1 Biologie der Zelle 9 Atmungssystem 2 Genetik und Evolution 10 Verdauungssystem 3 Gewebe 11 Nieren und ableitende Harnwege 4 Blut, Immunsystem und lymphatische Organe 12 Geschlechtsorgane 5 Nervensystem 13 Fortpflanzung, Entwicklung und Geburt 6 Endokrines System (Hormonsystem) 14 Sinnesorgane 7 Bewegungssystem 15 Haut und Hautanhangsgebilde 8 Herz und Gefäßsystem Anhang Der Körper des Menschen Einführung in Bau und Funktion Adolf Faller † Neu bearbeitet von Michael Schünke unter Mitarbeit von Gabriele Schünke 17., überarbeitete Auflage 450 farbige Abbildungen Georg Thieme Verlag Stuttgart • New York 1. Auflage 1966 2. Auflage 1967 3. Auflage 1969 4. Auflage 1970 5. Auflage 1972 6. Auflage 1974 7. Auflage 1976 8. Auflage 1978 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. 9. Auflage 1980 10. Auflage 1984 11. Auflage 1988 12. Auflage 1995 13. Auflage 1999 14. Auflage 2004 15. Auflage 2008 16. Auflage 2012 1. französische Auflage 1970 2. französische Auflage 1983 3. französische Auflage 1988 4. französische Auflage 1999 5. französische Auflage 2006 1. italienische Auflage 1973 1. japanische Auflage 1982 2. japanische Auflage 1993 3. japanische Auflage 2001 4. japanische Auflage 2013 1. niederländische Auflage 1970 2. niederländische Auflage 1974 3. niederländische Auflage 1978 4. niederländische Auflage 1981 1. spanische Auflage 1968 2. spanische Auflage 1984 3. spanische Auflage 2006 1. englische Auflage 2004 1. russische Auflage 2008 © 2016 Georg Thieme Verlag KG Rüdigerstr. 14 70469 Stuttgart Deutschland www.thieme.de Printed in Italy Zeichnungen: Gerhard Spitzer, Frankfurt am Main; Markus Voll, München; Gay & Sender, Bremen; Karl Wesker, Berlin Anatomische Tafeln: Markus Voll, München; Karl Wesker, Berlin; unter Verwendung von Schünke M, Schulte E, Schumacher U. Prometheus. LernAtlas der Anatomie Umschlaggestaltung: Thieme Verlagsgruppe Umschlaggrafik: Martina Berge, Stadtbergen; verwendete Grafiken von © angelhell – iStockphoto. com, © ag visuell – Fotolia.com, © Giovanni Cancemi – Fotolia.com, © ciawitaly – Fotolia.com Satz: Druckhaus Götz GmbH, Ludwigsburg Druck: LEGO S.p.A, Lavis TN DOI 10.1055/b-004-129994 ISBN 978-3-13-329717-2 Auch erhältlich als E-Book: eISBN (PDF) 978-3-13-151957-3 eISBN (epub) 978-3-13-167787-7 123456 Wichtiger Hinweis: Wie jede Wissenschaft ist die Medizin ständigen Entwicklungen unterworfen. Forschung und klinische Erfahrung erweitern unsere Erkenntnisse, insbesondere was Behandlung und medikamentöse Therapie anbelangt. Soweit in diesem Werk eine Dosierung oder eine Applikation erwähnt wird, darf der Leser zwar darauf vertrauen, dass Autoren, Herausgeber und Verlag große Sorgfalt darauf verwandt haben, dass diese Angabe dem Wissensstand bei Fertigstellung des Werkes entspricht. Für Angaben über Dosierungsanweisungen und Applikationsformen kann vom Verlag jedoch keine Gewähr übernommen werden. Jeder Benutzer ist angehalten, durch sorgfältige Prüfung der Beipackzettel der verwendeten Präparate und gegebenenfalls nach Konsultation eines Spezialisten festzustellen, ob die dort gegebene Empfehlung für Dosierungen oder die Beachtung von Kontraindikationen gegenüber der Angabe in diesem Buch abweicht. Eine solche Prüfung ist besonders wichtig bei selten verwendeten Präparaten oder solchen, die neu auf den Markt gebracht worden sind. Jede Dosierung oder Applikation erfolgt auf eigene Gefahr des Benutzers. Autoren und Verlag appellieren an jeden Benutzer, ihm etwa auffallende Ungenauigkeiten dem Verlag mitzuteilen. Geschützte Warennamen (Warenzeichen ®) werden nicht immer besonders kenntlich gemacht. Aus dem Fehlen eines solchen Hinweises kann also nicht geschlossen werden, dass es sich um einen freien Warennamen handelt. Das Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt. Jede Verwendung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen oder die Einspeicherung und Verarbeitung in elektronischen Systemen. Vorwort zur 17. Auflage In diesem Jahr feiert der „Faller“ einen runden Geburtstag: 50 Jahre wird das Buch alt! Wir freuen uns deshalb ganz besonders, dass es jetzt, pünktlich zu diesem Jubiläum, zum 17. Mal neu aufgelegt wird. 17 Auflagen erlebt ein Buch nur, wenn es immer genau auf die Bedürfnisse seiner Leserinnen und Leser eingeht und dadurch – trotz stetig wachsender Konkurrenz – immer beliebt bleibt. So hat sich der Faller über die letzten 50 Jahre nicht zuletzt aufgrund Ihrer Anregungen und Ihrer Kritik immer weiterentwickelt. Dies gilt einmal mehr für diese neue optimierte 17. Auflage. Schon rein äußerlich macht sie durch das jetzt 2-spaltige Layout einen moderneren Eindruck als die 16. So sieht sie nicht nur besser aus, die Texte lassen sich damit auch angenehmer und schneller lesen. Zur Lesefreundlichkeit trägt außerdem bei, dass das das gesamte Buch sprachlich überarbeitet wurde. Jedes Kapitel beginnt mit einer leicht und allgemein verständlichen Einleitung. Selbst, wenn Sie sich noch nie mit dem Aufbau einer Zelle, mit Genetik oder dem Nervensystem beschäftigt haben, finden Sie so mühelos einen Einstieg in das jeweilige Thema. Definitionen erklären Ihnen die Begriffe, die Sie zum weiteren Verständnis benötigen, mehr als 400 Grafiken illustrieren Zusammenhänge, Beispiele und Zusatzinformationen in gesonderten Kästen runden das Bild ab. Außerdem haben wir den Text natürlich dem aktuellen Informationsstand angepasst. Dies betrifft insbesondere die spannenden neuen Erkenntnisse zur Epigenetik, einer noch jungen Forschungsrichtung, die unser tägliches Leben tiefgreifend beeinflussen wird und von der Krankheitsvorsorge, Krebsforschung, Psychologie und Evolutionsbiologie profitieren werden. Die vorliegende 17. Auflage trägt ganz wesentlich auch die Handschrift des Thieme Verlags und profitiert von vielen äußerst motivierten Menschen, deren Mitarbeit wir sehr genossen haben und denen wir von ganzem Herzen danken möchten. Allen voran Sabine Bartl, die dank ihres didaktischen Geschicks den Text vollkommen neu bearbeitet und gestaltet hat und für uns immer eine überaus kompetente und liebenswürdige Ansprechpartnerin war. Sie hat diese vorliegende Auflage entscheidend mitgeprägt. Nicht zu vergessen auch Dieter Schmid als Programmplaner, der vor allem die Umstellung der Kapitel angeregt und viele neue Gedanken beigesteuert hat. Daneben möchten wir auch all den anderen Thieme-Mitarbeitern danken, die im Pflege-Redaktionsteam, in der Herstellung, in der Konzeption und im Marketing zum Gelingen dieser Auflage beigetragen haben. Kiel, im April 2016 Gabriele und Michael Schünke 5 Inhaltsverzeichnis 1 .................. 18 1.1 1.2 Was ist eine menschliche Zelle? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eigenschaften von Zellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 1.2.2 Grundeigenschaften. . . . . . . . . . . . . . . . . Spezifische Eigenschaften . . . . . . . . . . . . Grundbauplan einer eukaryoten Zelle . Zellmembran (Plasmalemm) . . . . . . . . . . Zellleib (Zytoplasma) . . . . . . . . . . . . . . . . Zellkern (Nucleus) . . . . . . . . . . . . . . . . . . Chromosomen und Gene . . . . . . . . . . . Aufbau eines Chromosoms. . . . . . . . . . . . Aufbau der DNA . . . . . . . . . . . . . . . . . . . . Funktionen der DNA . . . . . . . . . . . . . . . . Zellteilung . . . . . . . . . . . . . . . . . . . . . . . Mitose . . . . . . . . . . . . . . . . . . . . . . . . . . . Reduktions- oder Reifeteilung (Meiose) . . Die Zelle und ihre Umgebung . . . . . . . Extrazelluläre Flüssigkeit . . . . . . . . . . . . . Intrazelluläre Flüssigkeit . . . . . . . . . . . . . Membran- oder Ruhepotenzial . . . . . . Stoff- und Flüssigkeitstransport. . . . . . Passive Transportprozesse . . . . . . . . . . . . Aktive Transportprozesse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 18 18 20 20 20 21 25 25 26 28 28 35 35 37 40 41 42 42 43 45 47 ............. 54 . . . . . . 54 54 55 59 63 65 1.3 1.3.1 1.3.2 1.3.3 1.4 1.4.1 1.4.2 1.4.3 1.5 1.5.1 1.5.2 1.6 1.6.1 1.6.2 1.7 1.8 1.8.1 1.8.2 2 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 6 Biologie der Zelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Genetik und Evolution Genetik (Vererbungslehre) . . . . . . . . . . . . . . . Grundbegriffe der Genetik . . . . . . . . . . . . . . . . . Mendel-Gesetze. . . . . . . . . . . . . . . . . . . . . . . . . Autosomale Erbgänge (dominant-rezessive) . . . Gonosomale (geschlechtsgebundene) Erbgänge . Mutationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inhaltsverzeichnis 2.2 Evolution (Abstammungslehre) . . Grundbegriffe der Evolutionstheorie Evolutionsfaktoren . . . . . . . . . . . . . . Evolutionsbeweise . . . . . . . . . . . . . . . . . . 67 68 68 71 ............................ 78 3.1 3.2 Gewebearten im Überblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Epithelgewebe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 3.2.2 Oberflächenbildende Epithelien . . . Drüsen- und Sinnesepithelien. . . . . Binde- und Stützgewebe . . . . . . . Bindegewebe . . . . . . . . . . . . . . . . . Stützgewebe. . . . . . . . . . . . . . . . . . Muskelgewebe . . . . . . . . . . . . . . . Glattes Muskelgewebe . . . . . . . . . . Quergestreiftes Muskelgewebe . . . . Nervengewebe . . . . . . . . . . . . . . . Nervenzellen (Neurone) . . . . . . . . . Nervenimpulse (Aktionspotenziale) Synapsen . . . . . . . . . . . . . . . . . . . . Gliazellen (Neuroglia) . . . . . . . . . . . Nerven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 78 80 82 82 83 88 95 96 96 106 106 108 109 113 114 Blut, Immunsystem und lymphatische Organe . . . . . . . . . . . . . . 120 2.2.1 2.2.2 2.2.3 3 3.3 3.3.1 3.3.2 3.4 3.4.1 3.4.2 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 4 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.1.8 Gewebe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Blut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aufgaben des Blutes . . . . . . . . . . . . . . . . . . . . . . Blutzellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Blutgruppen . . . . . . . . . . . . . . . . . . . . . . . . . . . . Blutplasma und Blutserum . . . . . . . . . . . . . . . . . Blutkörperchensenkungsgeschwindigkeit (BSG) . Blut als Transportmittel von O2 und CO2 . . . . . . . Kohlenmonoxid und Hämoglobin . . . . . . . . . . . . Hämoglobinkonzentration im Blut (Hb-Wert). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 120 122 125 128 131 132 133 134 7 Inhaltsverzeichnis 4.1.9 4.1.10 4.1.11 . . . . . . . . . . . 134 136 136 139 139 144 144 146 147 149 152 ..................... 164 5.1 5.2 5.3 Gliederung und Aufgaben des Nervensystems . . . . . . . . . . . . . . . . . Entwicklung des Nervensystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zentrales Nervensystem (ZNS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 5.3.8 5.3.9 5.3.10 5.3.11 5.3.12 5.3.13 Entwicklung von Gehirn (Encephalon) und Rückenmark Hirngewichte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hirnabschnitte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elektroenzephalogramm (EEG) . . . . . . . . . . . . . . . . . . . Schlafen und Wachen. . . . . . . . . . . . . . . . . . . . . . . . . . . Rückenmark (Medulla spinalis) . . . . . . . . . . . . . . . . . . . Bahnen der Willkürmotorik (Pyramidenbahn) . . . . . . . . Extrapyramidal-motorisches System . . . . . . . . . . . . . . . Schlaffe und spastische Lähmung. . . . . . . . . . . . . . . . . . Rückenmarkreflexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hirn- und Rückenmarkshäute (Meningen) . . . . . . . . . . . Gehirn-Rückenmark-Flüssigkeit und Ventrikelsystem . . Blutversorgung des Gehirns . . . . . . . . . . . . . . . . . . . . . . Peripheres Nervensystem (PNS) . . . . . . . . . . . . . . . . Peripherer Nerv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ganglien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rückenmarksnerven (Spinalnerven) . . . . . . . . . . . . . . . Nervengeflechte (Plexus) . . . . . . . . . . . . . . . . . . . . . . . . Hirnnerven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vegetatives Nervensystem . . . . . . . . . . . . . . . . . . . . . Funktion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Allgemeiner Aufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sympathisches Nervensystem . . . . . . . . . . . . . . . . . . . . Parasympathisches Nervensystem . . . . . . . . . . . . . . . . . Darmwandnervensystem. . . . . . . . . . . . . . . . . . . . . . . . 164 165 166 166 167 169 185 185 186 194 197 198 199 201 205 209 214 214 214 214 215 219 221 221 224 225 228 230 4.2 4.2.1 4.2.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 Anämien . . . . . . . . . . . . . . . . . . . . . . . . . . . . Steuerung der Erythrozytenbildung . . . . . . . . Blutstillung, Blutgerinnung und Fibrinolyse . . Immunsystem . . . . . . . . . . . . . . . . . . . . . . . Unspezifische und spezifische Immunabwehr Aktive und passive Immunisierung . . . . . . . . Lymphatische Organe (Immunorgane) . . . Thymus (Bries). . . . . . . . . . . . . . . . . . . . . . . . Lymphknoten . . . . . . . . . . . . . . . . . . . . . . . . Milz (Lien) . . . . . . . . . . . . . . . . . . . . . . . . . . . Lymphatisches Gewebe der Schleimhäute . . . 5 5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 5.5 5.5.1 5.5.2 5.5.3 5.5.4 5.5.5 8 Nervensystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inhaltsverzeichnis 6 Endokrines System (Hormonsystem) . . . . . . . . . . . . . . . . . . . 6.1 6.2 Was sind Hormone und wo werden sie produziert? . . . . . . . . . . . . . Wirkungsweise von Hormonen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 6.2.2 6.2.3 Prinzip . . . . . . . . . . . . . . . . . . . . . . . . Wirkungsweise hydrophiler Hormone Wirkungsweise lipophiler Hormone . . Bildungsorte von Hormonen . . . . . 6.3 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Steuerung der Hormonsekretion (Hypothalamus-HypophysenSystem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Klassische endokrine Hormondrüsen. . . . . . . . . . . . . . . . . . . . . . . . . 244 244 244 244 245 246 246 . . . . . . . . 249 250 250 253 254 256 256 260 262 262 Bewegungssystem . . . . . . . . . . . . . . . . . 268 7.1 7.2 7.3 Körperachsen und Körperebenen . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lage- und Richtungsbezeichnungen . . . . . . . . . . . . . . . . . . . . . . . . . Allgemeine Anatomie des Bewegungssystems . . . . . . . . . . . . . . . . . 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 Knochen . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gelenke . . . . . . . . . . . . . . . . . . . . . . . . . . . . Funktion und Bauprinzip des Skelettmuskels Muskelsehnen . . . . . . . . . . . . . . . . . . . . . . . Hilfseinrichtungen von Muskeln und Sehnen Spezielle Anatomie von Hals und Kopf. . . Hals (Collum) . . . . . . . . . . . . . . . . . . . . . . . . Kopf (Caput) . . . . . . . . . . . . . . . . . . . . . . . . . Spezielle Anatomie des Rumpfes . . . . . . . Rumpfskelett . . . . . . . . . . . . . . . . . . . . . . . . Rumpfmuskulatur . . . . . . . . . . . . . . . . . . . . 268 268 269 270 270 276 279 280 281 281 282 292 292 303 6.5 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 6.5.6 6.5.7 6.6 Hirnanhangsdrüse (Hypophyse) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zirbeldrüse (Corpus pineale, Epiphyse) . . . . . . . . . . . . . . . . . . . . . . . Schilddrüse (Glandula thyreoidea) . . . . . . . . . . . . . . . . . . . . . . . . . . Nebenschilddrüsen (Epithelkörperchen, Glandulae parathyroideae) . Nebennieren (Glandulae suprarenales) . . . . . . . . . . . . . . . . . . . . . . . Inselorgan der Bauchspeicheldrüse (Pancreas) . . . . . . . . . . . . . . . . . Geschlechtsorgane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Andere hormonbildende Gewebe und Einzelzellen . . . . . . . . . . 7 7.4 7.4.1 7.4.2 7.5 7.5.1 7.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Inhaltsverzeichnis 7.6 7.6.1 7.6.2 7.7 7.7.1 7.7.2 Spezielle Anatomie der oberen Extremität . . . . . . . . Schultergürtel – Knochen, Gelenke, Muskeln . . . . . . . . . Freie obere Gliedmaße – Knochen, Gelenke, Muskeln. . . Spezielle Anatomie der unteren Extremität . . . . . . . Beckengürtel und Becken – Knochen, Gelenke, Muskeln. Freie untere Gliedmaße – Knochen, Gelenke, Muskeln . . 8 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10 8.1.11 8.2 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6 8.3 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 10 Herz und Gefäßsystem Herz (Cor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gestalt und Lage . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rechtes und linkes Herz . . . . . . . . . . . . . . . . . . . . . . . Herzkranzgefäße . . . . . . . . . . . . . . . . . . . . . . . . . . . . Systole und Diastole. . . . . . . . . . . . . . . . . . . . . . . . . . Arterieller Blutdruck . . . . . . . . . . . . . . . . . . . . . . . . . Herzzeit- und Herzminutenvolumen (HZV und HMV) Herznerven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Herztöne und Herzgeräusche. . . . . . . . . . . . . . . . . . . Reizleitungssystem . . . . . . . . . . . . . . . . . . . . . . . . . . Elektrokardiogramm (EKG) . . . . . . . . . . . . . . . . . . . . Untersuchung des Herzens. . . . . . . . . . . . . . . . . . . . . Gefäßsystem – Bau und Funktion . . . . . . . . . . . . . Blutgefäße . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lymphgefäße . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Großer und kleiner Kreislauf . . . . . . . . . . . . . . . . . . . Fetaler Kreislauf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Arterien und arterielles System . . . . . . . . . . . . . . . . . Venen und venöses System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 315 317 329 329 333 ............ 356 . . . . . . . . . . . . . . . . . . . 356 356 358 364 365 366 368 368 369 369 371 375 376 376 379 380 382 384 388 392 392 393 393 394 396 398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gefäßsystem – physikalische und physiologische Grundlagen . Strömung, Druck und Widerstand im Gefäßsystem . . . . . . . . . . . . . Verteilung des Herzzeitvolumens (HZV). . . . . . . . . . . . . . . . . . . . . . Regulation der Organdurchblutung . . . . . . . . . . . . . . . . . . . . . . . . . Reflektorische Kreislauf- und Blutdruckregulation . . . . . . . . . . . . . . Blutzirkulation in den Kapillaren . . . . . . . . . . . . . . . . . . . . . . . . . . . Venöser Rückstrom zum Herzen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inhaltsverzeichnis 9 Atmungssystem . . . . . . . . . . . . . . . . . . . . 406 9.1 9.2 Äußere Atmung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Luftleitende Atmungsorgane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.1 9.2.2 9.2.3 9.2.4 Nasenhöhle und Nasennebenhöhlen. Rachen (Pharynx) . . . . . . . . . . . . . . . Kehlkopf (Larynx). . . . . . . . . . . . . . . Luftröhre und Bronchialbaum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 406 408 410 410 414 417 419 419 419 420 422 423 423 425 426 426 430 430 431 431 433 433 434 435 436 436 10 Verdauungssystem . . . . . . . . . . . . . . . . . 444 10.1 Stoffwechsel, Energiebedarf und Nahrungsstoffe. . . . . . . . . . . . . . . 10.1.1 10.1.2 10.1.3 10.1.4 Stoffwechsel . . . . . . . . . . . . . . . . . Energiebedarf . . . . . . . . . . . . . . . . Nahrungsstoffe . . . . . . . . . . . . . . . Antioxidanzien (Radikalenfänger) 444 444 445 447 451 9.3 9.4 9.4.1 9.4.2 9.4.3 9.5 9.5.1 9.5.2 9.5.3 9.6 9.6.1 9.6.2 9.6.3 9.6.4 9.7 9.8 9.8.1 9.8.2 9.8.3 9.8.4 9.8.5 ... ... ... ... Seröse Höhlen und Häute des Brust- und Bauchraums . . . Lungen (Pulmones) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lungenfell (Pleura visceralis) und Rippenfell (Pleura parietalis). Äußerer Aufbau der Lunge . . . . . . . . . . . . . . . . . . . . . . . . . . . . Innerer Aufbau der Lunge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Belüftung der Lungen (Ventilation) . . . . . . . . . . . . . . . . . . . Lungen- und Atemvolumen . . . . . . . . . . . . . . . . . . . . . . . . . . . Atemminutenvolumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alveolar- und Totraumventilation. . . . . . . . . . . . . . . . . . . . . . . Gasaustausch und Blut-Luft-Schranke . . . . . . . . . . . . . . . . . Gasaustausch in der Lunge . . . . . . . . . . . . . . . . . . . . . . . . . . . . Blut-Luft-Schranke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sauerstoffmangel (Hypoxie, Anoxie) . . . . . . . . . . . . . . . . . . . . . Künstliche Beatmung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Atemregulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Atemmechanik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Einatmung (Inspiration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ausatmung (Exspiration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Atemwiderstände . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Atemarbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamischer Atemtest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Inhaltsverzeichnis 10.1.5 10.1.6 10.2 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.2.7 10.2.8 10.2.9 10.2.10 Pflanzenwirkstoffe. . . . . . . . . . . . . . . . . . . Ballaststoffe . . . . . . . . . . . . . . . . . . . . . . . . Verdauungsorgane . . . . . . . . . . . . . . . . . Mundhöhle (Cavitas oris) . . . . . . . . . . . . . . Rachen (Pharynx) . . . . . . . . . . . . . . . . . . . Speiseröhre (Ösophagus) . . . . . . . . . . . . . . Magen (Ventriculus, Gaster). . . . . . . . . . . . Dünndarm (Intestinum tenue, Enteron) . . . Dickdarm (Intestinum crassum). . . . . . . . . Bauchfellhöhle . . . . . . . . . . . . . . . . . . . . . . Bauchspeicheldrüse (Pancreas) . . . . . . . . . Leber (Hepar). . . . . . . . . . . . . . . . . . . . . . . Gallenblase (Vesica fellea) und Gallengang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452 453 453 453 463 465 467 470 476 480 483 485 489 489 489 491 492 11 Nieren und ableitende Harnwege . . . . . . . . . . . . . . . . . . . . . . . . . . 502 10.3 Übersicht über die Verdauungsvorgänge 10.3.1 10.3.2 10.3.3 Fettverdauung . . . . . . . . . . . . . . . . . . . . . . . Kohlenhydratverdauung . . . . . . . . . . . . . . . Proteinverdauung . . . . . . . . . . . . . . . . . . . . 11.1 11.1.1 11.1.2 11.1.3 11.1.4 11.1.5 11.1.6 11.1.7 11.2 11.2.1 11.2.2 11.2.3 11.2.4 12 Nieren (Renes) . . . . . . . . . . . . . . . . . . Aufgaben der Nieren . . . . . . . . . . . . . . Primär- und Sekundärharn . . . . . . . . . Form und Lage . . . . . . . . . . . . . . . . . . . Nierenarterien und -venen . . . . . . . . . Nierengewebe (histologischer Aufbau) . Nephron (funktioneller Aufbau) . . . . . . Zusammensetzung des Harns. . . . . . . . Ableitende Harnwege . . . . . . . . . . . . Nierenbecken (Pelvis renalis) . . . . . . . . Harnleiter (Ureter) . . . . . . . . . . . . . . . . Harnblase (Vesica urinaria) . . . . . . . . . Harnröhre (Urethra) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502 502 502 502 505 505 506 514 515 515 516 518 520 Inhaltsverzeichnis 12 Geschlechtsorgane . . . . . . . . . . . . . . . . . 12.1 12.1.1 12.1.2 12.2 12.2.1 12.2.2 12.2.3 12.2.4 Männliche Geschlechtsorgane . . . . . . . . . . . . . . . . . . . . . . . . . Innere männliche Geschlechtsorgane . . . . . . . . . . . . . . . . . . . . . . Äußere männliche Geschlechtsorgane . . . . . . . . . . . . . . . . . . . . . Weibliche Geschlechtsorgane . . . . . . . . . . . . . . . . . . . . . . . . . . Übersicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Innere weibliche Geschlechtsorgane . . . . . . . . . . . . . . . . . . . . . . . Äußere weibliche Geschlechtsorgane . . . . . . . . . . . . . . . . . . . . . . Weibliche Brust (Mamma) und Brustdrüse (Glandula mammaria) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 528 537 539 539 539 549 550 13 Fortpflanzung, Entwicklung und Geburt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 13.1 Keimzellentwicklung und Befruchtung . . . . . . . . . . . . . . . . . . . . . . . 13.1.1 13.1.2 13.1.3 13.1.4 13.1.5 Keimzellentwicklung . . . . . . . . . . . . Befruchtung . . . . . . . . . . . . . . . . . . . Implantation und Furchung . . . . . . . Ausbildung und Aufbau der Plazenta Nabelschnur (Funiculus umbilicalis) . Menschliche Entwicklung . . . . . . . Früh- und Embryonalentwicklung . . Fetalentwicklung . . . . . . . . . . . . . . . Geburt . . . . . . . . . . . . . . . . . . . . . . . Postnatale Entwicklung . . . . . . . . . . Anatomische Biotypologie . . . . . . Leptosomer Typ . . . . . . . . . . . . . . . . Pyknischer Typ . . . . . . . . . . . . . . . . . Athletischer Typ . . . . . . . . . . . . . . . . 13.2 13.2.1 13.2.2 13.2.3 13.2.4 13.3 13.3.1 13.3.2 13.3.3 528 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 558 558 562 564 567 568 568 570 574 575 582 582 583 583 13 Inhaltsverzeichnis 14 Sinnesorgane ...................... 590 14.1 14.2 Rezeptoren und Sinneszellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Auge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.1 14.2.2 14.2.3 14.2.4 Augapfel (Bulbus oculi) . . . . . . . . Optischer Apparat . . . . . . . . . . . . Sehbahn. . . . . . . . . . . . . . . . . . . . Hilfseinrichtungen des Auges . . . . Ohr . . . . . . . . . . . . . . . . . . . . . . . Gehörorgan . . . . . . . . . . . . . . . . . Gleichgewichtsorgan . . . . . . . . . . Geschmackssinn . . . . . . . . . . . . Geruchssinn . . . . . . . . . . . . . . . . Riechschleimhaut und Riechbahn Organisation des Geruchssinns . . Das Vomeronasalorgan . . . . . . . . . . . . . . . . . . . . 590 591 591 600 603 606 609 611 616 619 620 621 621 624 .... 632 15.1 Haut (Cutis) und Unterhaut (Subcutis) . . . . . . . . . . . . . . . . . . . . . . . 15.1.1 15.1.2 15.1.3 Hautdecke und Hautschichten . Hautsinnesorgane . . . . . . . . . . Aufgaben der Haut . . . . . . . . . . Hautanhangsgebilde . . . . . . . Hautdrüsen . . . . . . . . . . . . . . . Haare. . . . . . . . . . . . . . . . . . . . Nägel . . . . . . . . . . . . . . . . . . . . . . . . . . . 632 632 635 635 635 636 637 637 Anhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 Abkürzungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Messgrößen und Maßeinheiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 642 642 643 643 645 662 ...................................... 665 14.3 14.3.1 14.3.2 14.4 14.5 14.5.1 14.5.2 14.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Haut und Hautanhangsgebilde 15.2 15.2.1 15.2.2 15.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SI-Basiseinheiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vielfache und Bruchteile von Maßeinheiten (Zehnerpotenzen) Konzentration und Umrechnungsbeziehungen . . . . . . . . . . . . Glossar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eigennamen in der Anatomie. . . . . . . . . . . . . . . . . . . . . . . . 14 Sachverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anschriften Prof. Dr. med. Adolf Faller † ehem. Universität Fribourg, Schweiz Prof. Dr. med. Dr. rer. nat. Michael Schünke Anatomisches Institut der Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 8 24118 Kiel Deutschland Dipl.-Biol. Gabriele Schünke Holländerey 6 24119 Kronshagen Deutschland 15 © Jose Luis Calvo, shutterstock.com Kapitel 1 Biologie der Zelle 1.1 Was ist eine menschliche Zelle? 18 Eigenschaften von Zellen 18 Grundbauplan einer eukaryoten Zelle 20 Chromosomen und Gene 25 1.5 Zellteilung 35 1.6 Die Zelle und ihre Umgebung 40 Membran- oder Ruhepotenzial 42 Stoff- und Flüssigkeitstransport 43 1.2 1.3 1.4 1.7 1.8 Biologie der Zelle 1 1 Biologie der Zelle Der menschliche Körper setzt sich aus 75 Billionen „Bausteinen“ zusammen, den Zellen. Die meisten davon sind rote Blutkörperchen (25 Billionen), gefolgt von Nervenzellen (100 Milliarden). Entsprechend dieser sehr großen Menge von Zellen ist die einzelne Zelle mikroskopisch klein. Mit bloßem Auge erkennbar sind nur weibliche Eizellen, die mit einem Durchmesser von 150 μm die größten Zellen des Menschen darstellen. Einige Bindegewebszellen sind dagegen nur 5 μm „groß“. Jede Zellart hat bestimmte Aufgaben. Erythrozyten z. B. transportieren Sauerstoff, Nervenzellen leiten Erregungen weiter, Keimzellen dienen der Fortpflanzung usw. Welche Leistung die jeweilige Zelle für den Organismus erbringt, ist in bestimmten Abschnitten der sog. Desoxyribonukleinsäure (DNS bzw. DNA) in den Genen im Zellkern gespeichert. 1.1 Was ist eine menschliche Zelle? Definition L ● Die Zelle ist der Grundbaustein des menschlichen Körpers sowie aller Tiere und Pflanzen. Sie ist die kleinste selbstständig lebende Einheit. Man unterscheidet zwei Kategorien von Zellen: ● prokaryote Zellen: unter dem Mikroskop ist kein Zellkern zu sehen und ● eukaryote Zellen: unter dem Mikroskop ist ein Zellkern zu sehen (▶ Abb. 1.1). Außer den Bakterien sind alle tierischen und pflanzlichen Organismen sog. Eukaryoten. 18 Als eigenständiger Organismus tritt die Zelle in Form von Einzellern (z. B. Geißeltierchen und Amöben) auf. Bei den Mehrzellern bilden die Zellen große Verbände und sind funktionelle Einheiten im Rahmen einer übergeordneten Struktur. Gene im Zellkern steuern die Vermehrung der Zellen und die Synthese von Eiweißen. Beides zusammen stellt sicher, dass sich ● aus einer befruchteten Eizelle ein vielzelliger Organismus entwickelt und ● aus gemeinsamen Vorläuferzellen so unterschiedlich differenzierte Zellen wie z. B. Gehirn-, Lungen-, Muskel- oder Leberzellen entstehen. Recht unterschiedlich ist auch die Form von Zellen: ● Eizellen sind rund. ● Bindegewebszellen haben Fortsätze. ● Muskelzellen sind spindelförmig oder platt. ● Epithelzellen sind kubisch oder hochprismatisch. Unterschiedliche Größen und Formen stehen häufig in engem Zusammenhang mit den jeweiligen Eigenschaften und Aufgaben von Zellen. So können z. B. Nervenzellen, die vom Gehirn zum Rückenmark ziehen, inklusive ihres Fortsatzes bis zu 1 m lang sein. 1.2 Eigenschaften von Zellen 1.2.1 Grundeigenschaften Obwohl Zellen hinsichtlich ihrer Aufgaben sehr unterschiedlich sind, haben sie alle gemeinsame Grundeigenschaften: 1.2 Eigenschaften von Zellen 1 (Melanosom) Abb. 1.1 Zelle. Grundbauplan einer eukaryoten Zelle (vereinfachtes lichtmikroskopisches Bild). ● Stoffwechsel und Energiegewinnung: Um ihre Funktionen erfüllen zu können, benötigen Zellen Energie, die sie durch regelmäßige Nahrungsaufnahme bekommen. Die aufgenommenen Stoffe werden in zelleigene Verbindungen umgewandelt und in Form von Endprodukten (z. B. als Harnstoff bei der Elimination von Stickstoff) wieder an den Organismus abgegeben. ● Vermehrung und begrenzte Lebensdauer: Fast alle Zellen vermehren sich lebenslang durch Teilung. Auf diese Weise können sie z. B. Zellen ersetzen, die durch eine Verletzung zugrunde gegangen sind (Regeneration = Wiederherstellung von Geweben und Organen). 19 Biologie der Zelle 1 Zusatzinfo Zellteilungsrate ●V Das menschliche Knochenmark bildet etwa 160 Millionen rote Blutkörperchen pro Minute, die Keimdrüsen (Hoden) des Mannes etwa 85 Millionen Spermien pro Tag. Eine hohe Zellteilungsrate charakterisiert auch die Schleimhautzellen des Dünndarms, die eine durchschnittliche Lebensdauer von nur wenigen Tagen (30 – 100 h) aufweisen. Andere Zellen wiederum teilen sich nur in einer bestimmten Entwicklungsphase und bleiben danach lebenslang erhalten, z. B. Nervenzellen und Muskelzellen. 1.3 Grundbauplan einer eukaryoten Zelle Für alle Zellen des menschlichen Körpers (eukaryote Zellen) gibt es einen Grundbauplan. Unter dem Lichtmikroskop erkennt man von außen nach innen (▶ Abb. 1.1): ● Zellmembran (Plasmalemm) ● Zellleib (Zytoplasma) mit Zellorganellen und Zelleinschlüssen und ● Zellkern (Nucleus). 1.3.1 Zellmembran (Plasmalemm) Definition ● Reizaufnahme und Reizbeantwortung: Fast alle Zellen stehen mit ihrer unmittelbaren Umgebung durch spezifische Zelloberflächenstrukturen (z. B. Rezeptoren) in Verbindung und können unterschiedliche Reize aufnehmen, auswerten und beantworten. 1.2.2 Spezifische Eigenschaften Zusätzlich zu den Grundeigenschaften (S. 18) besitzen einige Zellen spezifische Eigenschaften: ● Sie können sich bewegen (z. B. Abwehrzellen im Bindegewebe, männliche Spermien im weiblichen Genitaltrakt). ● Sie können Stoffe aufnehmen (Abwehrzellen z. B. Zelltrümmer) oder abgeben (Drüsenzellen z. B. Sekrete). ● Sie können eine besondere Oberfläche mit besonderen Funktionen ausbilden: die Epithelzellen der Schleimhaut im Atemtrakt z. B. Flimmerhaare, die Epithelzellen der Schleimhaut im Dünndarm z. B. einen Bürstensaum. 20 L ● Die Zellmembran (sog. Einheitsmembran) hält den flüssigen Zellleib zusammen und bildet eine Barriere zwischen Extra- und Intrazellularraum. Sie umgibt außerdem die Zellorganellen. Die sog. Einheitsmembran ist nur 7,5 nm (1 μm = 1000 nm) dick. Sie besteht aus einer Lipiddoppelschicht, also zwei Lagen von Lipidmolekülen (Phospholipide, Cholesterin). Diese Lipidmoleküle sind so angeordnet, dass ihre fettlöslichen Anteile (Fettsäuren) einander zugekehrt sind (heller Mittelstreifen), während die wasserlöslichen Anteile an die Innen- bzw. Außenseite der Zellmembran grenzen (dunkle Außen- bzw. Innenlinie, ▶ Abb. 1.2). Grundsätzlich ist die Lipiddoppelschicht sowohl für wasserlösliche als auch für große Moleküle undurchlässig. Die Membranproteine (Transmembranproteine, Kanalproteine etc.), die die Lipiddoppelschicht mosaikartig durchsetzen, ermöglichen jedoch den Durchtritt von Molekülen und so den Stoff- und Flüssigkeitsaustausch der Zelle (S. 40) mit ihrer Umgebung. 1.3 Grundbauplan einer eukaryoten Zelle 1 Extrazellularraum Außenseite der Zellmembran zuckerhaltige Glykocalyx wasserlösliche Komponente fettlösliche Komponente Innenseite der Zellmembran Lipiddoppelschicht wasserlösliche Komponente Transmembranprotein Kanalprotein peripheres Membranprotein Intrazellularraum Abb. 1.2 Zellmembran. Im schematischen Querschnitt ist der 3-schichtige Aufbau der Lipiddoppelschicht gut zu sehen. Zum Zellinneren und zur Zellaußenseite hin liegen die wasserlöslichen Komponenten. Dazwischen befindet sich die fettlösliche Komponente. Die an die Außenseite der Zelle grenzenden Membranproteine und z. T. auch die wasserlöslichen Anteile der Phospholipide sind von einer dünnen Schicht komplexer Zuckermoleküle (Kohlenhydrate) überzogen, der Glykocalyx. Der chemische Bau der Glykocalyx ist genetisch festgelegt und spezifisch für jede Zelle. Über sie können Zellen einander als körpereigen oder körperfremd „erkennen“, s. spezifische Immunabwehr (S. 140). 1.3.2 Zellleib (Zytoplasma) Definition L ● Der Zellleib oder das Zytoplasma ist der gesamte Zellinhalt, der sich um den Zellkern herum befindet. Im Einzelnen gehören zum Zytoplasma: ● intrazelluläre Flüssigkeit (Hyaloplasma oder Zytosol) ● ● Zellorganellen Zelleinschlüsse (= Stoffwechselprodukte der Zelle = Paraplasma) Intrazelluläre Flüssigkeit (Hyaloplasma, Zytosol) Die intrazelluläre Flüssigkeit besteht aus einer wässrigen Salzlösung sowie aus Proteinen (Mikrotubuli, Mikro- und Intermediärfilamente). Diese Bestandteile bestimmen sowohl die Form als auch die mechanische Festigkeit der Zelle (sog. Zytoskelett). Je nach Zelltyp und Zellfunktion sind die Organellen in unterschiedlicher Anzahl vorhanden. Zellorganellen Zellorganellen sind hoch organisierte, oft nur mit einem Elektronenmikroskop sichtbare Körperchen, die von einer Einheitsmembran umgeben und so als einzelne Bestandteile innerhalb der Zelle erkennbar 21 Biologie der Zelle 1 sind. Bei der eukaryoten Zelle werden folgende wesentliche Zellorganellen unterschieden (▶ Abb. 1.1): ● endoplasmatisches Retikulum, ● Ribosomen (keine Zellorganellen im engeren Sinne, da sie nicht von einer Einheitsmembram umgeben sind, wie alle anderen Zellorganellen), ● Golgi-Apparat, ● Lysosomen, ● Zentriolen und ● Mitochondrien. ▶ Endoplasmatisches Retikulum (ER). Es durchzieht das Zytoplasma in Form von röhren- und bläschenförmigen Strukturen, die von Einheitsmembranen umgeben sind. Auf diese Weise unterteilt es das Zellinnere in Unterbereiche (= Kompartimente) und ermöglicht entlang seiner Hohlräume den Stofftransport innerhalb der Zelle (= intrazellulärer Stofftransport). Mit Ausnahme der roten Blutkörperchen besitzen alle Zellen endoplasmatisches Retikulum. Durch seine große Oberfläche ermöglicht das endoplasmatische Retikulum einen schnellen Ablauf unterschiedlicher Stoffwechselreaktionen (z. B. Protein- und Lipidsynthese). Darüber hinaus dient es als Membrandepot, d. h., es ist der Ursprung für andere Membranen. Das endoplasmatische Retikulum (ER) wird weiter unterteilt in ● raues ER (mit kleinen, körnchenartigen Strukturen besetzt, den Ribosomen, besonders ausgeprägt z. B. in Zellen der Bauchspeicheldrüse, dient vor allem der Proteinsynthese) und ● glattes ER (ohne Ribosomen, überwiegt z. B. in Zellen, die Hormone produzieren, dient vor allem der Lipid- und Hormonsynthese). ▶ Ribosomen. Sie sind sog. Multienzymkomplexe aus Eiweiß- und RNA-Molekülen (r-RNA (S. 25)), die bei der Herstellung von Eiweißen (= Proteinsynthese) die Amino- 22 säuren verketten. Ribosomen sind nicht von einer Zellmembran umgeben. Man unterscheidet ● freie Ribosomen (kommen frei im Zytoplasma vor) und ● membrangebundene Ribosomen, die auf der Oberfläche des endoplasmatischen Retikulums (S. 22) sitzen. Das jeweils entstehende Protein wird jedoch zu unterschiedlichen Zwecken verwendet. Freie Ribosomen stellen Proteine für die eigene Zelle her (z. B. Enzyme, Strukturproteine), membrangebundene Ribosomen produzieren Exportproteine (z. B. Drüsensekrete), aber auch Membranproteine sowie lysosomale Proteine (z. B. Drüsensekrete). ▶ Golgi-Apparat. Der Golgi-Apparat besteht aus mehreren Golgi-Feldern und sieht ähnlich aus wie das endoplasmatische Retikulum. Er nimmt Stoffe in die Zelle auf oder schleust Stoffwechselprodukte aus der Zelle aus. Zu diesem Zweck bestehen die Golgi-Felder aus einem Stapel flacher, leicht gebogener Zisternen mit einer Aufnahme- und einer Abgabeseite (cis- und trans-Region). Vorstufen von Eiweißsekreten wandern aus dem rauen endoplasmatischen Retikulum zur Aufnahmeseite des Golgi-Feldes. Dort werden sie in Transportvesikel verpackt, die von einer Membran umgeben sind. Die Membran stellt sicher, dass die transportierten Stoffe unbeschadet durch die Zelle transportiert werden können und auch selbst nicht andere Elemente innerhalb der Zelle beschädigen, wie das z. B. Lysosomen (S. 23) tun könnten. Über die Abgabeseite der Golgi-Felder werden die Stoffwechselprodukte wieder aus der Zelle ausgeschleust, sog. Exozytose (S. 48). Auch die Lysosomen werden auf diese Weise im Golgi-Apparat gebildet. Beim Ausschleusen der Stoffwechselprodukte verschmilzt die Vesikelmembran mit der Zellmembran. Die Erneuerung der Zell- 1.3 Grundbauplan einer eukaryoten Zelle membran ist daher eine wichtige Aufgabe des Golgi-Apparates. Nur den Erythrozyten fehlt der Golgi-Apparat. Enzyme zur Gewebsautolyse (= Selbstauflösung/Selbstverdauung von Gewebe, z. B. bei eitrigen Geschwüren) beitragen. ▶ Lysosomen. Die mehr oder weniger kugelförmigen Lysosomen sind die Verdauungsorgane der Zelle. Sie enthalten große Mengen von Enzymen, insbesondere saure Hydrolasen und Phosphatasen. Mit ihrer Hilfe bauen sie aufgenommene Fremdkörper oder zelleigene, überalterte Organellen ab und führen sie dem Zellstoffwechsel in Form von Ausgangsstoffen wieder zu (Recycling). Die Lysosomenmembran schützt intakte Zellen vor einer unkontrollierten Wirkung der lysosomalen Enzyme. In geschädigten Zellen können die freigesetzten ▶ Zentriolen (Zentralkörperchen). Zentriolen sind Hohlzylinder mit offenem Ende, deren Wand aus sog. Mikrotubuli, starren, fadenartigen Eiweißkörpern, besteht. Sie spielen eine große Rolle bei der Zellteilung (S. 35), indem sie ein Fasergerüst von Spindelfasern aufbauen, das im Zusammenhang mit den Bewegungen der Chromosomen (S. 25) steht. Dabei wird offenbar die Polarität der Zelle für die Richtung der Zellteilung bestimmt. angelieferte, in der Nahrung enthaltene Energie Kohlenhydrate Fette Eiweiße Zucker Energieumwandlung + O2 erzeugte Energieform Enzyme im Zytoplasma Kraftwerk Mitochondrium zu leistende Arbeit Bewegung von Muskeln Brennstoff ATP Transport von Molekülen Aufbau neuer Zellstrukturen (Biosynthese) Abfallprodukte CO2, H2O ADP + P Abb. 1.3 Energieumwandlung. Schematische Darstellung der Energieumwandlungsprozesse in einer Zelle. Aus der in der Nahrung enthaltenen Energie wird eine spezielle Energieform, ATP, hergestellt. Dieser Brennstoff wird eingesetzt, um die anstehenden Arbeiten (z. B. Muskelkontraktion) leisten zu können. ATP: Adenosintriphosphat, ADP: Adenosindiphosphat, CO2: Kohlendioxid, O2: Sauerstoff, H2O: Wasser. 23 1 Biologie der Zelle 1 ▶ Mitochondrien. Mitochondrien sind kleine, 2 – 6 μm lange, fadenförmige Gebilde, die in wechselnder Menge (wenige bis über tausend) in allen Zellen, mit Ausnahme der roten Blutkörperchen, vorkommen. Ihre Wände bestehen aus einer inneren und einer äußeren Einheitsmembran, wobei die innere nochmals stark aufgefaltet ist und somit eine große Oberfläche besitzt. Zusatzinfo Adenosintriphosphat ●V Mitochondrien sind die „Kraftwerke“ der Zellen, da sie die für alle Stoffwechselprozesse notwendige Energie in Form eines universellen biologischen Brennstoffs, Adenosintriphosphat (ATP), liefern. In den Mitchondrien (und mehr oder weniger ausschließlich dort) findet die Herstellung von ATP aus den drei Grundnahrungsstoffen, Proteine, Fette und Kohlenhydrate, statt (▶ Abb. 1.3). Dabei wird im Rahmen eines Verbrennungsprozesses mithilfe von Sauerstoff (mitochondriale Atmungskette) die frei werdende Energie nicht in Form von Hitze, sondern in Form energiereicher Verbindungen (ATP) gespeichert. ATP besteht aus drei chemischen Substanzen: ● einem stickstoffhaltigen Adenin, ● dem Zucker Ribose sowie ● drei Molekülen Phosphat, die untereinander durch energiereiche Verbindungen verknüpft sind (Adenosintriphosphat). Bei Abspaltung eines Phosphatmoleküls wird Energie freigesetzt und aus dem ATP entsteht ADP (Adenosindiphosphat), das unter Energieaufwand in den Mitochondrien wieder in ATP überführt werden kann. Aus den Mitochondrien gelangt ATP 24 zu den Energie verbrauchenden Orten innerhalb der Zelle. ATP wird u. a. benötigt für: ● den Transport von Stoffen durch die Zellmembran, ● die Synthese von Eiweiß und anderen Zellbestandteilen, ● die Bewegung (Kontraktion) von Muskeln. Zelleinschlüsse (Paraplasma) Zelleinschlüsse enthalten Stoffe, die die Zelle selbst hergestellt oder von außen aufgenommen hat. Sie befinden sich im Zytoplasma (S. 21). Zu den Zelleinschlüssen gehören u. a. (▶ Abb. 1.1): ● Lipidtropfen: Sie speichern in erster Linie Energie in Form von Neutralfetten (Triglyceride) und kommen daher besonders zahlreich z. B. in Fettzellen vor. ● Pigmentgranula bzw. Melanosomen: Sie enthalten ein braun-schwarzes Pigment (Melanin), das vor allem Licht einschließlich der schädigenden UV-Strahlung absorbiert (Vorkommen: Melanozyten der Haut sowie in den pigmentierten Zellen des Auges). ● Glykogenkörnchen: Glykogen ist die Speicherform der Glucose. Glykogenkörnchen sind daher vor allem in Muskel- und Leberzellen enthalten. ● Proteosomen: bestimmte, mit Spezialmethoden elektronenmikroskopisch sichtbare Granula, die gezielt Proteine des Zellzyklus eliminieren. Lipidtropfen und Pigmentgranula sind von einer eigenen Biomembran umgeben und werden daher nicht selten auch zu den Zellorganellen gezählt. 1.4 Chromosomen und Gene 1.3.3 Zellkern (Nucleus) Definition L ● Der Zellkern enthält die komplette Erbinformation des Organismus. Sie liegt dort in Form der Chromosomen (S. 25) vor. Die Chromosomen bestehen in erster Linie aus DNA-Doppelsträngen (DNS oder DNA = Desoxyribonukleinsäure, wobei das ‚A‘ für den engl. Ausdruck „acid“ für „Säure“ steht). Als fadenförmige Strukturen sichtbar sind sie nur, wenn sich die Zelle gerade teilt. Zwischen zwei Teilungsphasen (S. 35), in der sog. Interphase, sind die Chromosomen unsichtbar. Mit Ausnahme der roten Blutkörperchen hat jede eukaryote Zelle mindestens einen Zellkern, manche Zellen haben zwei (z. B. einzelne Leberzellen), andere noch mehr Kerne z. B. Osteoklasten im Knochengewebe (5 – 20) oder Skelettmuskelzellen (über 1000). Je nach Zelle ist der Zellkern rund, gelappt oder lang gestreckt. Außerdem hängen seine Form und Struktur davon ab, in welcher Phase des Zellzyklus (S. 35) sich die Zelle gerade befindet. Gegenüber den anderen Zellbestandteilen ist der Zellkern durch eine doppelte Einheitsmembran (innere und äußere Kernmembran) abgegrenzt. Sie enthält jedoch sog. Kernporen, über die der Zellkern mit dem endoplasmatischen Retikulum sowie mit dem Zytoplasma in Verbindung steht. Über diese Poren gelangen einerseits Proteine aus dem Zytoplasma in den Kern und andererseits RNA (= ribonucleic acid = Ribonukleinsäure = einsträngige Kopie der DNA) in das Zytoplasma. Die RNA ist vor allem für die Produktion von Eiweiß in den Ribosomen zuständig, daher wird der Großteil der RNA als sog. ribosomale RNA, kurz rRNA, bezeichnet. Produziert wird die RNA in Form von Ribosomenuntereinheiten im sog. Kernkörperchen (Nucleolus). Stoffwechselaktive Zellen, die besonders viel Eiweiß benötigen und herstellen, haben daher einen besonders gut sichtbaren Nucleolus oder sogar mehrere Nucleoli. 1.4 Chromosomen und Gene Definition L ● Chromosomen sind die Träger der Erbanlagen = Gene (S. 54). Sie liegen im Zellkern (S. 25). Menschliche Zellkerne enthalten 46 Chromosomen (diploider Chromosomensatz) in Form von 23 Chromosomenpaaren (23 väterliche und 23 mütterliche Chromosomen). Die einzelnen Chromosomen lassen sich unterscheiden anhand: ● der Gesamtlänge, ● der Länge der Chromosomenarme sowie ● der Lage von Einschnürungen. Auf diese Weise kann man die einzelnen Chromosomenpaare bestimmten Gruppen zuordnen (Aufstellung eines Karyogramms) und sie nach abnehmender Größe von 1 – 22 durchnummerieren. Das 23. Paar bestimmt das Geschlecht (▶ Abb. 1.4). Mit Ausnahme der Geschlechtschromosomen (heterologe Chromosomen = Gonosomen) entsprechen sich mütterliche und väterliche Chromosomen (homologe Chromosomen = Autosomen) in den Erbmerkmalen. Während das weibliche Geschlecht zwei gleich große Geschlechtschromosomen (XX) aufweist, besitzt das männliche Geschlecht ein großes und ein kleines Geschlechtschromosom (XY). 25 1 Biologie der Zelle 1 13 45 6 12 1315 a b 1920 1618 2122 XY Abb. 1.4 Chromosomensatz einer normalen menschlichen Zelle. a Die Chromosomen werden dargestellt und sichtbar gemacht, indem man die Zellen in einem künstlichen Medium kultiviert und anschließend mit einer Colchicinlösung behandelt. Dadurch werden die Mitosen in der Metaphase (S. 37) blockiert. Anschließend werden die Zellen fixiert, auf einem Objektträger ausgebreitet und gefärbt. b Anordnung der in a dargestellten Chromosomen im Karyogramm nach Gesamtlänge und Lage des Zentromers. Die beiden Geschlechtschromosomen (XY) bestimmen das Geschlecht (männlich). Beim Menschen enthalten 23 Chromosomenpaare 21 500 Erbmerkmale oder Gene. Hierbei kommt in jeder Körperzelle jedes Gen zweimal vor, und zwar als mütterliches und als väterliches (diploider Chromosomensatz). Im Gegensatz hierzu haben die Keimzellen (Ei- und Samenzelle) jeweils nur einen einfachen Chromosomensatz (haploider Chromosomensatz). 1.4.1 Aufbau eines Chromosoms Man unterscheidet am einzelnen Chromosom zwei Chromosomenarme, die durch eine Einschnürung (Zentromer) verbunden sind (▶ Abb. 1.5). In den Chromosomenarmen sind während der Zellteilungen zwei spiralig aufgewundene Chromatiden zu sehen, die zwischen den Zellteilungen (Interphase) entspiralisiert und somit unsichtbar sind. 26 Die Chromatiden bestehen aus einer Vielzahl von Nukleosomen, diese wiederum aus einem Histonpartikel (= 8 Histonmoleküle = Oktamer, von okto, lat. = acht) und einem darum herumgewickelten Stück DNA (ca. 180 Basenpaare). Beide zusammen sehen aus wie die Perlen einer Kette (▶ Abb. 1.5). Um die Nukleosomen noch dichter packen zu können, sind außer den direkt mit der DNA assoziierten Histonproteinen weitere Proteine nötig. Der Komplex aus DNA und Proteinen (von denen etwa die Hälfte Histone sind) wird als Chromatin bezeichnet (▶ Abb. 1.7), da sich dieser Komplex mit bestimmten basischen Farbstoffen stärker anfärben lässt als die anderen Kernstrukturen. Die nur etwa 2 millionstel Millimeter ‚dicken‘ DNA-Fäden werden daher auch als Chromatinfäden bezeichnet. Sie sind je nach Menge der darauf gespeicherten Informationen kürzer oder länger. 1.4 Chromosomen und Gene 1 Telomere 700 nm 2 nm kurzer Chromosomenarm Histonmoleküle Zentromer langer Chromosomenarm Chromatiden DNADoppelhelix 10 nm Nucleosom 30 nm 200 nm a Telomere b Abb. 1.5 Schema eines Chromosoms in der Metaphase. a Zwischen den beiden unterschiedlich langen Chromosomenarmen, die aus jeweils zwei Chromatiden bestehen, befindet sich das Zentromer (primäre Einschnürung). b Ausschnitt aus a: Die DNA bildet mit den Histon-Proteinen stark aufgewickelte, perlenkettenartig angeordnete Komplexe, die Nukleosomen. Zusatzinfo Länge der DNA ●V Würde man die DNA aller Chromosomen eines Zellkerns aneinanderreihen, ergäbe sich bei einem Bakterium eine Länge von etwa 1 mm, beim Menschen hingegen eine Länge von über 2 m. Die beiden DNA-Fäden verlaufen antiparallel (entgegengesetzt) und verhalten sich zueinander wie ein Negativ- zu seinem Positivabzug. Sie winden sich um eine gedachte Achse, sodass sie mit einer verdrehten Strickleiter zu vergleichen sind (DNADoppelhelix, von griech. ‚helix‘ = Windung, Spirale). Unter dem Lichtmikroskop sichtbar sind diese Fäden nur während der Zellteilung, wenn das Chromatin zu Chromo- 27 Biologie der Zelle 1 somen spiralisiert (kondensiert = verdichtet) ist. Zwischen den Zellteilungen, in der Interphase (inter = lat. = zwischen), ist es weitgehend entspiralisiert (aufgelockert), damit die Transkription für die Eiweißbiosynthese bzw. Proteinsynthese (S. 32) stattfinden kann. Nur wenige Bereiche des Chromatins sind in der Interphase nicht entspiralisiert. Das sind die Bereiche, die sich nicht an der Transkription beteiligen, genetisch also nicht aktiv sind. Dieser genetisch inaktive Teil des Chromatins wird als Heterochromatin bezeichnet, das genetisch aktive Chromatin dagegen als Euchromatin (▶ Abb. 1.7). An den Enden der Chromosomenarme sind Heterochromatinabschnitte lokalisiert, die die Lebensdauer der Zelle bestimmen, sog. Telomere oder Satelliten) (▶ Abb. 1.5 a u. ▶ Abb. 1.7 a). Bei jeder Zellteilung wird ein kleines Stück des Chromatins abgetrennt, so lange bis der Satellit verbraucht ist. Danach stirbt die Zelle ab. 1.4.2 Aufbau der DNA Die Bausteine der DNA sind die Nukleotide (▶ Abb. 1.6). Sie bestehen jeweils aus: ● einer Base (Adenin, Thymin, Cytosin oder Guanin), ● einem Zucker (Desoxyribose) und ● einem sauren Phosphatrest. Die Phosphatreste zweier aufeinanderfolgender Nukleotide bilden Phosphatbrücken, über die sie verbunden sind. Zwei gegenüberliegende Nukleotide sind über ihre Base durch Wasserstoffbrückenbindungen verknüpft. 28 Zusatzinfo DNA-Molekül ●V Verglichen mit einer Strickleiter, bilden die Zucker- und Phosphatsäureeinheiten die Holme und die Basen die Sprossen der Leiter. Dabei verhalten sich je zwei gegenüberliegende Basen wie Nut und Feder zueinander. Aufgrund chemischer Wechselwirkungen bilden stets Adenin und Thymin sowie Guanin und Cytosin ein Basenpaar. 1.4.3 Funktionen der DNA Die DNA lässt sich in einzelne Abschnitte, Gene oder Erbfaktoren, unterteilen und hat drei wichtige Funktionen: ● Speicherung der genetischen Information, d. h. genetischer Code und epigenetischer Code (S. 31), ● Übertragung der Information für die Biosynthese von Eiweißen (Proteinbiosynthese) und ● identische Verdopplung (Replikation) der genetischen Information bei der Zellteilung. Speicherung der genetischen Information (genetischer Code) Die genetische Information für den Aufbau von Eiweißen folgt aus der Art und Anordnung von Aminosäuren. Die Verschlüsselung dieser Erbinformation, der genetische Code, ist durch die Anordnung der vier Basen (= 4 verschiedene Nukleotide) innerhalb der DNA (S. 28) gekennzeichnet und bei allen Lebewesen gleich. 1.4 Chromosomen und Gene 1 A T C G 0,34 nm Adenin Thymin Cytosin Guanin Basen Z Zucker Desoxyribose P Phosphatbrücke H Wasserstoffbrückenbindung 3,4 nm 1,0 nm ZGHC Z P Z A P H P T Z G H C Z Z P Z T H A Z P P Z CH G Z P P Z A H T Z P P Z T H A Z P P Z C H G Z Abb. 1.6 Aufbau eines DNA-Moleküls. Die Doppelhelix besteht aus den vier Basen, dem Zucker und aus Phosphatbrücken. Eine der Basen bildet jeweils mit dem Zucker und einem Phosphatrest ein Nukleotid. Die Basen sind untereinander mit Wasserstoffbrückenbindungen verbunden. Verglichen mit einer Strickleiter, bilden die Zucker- und Phosphatsäureeinheiten die Holme und die Basen die Sprossen der Leiter. Die Abstände zwischen den einzelnen Sprossen und der Radius der Doppelspirale sind in Nanometer (nm) angegeben (1 nm = 1 milliardstel Meter = 10–9 m). Zusatzinfo Basenabfolge der Gene ●V In ähnlicher Weise wie die sinnvoll aneinandergereihten Buchstaben des Alphabets den Informationsgehalt eines Textes ausmachen, bestimmt die wechselnde Aufeinanderfolge der verschiedenen Basen den spezifischen Informationsgehalt der Gene für den Bauplan von Millionen unterschiedlicher Eiweißmoleküle. Jeweils drei Basen bilden in unterschiedlicher Kombination eine definierte Informationseinheit, ein Wort – auch Triplett oder Codon genannt –, das in eine der 20 in Eiweißen vorkommenden Aminosäuren übersetzt werden muss. So bildet beispielsweise die Anordnung der Basen Guanin (G), Adenin (A) und Thymin (T) – kurz GAT – die Information für die Aminosäure Asparaginsäure, AAG wiederum für die Aminosäure Lysin. Auf diese Weise werden 29