen des nachsten Auftrags misst, reicht eine diskrete Wertemenge WT nicht mehr aus. DWT c Susanne Albers 1.1 Motivation 196/460 1.2 Kontinuierliche Zufallsvariablen Denition 79 Eine kontinuierliche oder auch stetige Zufallsvariable X und ihr zugrunde liegender kontinuierlicher (reeller) Wahrscheinlichkeitsraum sind deniert durch eine integrierbare Dichte(-funktion) fX : R ! R+ 0 mit der Eigenschaft Z +1 fX (x) d x = 1: 1 S Eine Menge A R, die durch Vereinigung A = k Ik abzahlbar vieler paarweise disjunkter Intervalle beliebiger Art (oen, geschlossen, halboen, einseitig unendlich) gebildet werden kann, heit Ereignis. Ein Ereignis A tritt ein, wenn X einen Wert aus A annimmt. Die Wahrscheinlichkeit von A ist bestimmt durch Z Z Pr[A] = DWT c Susanne Albers A fX (x) d x = X k Ik fX (x) d x: 1.2 Kontinuierliche Zufallsvariablen 197/460 Beispiel 80 (Gleichverteilung) Eine besonders einfache kontinuierliche Dichte stellt die Gleichverteilung auf dem Intervall [a; b] dar. Sie ist deniert durch ( f (x) = 1 b a 0 fur x 2 [a; b], sonst. Analog zum diskreten Fall ordnen wir jeder Dichte fX eine Verteilung oder Verteilungsfunktion FX zu: FX (x) := Pr[X x] = Pr[ft 2 R j t xg] = DWT c Susanne Albers 1.2 Kontinuierliche Zufallsvariablen Z x 1 fX (t) d t: 198/460 Beispiel 81 Die Verteilungsfunktion der Gleichverteilung: F (x) = DWT c Susanne Albers Z x 1 8 > <0 f (t) d t = xb aa > : 1 fur x < a; fur a x b; fur x > b: 1.2 Kontinuierliche Zufallsvariablen 199/460 f (x) 1,4 1,2 1,0 1,0 0,8 0,8 0,6 0,6 0,4 0,4 0,2 0,2 0,0 -0,2 -0,5 F (x) 1,4 1,2 0,0 0,0 0,5 1,0 -0,2 1,5 -0,5 0,0 0,5 1,0 1,5 Gleichverteilung uber dem Intervall [0; 1] DWT c Susanne Albers 1.2 Kontinuierliche Zufallsvariablen 200/460 Beobachtungen:(Eigenschaften der Verteilungsfunktion) FX ist monoton steigend. FX ist stetig. Man spricht daher auch von einer "stetigen Zufallsvariablen\. Es gilt: limx! 1 FX (x) = 0 und limx!1 FX (x) = 1. Jeder (auer an endlich vielen Punkten) dierenzierbaren Funktion F , welche die zuvor genannten Eigenschaften erfullt, konnen wir eine Dichte f durch f (x) = F 0 (x) zuordnen. Es gilt DWT c Susanne Albers Pr[a < X b] = FX (b) FX (a) : 1.2 Kontinuierliche Zufallsvariablen 201/460 Bei den von uns betrachteten Dichten besteht zwischen den Ereignissen a < X " a X b \, a X < b\ und a < X < b\ kein wesentlicher Unterschied, da " " " Z [a;b] DWT c Susanne Albers f (t) d t = Z ]a;b] f (t) d t = Z [a;b[ f (t) d t = 1.2 Kontinuierliche Zufallsvariablen Z ]a;b[ b\, f (t) d t: 202/460 1.3 Kolmogorov-Axiome und -Algebren 1.3.1 -Algebren Denition 82 Sei eine Menge. Eine Menge A P ( ) heit -Algebra uber , wenn folgende Eigenschaften erfullt sind: (E1) 2 A. (E2) Wenn A 2 A, dann folgt A 2 A. S (E3) Fur n 2 N sei An 2 A. Dann gilt auch 1 n=1 An 2 A. DWT c Susanne Albers 1.3 Kolmogorov-Axiome und -Algebren 203/460 Fur jede (endliche) Menge stellt die Menge P ( ) eine -Algebra dar. Fur = R ist die Klasse der Borel'schen Mengen, die aus allen Mengen A R besteht, welche sich durch abzahlbare Vereinigungen und Schnitte von Intervallen (oen, halboen oder geschlossen) darstellen lassen, eine -Algebra. DWT c Susanne Albers 1.3 Kolmogorov-Axiome und -Algebren 204/460 1.3.2 Kolmogorov-Axiome Denition 83 (Wahrscheinlichkeitsraum, Kolmogorov-Axiome) Sei eine beliebige Menge und A eine -Algebra uber . Eine Abbildung Pr[:] : A ! [0; 1] heit Wahrscheinlichkeitsma auf A, wenn sie folgende Eigenschaften besitzt: 1 (W1) Pr[ ] = 1. 2 (W2) A1 ; A2 ; : : : seien paarweise Ereignisse. Dann gilt " disjunkte # 1 1 [ X Pr i=1 Ai = i=1 Pr[Ai ]: Fur ein Ereignis A 2 A heit Pr[A] Wahrscheinlichkeit von A. Ein Wahrscheinlichkeitsraum ist deniert durch das Tupel ( ; A; Pr). DWT c Susanne Albers 1.3 Kolmogorov-Axiome und -Algebren 205/460 Die in obiger Denition aufgelisteten Eigenschaften eines Wahrscheinlichkeitsmaes wurden von dem russischen Mathematiker Andrei Nikolaevich Kolmogorov (1903{1987) formuliert. Kolmogorov gilt als einer der Pioniere der modernen Wahrscheinlichkeitstheorie, leistete jedoch auch bedeutende Beitrage zu zahlreichen anderen Teilgebieten der Mathematik. Informatikern begegnet sein Name auch im Zusammenhang mit der so genannten Kolmogorov-Komplexitat, einem relativ jungen Zweig der Komplexitatstheorie. Die Eigenschaften in obiger Denition nennt man auch Kolmogorov-Axiome. DWT c Susanne Albers 1.3 Kolmogorov-Axiome und -Algebren 206/460 Lemma 84 Sei ( ; A; Pr) ein Wahrscheinlichkeitsraum. Fur Ereignisse A, B , A1 , A2 , : : : gilt 1 2 3 4 Pr[;] = 0, Pr[ ] = 1. 0 Pr[A] 1. Pr[A] = 1 Pr[A]. Wenn A B , so folgt Pr[A] Pr[B ]. DWT c Susanne Albers 207/460 Lemma 84 5 (Additionssatz) Wenn die Ereignisse A1 ; : : : ; An paarweise disjunkt sind, so folgt " Pr n [ i=1 # Ai = n X i=1 Pr[Ai ]: Fur disjunkte Ereignisse A, B erhalten wir insbesondere Pr[A [ B ] = Pr[A] + Pr[B ]: Fur eine unendliche Menge von paarweise disjunkten Ereignissen A1 ; A2 ; : : : gilt S P1 analog Pr [ 1 A ] = i=1 i i=1 Pr[Ai ]. DWT c Susanne Albers 1.3 Kolmogorov-Axiome und -Algebren 207/460 Beweis: Wenn wir in Eigenschaft (W2) A = und A2 ; A3 ; : : : = ; setzen, so ergibt die P1 1 Eigenschaft, dass Pr[ ] + i=2 Pr[;] = Pr[ ]. Daraus folgt Pr[;] = 0. Regel 2 und Regel 5 gelten direkt nach Denition der Kolmogorov-Axiome und Regel 1. Regel 3 erhalten wir mit Regel 5 wegen 1 = Pr[ ] = Pr[A] + Pr[A]. Fur Regel 4 betrachten wir die disjunkten Ereignisse A und C := B n A, fur die gilt, dass A [ B = A [ C . Mit Regel 5 folgt die Behauptung. DWT c Susanne Albers 1.3 Kolmogorov-Axiome und -Algebren 208/460 1.3.3 Lebesgue-Integrale Eine Funktion f : R ! R heit messbar, falls das Urbild jeder Borel'schen Menge ebenfalls eine Borel'sche Menge ist. Z.B. ist fur jede Borel'sche Menge A die Indikatorfunktion IA : x 7! ( 1 falls x 2 A, 0 sonst messbar. Jede stetige Funktion ist messbar. Auch Summen und Produkte von messbaren Funktionen sind wiederum messbar. Jeder messbaren Funktion kann man ein Integral, das so genannte Lebesgue-Integral, R geschrieben f d , zuordnen. DWT c Susanne Albers 1.3 Kolmogorov-Axiome und -Algebren 209/460 Ist f : R ! R+ 0 eine messbare Funktion, so deniert R Pr : A 7! f IA d eine Abbildung auf den Borel'schen Mengen, die die Eigenschaft (W2) der Kolmogorov-Axiome erfullt. Gilt daher zusatzlich noch Pr[R] = 1, so deniert f auf naturliche Weise einen Wahrscheinlichkeitsraum ( ; A; Pr), wobei = R und A die Menge der Borel'schen Mengen ist. DWT c Susanne Albers 1.3 Kolmogorov-Axiome und -Algebren 210/460 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 1.4.1 Funktionen kontinuierlicher Zufallsvariablen Sei Y := g (X ) mit einer Funktion g : R ! R. Die Verteilung von Y erhalten wir durch FY (y) = Pr[Y y] = Pr[g(X ) y] = Z C fX (t) d t: Hierbei bezeichnet C := ft 2 R j g (t) y g alle reellen Zahlen t 2 R, fur welche die Bedingung Y y\ zutrit. Das Integral uber C ist nur dann sinnvoll deniert, " wenn C ein zulassiges Ereignis darstellt. Aus der Verteilung FY konnen wir durch Dierenzieren die Dichte fY ermitteln. DWT c Susanne Albers 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 211/460 Beispiel 85 Sei X gleichverteilt auf dem Intervall ]0; 1[. Fur eine Konstante > 0 denieren wir die Zufallsvariable Y := (1=) ln X . FY (y) = Pr[ (1=) ln X y] = Pr[ln X y] = Pr[X e y ] = 1 FX (e y ) ( y f ur y 0; = 1 e 0 sonst: DWT c Susanne Albers 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 212/460 Beispiel (Forts.) Damit folgt mit fY (y ) = FY0 (y ) sofort ( fY (y) = e 0 y fur y 0; sonst: Eine Zufallsvariable mit einer solchen Dichte fY nennt man exponentialverteilt. DWT c Susanne Albers 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 213/460 Beispiel 86 Sei X eine beliebige Zufallsvariable. Fur a; b 2 R mit a > 0 denieren wir die Zufallsvariable Y := a X + b. Es gilt FY (y ) = Pr[aX + b y ] = Pr X und somit fY (y) = DWT c Susanne Albers d FY (y ) dy yab FX = y a b ; = d FX ((dy y b)=a) = fX y a b a1 : 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 214/460 Simulation von Zufallsvariablen Unter der Simulation einer Zufallsvariablen X mit Dichte fX versteht man die algorithmische Erzeugung von Zufallswerten, deren Verteilung der Verteilung von X entspricht. Dazu nehmen wir an, dass die zu simulierende Zufallsvariable X eine stetige, im Bildbereich ]0; 1[ streng monoton wachsende Verteilungsfunktion FX besitzt. Weiter nehmen wir an, dass U eine auf ]0; 1[ gleichverteilte Zufallsvariable ist, die wir simulieren konnen. Aus unserer Annahme uber FX folgt, dass es zu FX eine (eindeutige) inverse Funktion F 1 gibt mit FX (F 1 (x)) = x fur alle x 2]0; 1[. X DWT c Susanne Albers X 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 215/460 Sei nun X~ := FX 1 (U ) ; dann gilt Pr[X~ t] = Pr[FX 1 (U ) t] = Pr[U FX (t)] = FU (FX (t)) = FX (t) : DWT c Susanne Albers 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 216/460 Beispiel 87 Im obigen Beispiel der Exponentialverteilung gilt FX (t) = 1 e t fur t 0, und wir erhalten auf ]0; 1[ die Umkehrfunktion FX 1 (t) = ln(1 t). Also gilt X~ = FX 1 (U ) = ln(1 U ). Statt X~ haben wir im Beispiel die Zufallsvariable oensichtlich dieselbe Verteilung besitzt. DWT c Susanne Albers ln U betrachtet, die aber 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 217/460 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir konnen aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir fur ein festes > 0 denieren X = n Fur X gilt DWT c Susanne Albers () X 2 [n; (n + 1)[ fur n 2 Z: Pr[X = n] = FX ((n + 1)) FX (n) : 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 218/460 1,0 FX (x) FXÆ (x) 0,8 0,6 0,4 0,2 0,0 -3,0 -2,0 -1,0 0,0 1,0 2,0 3,0 Fur ! 0 nahert sich die Verteilung von X der Verteilung von X immer mehr an. DWT c Susanne Albers 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 219/460 1.4.3 Erwartungswert und Varianz Denition 88 Fur eine kontinuierliche Zufallsvariable X ist der Erwartungswert deniert durch E[X ] = Z 1 1 t fX (t) d t; R sofern das Integral 11 jtj fX (t) d t endlich ist. Fur die Varianz gilt entsprechend Z 1 2 Var[X ] = E[(X E[X ]) ] = (t 1 wenn E[(X E[X ])2 ] existiert. DWT c Susanne Albers E[X ])2 fX (t) d t; 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 220/460 Lemma 89 Sei X eine kontinuierliche Zufallsvariable, und sei Y := g(X ) : Dann gilt DWT c Susanne Albers E[Y ] = Z 1 1 g(t) fX (t) d t : 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 221/460 Beweis: Wir zeigen die Behauptung nur fur den einfachen Fall, dass g eine lineare Funktion ist, also Y := a X + b fur a; b 2 R und a > 0. Es gilt (siehe obiges Beispiel) E[a X + b] = Z 1 1 Durch die Substitution u := (t t fY (t) d t = 1 1 t fX t b a a1 d t: b)=a mit d u = (1=a) d t erhalten wir E[a X + b] = DWT c Susanne Albers Z Z 1 1 (au + b)fX (u) d u: 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 222/460 Beispiel 90 Fur Erwartungswert und Varianz der Gleichverteilung ergibt sich Z b Z b 1 1 E[X ] = t dt = b a t dt b a a a 1 2 b = 2(b a) [t ]a 2 2 = 2(b b aa) = a +2 b ; 1 Z b t2 d t = b2 + ba + a2 ; b a a 3 2 Var[X ] = E[X 2 ] E[X ]2 = : : : = (a 12b) : E[X 2 ] = DWT c Susanne Albers 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 223/460 1.4.4 Laplace-Prinzip in kontinuierlichen Wahrscheinlichkeitsraumen Das folgende Beispiel zeigt, dass im kontinuierlichen Fall die Bedeutung von gleichwahrscheinlich\ nicht immer ganz klar sein muss. " Bertrand'sches Paradoxon Wir betrachten einen Kreis mit einem eingeschriebenen gleichseitigen Dreieck. Was ist die Wahrscheinlichkeit, mit der die Lange einer zufallig gewahlten Sehne die Seitenlange dieses Dreiecks ubersteigt (Ereignis A)? DWT c Susanne Albers 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 224/460 r 2 S 120Æ M DWT c Susanne Albers d S M 1.4 Rechnen mit kontinuierlichen Zufallsvariablen ' 225/460 Beobachtungen: Die Seiten des Dreiecks haben Abstand 2r vom Mittelpunkt M . Die Lage jeder Sehne ist (bis auf Rotation um M ) durch einen der folgenden Parameter festgelegt: Abstand d zum Kreismittelpunkt, Winkel ' mit dem Kreismittelpunkt. Wir nehmen fur jeden dieser Parameter Gleichverteilung an und ermitteln Pr[A]. 1 Sei d 2 [0; r ] gleichverteilt. A tritt ein, wenn d < r , und es folgt Pr[A] = 1 . 2 2 2 Sei ' 2 [0 ; 180 ] gleichverteilt. F ur A muss gelten ' 2]120 ; 180 ], und es folgt somit Pr[A] = 31 . Siehe auch diese graphischen Darstellungen! DWT c Susanne Albers 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 226/460