"Geheimnisse der Erde"

Werbung
Fachgruppe GEograpie
Fachgruppe Geografie
Didaktisches Konzept
mit Unterrichtsmaterialien
für die Sekundarstufe II
zur erdwissenschaftlichen Ausstellung
Autorenteam
Prof. Dr. Monika Reuschenbach (Projektleitung)
Dipl. geogr. Hans Moser
Dr. Stefan Padberg
Zürich, Februar 2010
Didaktisches Konzept focusTerra
Grundlagen
Bezugnehmend auf die aktuelle Lehrplansituation ist es wichtig, gute Bezugspunkte zur Lebenswelt der
Schülerinnen und Schüler zu schaffen. Dies garantiert, dass echte Lernsituationen stattfinden und Geologie als Bestandteil des Alltags wahrgenommen und erlebt werden kann. Im Zentrum der didaktischen
Überlegungen steht deshalb der Einbezug aktueller Fragestellungen, das Ermöglichen von Konzeptwechseln in Bezug auf geologische Themen und die Schaffung von Alltagsbezügen, so dass den Schülerinnen
und Schülern bewusst wird, dass Geologie und geologische Themen etwas mit ihnen zu tun haben.
Deshalb stellt die Grundlage für das didaktische Konzept der geologischen Ausstellung focusTerra der
Schwerpunkt „Die Landschaft, ihre Genese und der Einfluss des Menschen darauf“ dar. Während die Ausstellung hauptsächlich über die natürlichen Grundlagen informiert bzw. diese Informationen dazu bereitstellt, nehmen das didaktische Konzept und die dazu erarbeiteten Materialien die Dialektik zwischen
Mensch und Umwelt auf. Dabei wird sowohl die Notwendigkeit der "In-Wert-Setzung" der Ressourcen des
Planeten durch uns Menschen als auch die Notwendigkeit einer nachhaltigen Entwicklung eben dieses
Umgangs des Menschen mit dem Planeten hervorgehoben.
Kernanliegen
Folgende Kernanliegen werden mit den Unterrichtsmaterialien realisiert:
Die Schülerinnen und Schüler können lernen

die heutige Naturlandschaft in ihrer Genese zu verstehen,

Strukturen und Prozesse, denen Landschaft unterliegt, zu erkennen,

Zusammenhänge zwischen natürlicher Landschaftsentstehung und Nutzungsformen durch den Menschen im Verlauf seiner kulturellen Entwicklung herzustellen. Dabei wird Kultur im Wesentlichen als
materielle Kultur verstanden, wie z.B. Anbauformen, Hausbau und Anlage von Wegen. Natur ist als
Gegensatz all das, was es auf dem Planeten ohne Zutun des Menschen gibt.
Wichtiges Anliegen ist es, bei den Schülerinnen und Schülern eine Haltung der Wertschätzung gegenüber
natürlichen Lebensgrundlagen aufzubauen. Gleichermassen möchten die Unterrichtsanregungen sie dazu
anhalten, Geologie mit ihrem Alltag und ihrer Umwelt in Verbindung zu bringen, so dass sie verstehen,
warum sie sich mit geologischen Fragen und Aspekten auseinander setzen. Diese Verständnisse sind
nach heutigen Erkenntnissen für Lernprozesse bedeutsam.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 2
Roter Faden
Aufgrund der oben genannten Ausführungen lässt sich für die didaktischen Materialien im Sinne eines
anregenden Roten Fadens für die Unterrichtsvorschläge der Schülerinnen und Schüler folgendes Thema
formulieren:
Geheimnisse unserer Erde lüften
Ich erkunde den Planeten, der mein Lebensraum ist.
Dieses Thema soll eine grosse Tür sein, durch welche die Lerngruppen in die Ausstellung eintreten, beziehungsweise sich auf den Besuch vorbereiten. Hinter dieser Tür öffnen sich Angebote, die unterschiedlichen Schülerinnen und Schülern – und auch anderen Besucherinnen und Besuchern – viele eigene Zugänge in Form von Aufgaben bieten. Am Ende des Besuchs in der Ausstellung empfiehlt es sich, die Lerngruppe zu einem Austausch dazu anzuleiten, was den Einzelnen wichtig geworden ist und was sie gelernt
haben. Das formulierte Thema soll dabei wieder Gegenstand der Diskussion und Reflexion werden.
Die ausgearbeiteten Unterrichtsvorschläge (in der Vorstellung „die kleinen Türen“) überschneiden sich
vielfach, sodass sich die Schülerinnen und Schüler beim Zusammentragen gegenseitig ergänzen oder
einander produktiv widersprechen werden.
Überblick über die Materialien
Unter dem Gesichtspunkt der einführenden Gedanken wurden mit einem orientierenden Einstieg in die
Ausstellung zehn Oberthemen festgelegt, die sich aus einer Synthese zwischen den Lehrplänen der Sekundarstufe II und den Ausstellungsinhalten ergeben. Zu jedem Themenschwerpunkt liegen Aufgabenstellungen für die Schülerinnen und Schüler sowie ergänzende Materialien vor. Eine kurze Information für die
Lehrpersonen informiert über die Ziele der einzelnen Themen. Es ist vorgesehen, dass die Aufgaben in
Kleingruppen bearbeitet werden. Ein gemeinsamer Einstieg und ein reflektierender Abschluss (siehe Kap.
5) garantieren, dass sowohl individualisierende Arbeitsweisen als auch Gruppendiskussionen und ein
fachlicher Austausch stattfinden.
Die Themenschwerpunkte wurden so ausgearbeitet, dass für den Ausstellungsbesuch jeweils ein Auftragsblatt vorliegt, mit welchem die Schülerinnen und Schüler Grundlagen erarbeiten und Antworten auf
die entsprechenden Fragen finden können. Ausgangspunkt sind eine oder mehrere zentrale Fragestellungen, welche die oben genannten Aspekte der Mensch-Umwelt-Beziehung zum Thema und die Wertschätzung gegenüber der Erde (unter einem bestimmten Blickwinkel) ansprechen. Bei einem Ausstellungsbesuch werden zunächst in der Klasse die Fragestellung thematisiert und entsprechende Präkonzepte bei
den Schülerinnen und Schülern bewusst gemacht. Dann erarbeiten die Schülerinnen und Schüler mit den
jeweiligen Aufträgen die Grundlagen zur Beantwortung der Fragestellung oder / und werfen neu entstehende Fragen auf. Am Ende des Besuchs werden diese aufgegriffen und diskutiert, sodass der Erkenntnisgewinn ausgetauscht, besprochen und fixiert werden kann. Kontroverse Ansichten oder Erfahrungen
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 3
sind dabei gewünscht. Die Unterlagen entbinden die Lehrperson nicht davon, sich mit der Thematik auseinander zu setzen. Sie sind so konzipiert, dass verschiedene Meinungen möglich sind und eine Diskussion notwendig wird. Da auch die Grundlagen relativ anspruchsvoll zu erarbeiten und zu begreifen sind, ist
eine Nachbearbeitung und Vertiefung im Sinne dieser vorgeschlagenen Besprechungen unabdingbar. Ob
dies im Anschluss an den Ausstellungsbesuch direkt in der Ausstellung geschieht (damit allfällige Fragen
auch vor Ort geklärt werden können) oder erst im Schulzimmer, entscheidet die Lehrperson.
Aus dem gleichen Grund werden nur wenige Lösungen angegeben, denn es soll vermieden werden, dass
die Schülerinnen und Schüler nach vorgefertigten Antworten suchen und dabei den Inhalt aus den Augen
verlieren. Bewusst geht es um Diskussionen, Meinungen und Auseinandersetzungen, die für das mündige
Verstehen der Zusammenhänge auf dieser Welt und im Sinne eines wissenschaftspropädeutischen Unterrichts unabdingbar sind. Wo Antworten eindeutig sind, werden Lösungshinweise gegeben.
Lernverständnis
Die Konzeption der Zugänge und der Unterlagen basiert auf der Grundhaltung, dass Schülerinnen und
Schüler dann am besten lernen, wenn sie dies eigenständig, aktiv und im Dialog mit anderen Lernenden
tun können. Fachliches Lernen, soziales Lernen und Persönlichkeitsentwicklung sind dabei gleichermassen wichtig. Diese Auffassung wird auch als „gemässigter Konstruktivismus“ verstanden. Den Vorstellungen, die die Schülerinnen und Schüler bereits haben, bevor sie sich mit einem Lerngegenstand auseinandersetzen (Präkonzepte), kommt eine besondere Rolle zu. Erst wenn diese bewusst und transparent gemacht und in die konkrete Arbeit am Lerngegenstand einbezogen werden, findet nachhaltiges Lernen statt.
Denn auf diese Weise können Erfahrungen und Erkenntnisse an bestehende Konzepte und Wissensbestände angeknüpft werden. Die eigenständige aktive Auseinandersetzung mit Lerninhalten, das Suchen
nach Antworten, der Aufbau einer eigenen Fragehaltung mit Neugier und Interesse ist dabei zentral. Es
wurde versucht, diese Lernsituation sowohl mit der Eingangsfrage als auch mit interessanten Aufträgen
und den Zugängen zur Lebenswelt der Schülerinnen und Schüler zu schaffen.
Eigenständiges Lernen allein bleibt aber bedeutungslos, wenn Erkenntnisse und Erfahrungen nicht mit
anderen Lernenden ausgetauscht werden können. Deshalb bedingen das Konzept der Aufgabenstellungen und die angebotenen Zugänge immer eine abschliessende (oder im Verlauf der Arbeitsphase stattfindende) Diskussion über die Fragestellung. Entsprechende Hinweise sind jeweils unter dem Stichwort
„Präsentation“ aufgeführt. Bei diesen werden Erkenntnisse positioniert, Fragen geklärt oder nochmals erforscht, Meinungen ausgetauscht, Haltungen aufgebaut oder Bezüge zur Lebenswelt hergestellt.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 4
Inhaltliche Übersicht
Aufgrund der oben genannten Rahmenbedingungen wurden zu den unten aufgeführten Themen Aufgabenstellungen für die Schülerinnen und Schüler formuliert.
Nicht alle Themen der Ausstellung finden dabei Eingang, dies besonders aufgrund der fehlenden Lehrplanbezüge oder der Verfügbarkeit der Themen ausschliesslich auf den Computerbildschirmen.
Die unten aufgeführte Reihenfolge ist nicht als Bearbeitungsreihenfolge zu verstehen. Die einzelnen Bausteine stehen parallel zueinander und sind eng miteinander verknüpft. Für eine Besprechung kann dann
die Reihenfolge beigezogen werden; Themen mit grossem Lebensweltbezug zu den Schülerinnen und
Schülern stehen dabei eher zu Beginn des Austausches.
Thema
Eingangsfrage
Themenaspekte
Ziele im Bezug auf die Geologie
Orientierung
Was ist wo in
Orientierung in der Ausstellung;
Überblick über die geologische
mit Suchbil-
focusTerra?
Eintauchen in Themenschwer-
Vielfalt;
punkte;
Neugier wecken
dern
Aufmerksam und neugierig werden
Mineralien I
Was tut der Quarz Bedeutung von Mineralien in ver-
Mineralien kennen und untersu-
in der Quarzuhr?
schiedenen Lebensbereichen;
chen / erforschen;
Fragen an Mineralien stellen
Verschiedenartigkeit der Mineralien erkennen
Mineralien II
Rohstoffe
Helfen Rosen-
Wissenschaft versus Kommerz;
Wissenschaftliche Untersuchung
quarze wirklich
Beurteilung von Alltagsbegeg-
im Hinblick auf Kommerzialisie-
gegen Strahlung?
nungen mit Mineralien
rung
Welche Schritte
Begriffsklärung;
Entstehung, Abbau, Förderung,
sind vom Rohstoff
Bedeutung der Rohstoffe für den
Transport und Weiterverarbeitung
bis zur Kette mit
Menschen
von Rohstoffen
Anhänger nötig?
Rohstoffgenese
Aufbau der
Wie reise ich zum
Grössenordnungen / Eigenschaf-
Aufbau der Erde analysieren
Erde
Erdmittelpunkt?
ten kennen und vergleichen;
Wissenschaftliche Erkenntnisse
Science-Fiction und Wissenschaft hinterfragen
im Disput
Erdbeben I
Was hat die Mafia
Zusammenhänge erkennen;
Plattentektonische Verschiebun-
mit Erdbeben zu
Wirkung der Naturkräfte abschät-
gen im globalen Kontext
tun?
zen
betrachten
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 5
Thema
Eingangsfrage
Themenaspekte
Ziele im Bezug auf die Geologie
Erdbeben II
Warum kann man
Anwendung von Erkenntnissen;
Erdbeben untersuchen und hin-
ein Erdbeben
Forschungsaufgabe;
terfragen;
nicht voraussa-
Bezug herstellen zwischen Tsu-
Grenzen der Wissenschaft er-
gen?
nami und Erdbeben
kennen / untersuchen
Was passiert an
Recherche von passenden Orten;
Gesteinsanalysen im weiteren
Orten, die geolo-
Forschungsaufgabe;
Sinn;
gisch sicher und
Vergleich mit Realität
Bedeutung von geologischen
Endlagerung
stabil sind?
Anwendungen / Kenntnissen
erfahren
Entstehung
Wo wohne, arbei-
Orientierung in der Geologie der
Gesteine und geologische For-
der Alpen
te, einkaufe, turne, Schweiz
men kennen und erkennen;
... ich geologisch
Geologie der Schweiz anwenden
gesehen?
Zürich: einst
Welche Merkmale
Landschaftsgenese, -entwicklung; Geologische Entstehung von
– heute -
weist der Standort Grundwasser;
Zürich;
morgen
Zürich auf?
Charakterisierung des Unter-
Aktuelle Veränderungen
grundes und seine Nutzung
Jede der 10 Aufgaben erfordert einen Ausstellungsbesuch von etwa 2 Stunden Dauer. Am besten werden
die Aufträge gruppenteilig ausgeführt. Eine Vor- und Nachbereitung im Unterricht ist unabdingbar, damit
das erworbene Wissen verankert und gefestigt werden kann.
Hinweise zur Vorbereitung für Lehrpersonen
Im Sinne der guten Exkursionsdidaktik findet ein Besuch in focusTerra integriert in eine Unterrichtssequenz zur Geologie statt. Dies impliziert die gezielte Vor- und Nachbereitung des Ausstellungsbesuches
im Unterricht. Die Zugänge zur Ausstellung sind verschieden denkbar:

Die Schülerinnen und Schüler besuchen die Ausstellung focusTerra als Einstieg ins Thema Geologie.
Die Klasse löst zunächst die Einstiegsaufgabe zur Übersicht und wird danach in verschiedene Gruppen aufgeteilt, die jeweils ein Thema bearbeiten. Die Zusammenführung der Erkenntnisse geschieht
entweder in der Ausstellung, so dass Fragen noch in der Ausstellung besprochen, das Interesse weitergeführt oder dem Forscherdrang nachgegangen werden kann. Im nachfolgenden Unterricht bezieht
sich die Lehrperson in der Lektionsgestaltung jeweils auf die einzelnen Erkenntnisse aus der Ausstellung.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 6

Die Schülerinnen und Schüler haben bereits einzelne Themen im Unterricht besprochen und gehen
nun mit konkreten Fragen in die Ausstellung. Auch können vermittelte Inhalte in focusTerra anschaulich noch einmal wiederholt bzw. betrachtet werden. Die Aufgaben dienen dabei als Leitfaden für die
Gestaltung des Unterrichts; dieser bereitet quasi auf die entsprechenden Aufträge vor. Bei dieser Variante ist es denkbar, dass die Schülerinnen und Schüler nicht alle Aufgaben bearbeiten, sondern nur
diejenigen, die einen Bezug zum Unterrichtsthema aufweisen. Ein mehrmaliger Besuch (auch in der
Freizeit) könnte sich daraus ergeben. Es ist aber auch möglich, die Exkursion so zu planen, dass bereist mehrere Themen im Unterricht besprochen wurden, so dass erneut eine gruppenteilige Arbeitsweise Sinn macht.
Es ist auf alle Fälle zentral, dass sich die Lehrperson mit der Klasse auf den Besuch in focusTerra vorbereitet. Erwiesenermassen ist ein Ausstellungsbesuch nachhaltiger, wenn die Schülerinnen und Schüler
bereits Vorwissen und entsprechende Fragen mitbringen. Die in der Ausstellung gewonnenen Erkenntnisse können dadurch besser verankert werden. Die konkrete Vorbereitung kann mit den üblichen Lehrmitteln
erfolgen. Es ist nicht zwingend nötig, sich mit Spezialliteratur vorzubereiten (siehe „Kontakt mit Experten
und Expertinnen“), denn die Aufgaben weisen eine hohe Übereinstimmung mit in den Lehrplänen geforderten Zielen und Inhalten auf. Ebenfalls reicht es, die Aufgabenstellungen zu kopieren und lösen zu lassen;
Zusatzmaterialien sind nur für persönlich gewünschte Ergänzungen nötig. Für die Aufgabenstellungen in
diesem Konzept liegen alle Materialien bei. Es wird der Lehrperson aber dringend empfohlen, die Ausstellung vor einem Besuch mit der Klasse alleine zu besuchen und die Aufgabenstellungen durchzulesen oder
gar selbst durchzuarbeiten, damit sicher gestellt werden kann, dass Fragen beantwortet oder Hinweise zur
Bearbeitung gegeben werden können.
Kontakt mit Experten und Expertinnen
Je nach Themenstellung und Zugangsweise zur Ausstellung focusTerra macht es Sinn, dass die Schülerinnen und Schüler im Anschluss an die selbständige Bearbeitung die offenen Fragen einem Experten
oder einer Expertin stellen können. Die Geowissenschaftlerinnen und Geowissenschaftler, die an der Ausstellung beteiligt sind, bieten dies gerne an ([email protected]). Wichtig ist dabei, dass der
Ausstellungsbesuch nicht unvorbereitet ist, und dass die Schülerinnen und Schüler diejenigen sind, die
ihre zuvor vorbereiteten Fragen stellen. Erst dann wird die Begegnung mit dem Experten oder der Expertin
wirklich zu einem nachhaltigen und wissensreichen Erlebnis.
focusTerra: Eine Begegnung mit Naturwissenschaften
Auch wenn das vorliegende Konzept und die ausgearbeiteten Unterrichtsmaterialien hauptsächlich den
Einbezug von focusTerra in den Geographieunterricht aufzeigen, sind Bezüge zu weiteren Naturwissen-
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 7
schaftlichen Fächern wie insbesondere Physik, Mathematik oder Umweltwissenschaften usw. naheliegend.
In diesem Sinn eignet sich der Besuch von focusTerra auch für fächerübergreifende Projekte. Wird diese
Ausweitung angestrebt, müssen zusätzliche Materialien oder Fragestellungen ausgearbeitet werden.
Wir sind davon überzeugt, für Lehrpersonen ein Instrumentarium geschaffen zu haben, das ihnen zu einem guten, engagierten und alltagsnahen Geographieunterricht verhilft. Sicher wird mit diesen Zugangsweisen das Bild der Geologie positiv beeinflusst – nicht nur dadurch, dass den Erdwissenschaftlerinnen
und Erdwissenschaftlern mit dem Besuch der Ausstellung focusTerra auch ein wenig bei der Arbeit über
die Schulter geblickt werden kann.
Zürich, April 2010
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 8
Arbeitsmaterialien und Aufträge für die Schülerinnen und Schüler
Einstieg: Orientierung mit Suchbildern
Aufgaben für die Schüler-/innen:
Die Ausstellung focusTerra erklärt mit einer Fülle an Informationen Hintergründe und komplexe Vorgänge
in und auf unserem Planeten. Im Dialog mit der Erde wird dargestellt, wie Erdbeben entstehen, was Vulkane ausbrechen lässt, woher Edelsteine stammen, was Fossilien über den Ursprung des Lebens erzählen, wie die Alpen entstanden sind, ob das Klima früher auch schon einmal so warm war und vieles mehr.
Sie ist in drei Ebenen gegliedert, die sich unterschiedlichen Themenkreisen widmen:

Dynamik der Erde: Auf der ersten Ausstellungsebene stehen Themen wie der innere Aufbau der Erde
und Prozesse wie Erdbeben, Erdmagnetismus, Vulkaneruptionen, Gebirgsbildung und Gesteinsverformung im Mittelpunkt.

Schätze der Erde: Auf der zweiten Ebene können die Entstehung von Kristallen, die Beschaffenheit
von Edelsteinen und der Ursprung mineralischer Rohstoffe studiert werden.

Archive der Erde: Sedimentgesteine und ihre Ablagerungsräume sind die Archive der Erdgeschichte,
aus denen sich die Umweltbedingungen früherer Zeitepochen ablesen lassen. Über Jahrtausende bis
Jahrmillionen dokumentieren Sedimentschichten die früheren Oberflächenprozesse auf der Erde und
die langfristige Entwicklungsgeschichte zahlreicher Organismengruppen. Dies kann auf der dritten
Ebene erforscht werden. (Quelle: www.focusterra.ethz.ch)
a. Um sich einen Überblick über die Ausstellung zu verschaffen und bereits zu erforschen, was Sie dort
finden und entdecken können, erhalten Sie ein oder zwei Fotos, die etwas aus der Ausstellung, ein
Detail oder eine Innenansicht, ein Blitzlicht oder eine Anregung darstellen (siehe Arbeitsmaterialien).
 Betrachten Sie Ihr Bild und überlegen Sie sich, in welchem Kontext es stehen könnte.
 Suchen Sie mit Hilfe Ihres Fotos das Original in der Ausstellung.
 Fotografieren Sie in einem grösseren Ausschnitt das, was das Foto klein zeigt.
 Notieren Sie sich zwei, drei Stichworte zum Kontext, in dem das Bild steht und was auf dem Bild
zu sehen ist.
b. Präsentieren Sie Ihr Ergebnis der Klasse und weisen Sie besonders auf den Kontext hin. Beschreiben
Sie so genau wie möglich, wo das entsprechende Thema und das Bild zu finden sind.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 9
Bezüge zur Ausstellung „focusTerra“
 Überblick und Orientierung
Materialien
 Schreibzeug, Unterlage, Farbstifte
 Fotoapparat / Handy
 Bildkarten, evtl. laminiert und vergrössert
Informationen für Lehrerinnen und Lehrer
Da die Ausstellung sehr umfangreich ist, bietet es sich an, als Einstiegsübung eine orientierende Suche
mit Hilfe der Bilder zu machen. Die Bilder zeigen kleine Ausschnitte von Ausstellungsinhalten. Mit der
Suchübung wird einerseits die Orientierung gefördert und die Schülerinnen und Schüler wissen danach,
was sie wo in der Ausstellung aufsuchen können. Sie finden sich zurecht und werden vertraut mit der
Lernumgebung, in der sie sich die nächsten zwei bis drei Stunden aufhalten.
Zudem fördert der Einstieg die Neugier und das Interesse der Lernenden, weil noch viel mehr entdeckt
und untersucht werden kann, als das was nachher effektiv bearbeitet wird. Auf diese Weise werden Fragen geweckt, die Schülerinnen und Schüler sind für das Thema Geologie sensibilisiert. Sie werden anders
an die Aufgabenstellungen herangehen, weil sie bereits wissen, was sie erwartet, und weil sie neugierig
sind, sich damit zu beschäftigen.
Es empfiehlt sich deshalb auch, die Zeit für die Fotosuche zu begrenzen – ausser, wenn dies das einzige
Ziel der Exkursion in die Ausstellung ist. Gruppenarbeiten bzw. gegenseitige Hilfestellungen sind wünschenswert, damit möglichst „viele Augen“ aufmerksam durch die Ausstellung gehen.
Lösungshinweise:
Die Angaben sollen helfen, die Bildkarten aufzufinden. Sie sind nach Etagen der Ausstellung gruppiert.
Unterste Etage
1-01
Profil Axendecke
1-07
Meteorit Nr. 19
1-02
Detail im Profil Axendecke
1-08
Erdaufbau
1-03
Profilbeschriftung
1-09
Modell Isostasie
1-04
Entstehung Erdmagnetfeld
1-10
Gestein bei Alpenprofil
1-05
Hebel Bereich Magnetfeld
1-11
Gestein bei Alpenprofil
1-06
Bildschirmwand Seismologie
1-12
Dünnschliff
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 10
Mittlere Etage
2-01
Grosser Quarz in der Mitte
2-07
Phantomquarz
2-02
Staurolith
2-08
Goldfolie
2-03
Kristallgitter
2-09
Schwefel
2-04
Kristallisator (ohne Kristalle)
2-10
Baryt
2-05
Geschichte Mineralien
2-12
Mineralausfällungen aus Lösungen
2-06
Kupferkarte
2-12
Text Mineralien / Rohstoffe
Oberste Etage
3-01
Modell Zürich
3-07
Eis im Zürichsee-Modell
3-02
Vergletscherung (Modell)
3-08
Letzte Phase Interglazial, Zeitleiste
3-03
Zeit-Uhr
3-09
Quartärmächtigkeit (Schublade
Glazialtäler am Profil)
3-04
Turbiditstrom
3-10
Spuren im Schlamm / Wand
3-05
Seesedimente
3-11
Gesteinsbohrer im Gang
3-06
Black Smokers
3-12
Beschreibung Sedimente
Kompetenzen:
 Methoden
 Orientierung
 Kommunikation
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 11
Arbeitsmaterialien „Einstieg: Orientierung“
Suchbilder
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 12
Reihenfolge der Nummern:
Seite 1
Seite 2
Seite 3
1-05
1-08
3-08
2-02
1-03
3-07
1-02
1-07
2-09
3-10
3-01
3-11
2-06
1-01
2-11
3-03
3-06
1-11
1-04
1-10
3-05
2-01
2-08
3-09
2-03
2-05
3-02
2-12
1-12
2-07
1-06
2-04
3-12
2-10
1-09
3-04
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 13
Mineralien I
Aufgaben für die Schüler-/innen:
Mineralien sind die Grundlage für viele Geräte, Stoffe, Verbindungen oder Bestandteile unserer Ernährung. Die Vielfalt ihrer Verwendung ist auf die unterschiedlichen Eigenschaften vieler Mineralien zurück zu
führen. Vertiefen Sie sich deshalb in die faszinierende Welt der Mineralien!
a. Suchen Sie in der Ausstellung vier verschiedene Mineralien, die Sie besonders ansprechen, z.B. weil
sie so gross, farbig, speziell, strahlend oder interessant sind.
b. Skizzieren und beschreiben Sie Ihre 4 Mineralien so genau wie möglich.
c.
Recherchieren Sie, welche Lebensbereiche in Ihrem Leben die ausgewählten Mineralien tangieren.
Lösen Sie die Aufgaben a. bis c. auf den Arbeitsblättern.
d. Tauschen Sie Ihre Ergebnisse aus.
e. Überlegen Sie sich mindestens eine Frage, die Ihnen während der Arbeit eingefallen ist und die Sie
nicht klären konnten. Versuchen Sie, diese mit Hilfe von Expertinnen und Experten oder Literatur zu
klären.
f.
Fortführung im Klassenzimmer (Vorschläge)

Fragen klären

Mineralien bestimmen, sortieren und klassieren

Mineralien gruppieren

Mineralien im Alltag suchen und ihre Eigenschaften für den bestimmten Zweck nennen

Besonderen Fragen nachgehen (siehe Lehrerhinweise)
Bezüge zur Ausstellung „focusTerra“

Kristalle und Mineralien

Edelsteine
Materialien

Schreibzeug, Unterlage, Farbstifte

Kärtchen für die Notizen der Eigenschaften

Idealerweise: Kiste mit Mineralien zum Anfassen und Untersuchen
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 14
Informationen für Lehrerinnen und Lehrer
Mineralien an sich sind kein Thema im Geographieunterricht, im besten Fall werden sie als Bestandteil
eines Gesteins bestimmt und aufgrund ihrer Härte charakterisiert. Dennoch faszinieren die schönen Stücke viele Schülerinnen und Schüler.
Weniger bewusst dürfte den Schülerinnen und Schülern sein, dass Mineralien die Grundlage für viele Anwendungen im Alltag sind – wir verwenden die Namen für diese Mineralien ohne Bewusstsein für diesen
Hintergrund. In der Anwendung kommen die unterschiedlichen Eigenschaften der Mineralien zum Tragen.
Mit den Aufträgen sollen die Schülerinnen und Schüler genau beobachten und beschreiben lernen. Dabei
werden Sie von Ihrem eigenen Interesse geleitet, indem Sie „Ihre“ Mineralien selbst auswählen. Gleichzeitig wird der Frage nachgegangen, wo uns Mineralien im Alltag begegnen. Es geht darum, über die Eigenschaften und die Anwendungsgebiete der verschiedenen Materialien Hintergrundinformationen zu erhalten
und ein Bewusstsein dafür zu erlangen, wo überall Mineralien vorkommen und wofür sie genutzt werden.
Die Beantwortung der Fragen gelingt in der Ausstellung unterschiedlich differenziert, weshalb es sich empfiehlt, im Anschluss an diese Aufgaben ein Gespräch mit einem Experten aus der Ausstellung einzuplanen
(siehe didaktische Einleitung). Der Austausch zwischen Schülerinnen und Schülern und geowissenschaftlichen Expertinnen und Experten wird dann zu einem bereichernden Lernanlass, wenn die Lernenden
selbst zu Experten geworden sind und mit echten Fragen aufwarten.
Ein ganz besonderer Reiz könnte die Klärung folgender Fragen sein:
 Warum sind Diamanten so hart? (Aufgrund der Kristallstruktur: Diamant besteht aus Kohlenstoffatomen und ist der härteste bekannte Stoff. Die Bindungen zwischen den Kohlenstoffatomen sind sehr
stark und energiereich und zeigen in die 4 Ecken eines Tetraeders, also in alle Raumrichtungen.)
Quelle: Wikipedia
 Wie unterscheidet sich Graphit von Diamant, wo doch beides Kohlenstoff ist? (Aufgrund der Kristallstruktur: Graphit ist schichtförmig aufgebaut und nur innerhalb dieser Schichten sind die Atombindungen stark. Zwischen den Schichten sind sie schwach und können leicht gespalten werden. Dadurch können die einzelnen Schichten können leicht gegeneinander verschoben werden.)
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 15
Quelle: http://www.cumschmidt.de/sm_graphit.htm
 Warum sind Blutdiamanten blutig? (Dies ist nur eine Redewendung und bezieht sich darauf, dass
die Gewinnung von Diamanten oft zu blutigen Auseinandersetzung führt.)
 Was tut der Quarz in der Quarzuhr? (In einer Quarzuhr wird der Takt nicht mit einem mechanischen Pendel angegeben, sondern mit Hilfe eines Quarzoszillators. Dass die Frequenz dabei genau
eingehalten wird, wird durch kleine Quarzkristallplättchen, sogenannte Schwingquarze, gewährleistet.
 Warum ist Asbest gefährlich? (Asbest ist gefährlich, weil seine kristalline Struktur dazu neigt, sich
in dünne Fasern aufzuspalten, die vom Organismus nicht abgebaut oder ausgeschieden werden können. Werden diese Fasern eingeatmet, so beginnen sie, das Lungengewebe zu zerstören. Schliesslich
kann es zu unterschiedlichen bösartigen Tumoren kommen, u.a. in der Lunge und am Bauchfell.)
 Warum leuchtet Fluorit? (Fluorit leuchtet nur mit Hilfe von UV-Licht und auch nur, wenn Lanthanoide, d.h. gewisse Metalle der seltene Erde Elemente, eingelagert sind.)
 Was macht Kupfer so wertvoll? (Kupfer ist aufgrund seiner begrenzten Verfügbarkeit und des steigenden Bedarfs für die Industrie wertvoll.)
 Wieso ist Gold so wertvoll (Gold ist ein Edelmetall. Es oxidiert nicht, glänzt und ist selten. Gold hat
einen relativ geringen industriellen bzw. technischen Nutzen. Sein Wert entstand eher geschichtlich,
ökonomisch und kulturell: Es wird schon seit Jahrtausenden für Schmuck oder für rituelle Gegenstände verwendet, war Zahlungsmittel und Regierungen haben bis Mitte letzten Jahrhunderts ihre Währungen fest an Gold gebunden (Goldstandard). So war beispielsweise die Goldmark im Deutschen
Kaiserreich dadurch definiert, dass 2790 Goldmark dem Wert von einem Kilogramm Feingold entsprachen.)
Die Liste der Fragen ist nicht abschliessend und kann von den Schülerinnen und Schülern selbst fortgeführt werden. Hier ist ein fächerverbindender Unterricht mit der Chemie empfehlenswert.
Kompetenzen:
 Fachwissen
 Methoden
 Beurteilung
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 16
Arbeitsmaterialien „Arbeitsblatt Mineralien“
Mineral 1: Skizze
Beschreibung:
Anwendung im Alltag:
Mineral 2: Skizze
Beschreibung:
Anwendung im Alltag:
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 17
Mineral 3: Skizze
Beschreibung:
Anwendung im Alltag:
Mineral 4: Skizze
Beschreibung:
Anwendung im Alltag:
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 18
Mineralien II
Aufgaben für die Schüler-/innen:
a. Im Alltag werden uns Mineralien zuweilen als Heilsteine verkauft, die für verschiedene Lebenssituationen oder zu Sternzeichen usw. passen. Zum Beispiel werden Bernsteinketten gegen Zahnschmerzen
bei Kleinkindern angepriesen oder Rosenquarze gegen die Strahlung von Fernsehern oder Computern.
b. Recherchieren Sie in der mineralogischen Ausstellung, was Sie an wissenschaftlichen Informationen
zu den Mineralien finden. Fertigen Sie eine Tabelle mit eigenen Beispielen an. Notieren Sie, was Sie
über das Mineral wissen und warum Sie es aufgeschrieben haben.
c.
Beurteilen Sie aufgrund Ihrer Recherchen die Aussagen über die Wirkung der Mineralien als Heilsteine. Diskutieren Sie folgende Fragen:

Wie weit lässt sich die Heilkraft von Mineralien wissenschaftlich belegen?

Warum werden Mineralien als Heilsteine verkauft bzw. warum wird den Mineralien eine HeilkraftWirkung nachgesagt?

Wie können Sie die wissenschaftlichen Erkenntnisse mit den Aussagen über die Heilkraft in Einklang bringen?
d. Präsentieren Sie Ihre Ergebnisse in Form eines Verkaufsgesprächs: Zwei Personen möchten in einem
Laden mit Heilsteinen für ein bestimmtes Anliegen ein Mineral erwerben. Die beiden fragen sich, ob
das Mineral wirklich hilft. Sie – als Expertin – belauschen das Gespräch und geben den beiden zusätzliche Informationen. Spielen Sie die Szene und diskutieren Sie dann mit der Klasse darüber. Gibt es
Alternativen? Wie ist die Meinung in der Klasse?
e. Fortführung im Klassenzimmer (Vorschläge)

Mineralien bestimmen, sortieren und klassieren

Mineralien in Schmuck oder aus dem Alltag zu Hause bestimmen und besprechen, warum und wofür man sie hat

Kristalleigenschaften besprechen

Rohstoffe thematisieren: Entstehung, Vorkommen, Abbau, Nutzung, ...
Bezüge zur Ausstellung „focusTerra“

Kristalle und Mineralien

Edelsteine
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 19
Materialien

Schreibzeug, Unterlage, Farbstifte

Fotoapparat

Idealerweise: Kiste mit Mineralien zum Anfassen und Untersuchen
Informationen für Lehrerinnen und Lehrer
Mineralien an sich sind kein Thema im Geographieunterricht, im besten Fall werden sie als Bestandteil
eines Gesteins bestimmt und aufgrund ihrer Härte charakterisiert. Dennoch faszinieren die schönen Stücke viele Schülerinnen und Schüler – sie tragen Schmuckstücke, besitzen schöne geschliffene Mineralien
als Geschenke usw.
Mit den vorgestellten Aufgaben möchten wir den Widerspruch zwischen geringer Bedeutung in der Schule
und zunehmender Bedeutung im Alltag aufgreifen und eine Brücke zwischen Wissenschaft und Alltagswissen schlagen. Bewusst greifen wir deshalb die Heilwirkung auf, die den Mineralien nachgesagt wird und
leiten die Schülerinnen und Schüler dazu an, sich auf Spurensuche zu begeben um zu recherchieren, ob
die Wissenschaft eine Antwort auf die Frage nach der Heilwirkung hat. Es ist möglich, dass die Lernenden
gewisse Anhaltspunkte finden, z.B. die Kristallstruktur, die Farbe oder andere Eigenschaften, auch wenn
wissenschaftlich gesehen keine Beweise für die Heilwirkung vorliegen. Auf alle Fälle kann und soll durch
die Aufgabenstellung die Diskrepanz zwischen „Wissen“ und „Glauben“ thematisiert und bewusst diskutiert
werden. Dies trägt dazu bei, dass sich die Schülerinnen und Schüler Gedanken machen über die Kommerzialisierung von Objekten und hinterfragen, was ihnen angeboten bzw. vorgesagt wird. Betont werden
soll, dass es wissenschaftlich keine Belege gibt, dass Mineralien eine heilende Wirkung haben.
Kompetenzen:
 Fachwissen
 Methoden
 Beurteilung
 Kommunikation
 Handlung
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 20
Arbeitsmaterialien „Arbeitsblatt Mineralien“
Name / Bild
Wissenschaftliche Informationen
Fachgruppe Geographie, PHZH – focusTerra
Grund für die Auswahl
H. Moser, S. Padberg, M. Reuschenbach
Seite 21
Rohstoffe
Aufgaben für die Schüler-/innen:
Korrodierte Handyplatine. Quelle: Wikipedia
Ihr Handy rostet! Auch Ihr Computer korrodiert. Die elektronischen Kontakte werden dadurch zerstört und
die Geräte unbrauchbar. Unvorstellbar? Es kommt noch besser: In den Geräten steckt pures Gold, um
genau das gerade beschriebene Szenario zu verhindern.
Finden Sie mit Hilfe der Ausstellung und der Zusatzmaterialien heraus:

Lohnt es sich, das Gold aus dem Handy zu entfernen und weiterzuverkaufen?

Wieviel ist überhaupt darin enthalten? Was ist es wert und wozu ist es gut?
a. Beschreiben Sie dazu genau, welche Arbeitsschritte bis zur Verwendung des Goldes in Ihrem Handy
erfolgen müssen und welche Auswirkungen diese auf die Gesellschaft (sozial und wirtschaftlich) und
die Umwelt hat. Erstellen Sie eine Karte zu den verschieden Standorten der Produktion und Vermarktung.
b. Listen Sie mindestens zwei offen gebliebene oder im Laufe ihrer Arbeit entstandene Fragen auf. Fügen Sie genaue Ideen hinzu, wie Sie an eine Antwort gelangen können. Wen können Sie fragen, welche Organisation könnte diese Informationen veröffentlichen?
c.
Recherchieren Sie mit Hilfe der Texte, was mit einem Handy bzw. seinen Bestandteilen passiert, wenn
Sie es wegwerfen. Überlegen Sie:

Wie erfolgt das Recycling?

Wer profitiert vom Handy-Recycling, wer nimmt davon Schaden?
Schreiben Sie zunächst Ihre Ideen auf und lesen Sie dann erst die Texte.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 22
Bezüge zur Ausstellung „focusTerra“
 Rohstoffabbau
 Rohstoffentstehung
Materialien
 Schreibzeug, Unterlage
 Texte zu den Themen
Informationen für Lehrerinnen und Lehrer
Bei der gestellten Aufgabe handelt es sich um eine Produktlinienanalyse. Zusätzliche Hinweise und Materialien zu diesem didaktischen Ansatz finden Sie unter:
a) Retzmann, Thomas (2003): Das Unterrichtsprojekt "Produktlinienanalyse". Bildung für eine nachhaltige
Entwicklung In: Unterricht Wirtschaft, 4, 16, 21-28
b) Stiftung Verbraucherinstitut (1996): Wege zu
einem globalen umwelt- und sozialverträglichen
Konsum. Aufgezeigt an der Produktlinienanalyse
eines Lebensmittels. Berlin.
Der arbeitsmethodische Ansatz der Produktlinienanalyse wurde hier verflochten mit der Sichtweise
der "Bildung für nachhaltige Entwicklung" (BNE),
der sich die Geographiedidaktik besonders verpflichtet fühlt. BNE basiert ursprünglich auf dem auf
der Weltentwicklungskonferenz in Rio de Janeiro
1992 formulierten Nachhaltigkeitsdreieck: Quelle: www.agenda21.rlp.de
Ein interessantes neueres Projekt zu diesem Thema finden Sie unter: www.sourcemap.org.
Kompetenzen:
 Fachwissen
 Methoden
 Beurteilung
 Kommunikation
 Handlung
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 23
Arbeitsmaterialien:
Quelle: http://www.stocks.ch/rohstoffe/goldpreis@chf, Stand 8.2.2010
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 24
Informationstext:
Handy-Recycling
Handys enthalten je nach Modell etwa 56 % Kunststoffe (Gehäuse, Tastaturmatte, Leiterplatte), 25 % Metalle (Leiterbahnen, elektronische Bestandteile, mechanische Komponenten), 16 % Glas und Keramik
(Display, Keramikteile) und 3 % sonstige Stoffe (Flüssigkristalle, Flammenhemmer). Diese Bestandteile
wiederum sind aus über 50 Stoffen aufgebaut. Bei den Metallen sind es Kupfer, Aluminium und Eisen, die
nochmals rund einen Viertel des Handys ausmachen. Andere Stoffe wie Nickel, Blei oder Silber liegen im
Bereich von 1 % oder darunter. Bewertet man die Toxizität von Handys, so dominieren die Schwermetalle,
ihre Legierungen und Verbindungen: Handys können Spuren von Cadmium, Blei, Lithium, Nickel, Zink,
Arsen und Beryllium enthalten. Die Gewinnung einiger dieser Stoffe ist mit hohem Energieaufwand und
langen Transportwegen verbunden (z.B. Kupfer, Silber, Gold).
Mit Beginn der industriellen Revolution stieg der Bedarf an Rohstoffen stetig an. Dank neuer Technologien
wurden auch immer mehr Rohstoffe und Rohstoffvorkommen entdeckt. Steigender Lebensstandard und
ein sorgloser Umgang mit Rohstoffen führen zu einer zunehmenden Rohstoffknappheit. Edelmetalle wie
Gold, Silber oder Platin bilden zusammen mit Kupfer, Zinn und Halbleitern die Grundlage der Elektroindustrie und der Elektronik. Auch ihre Verfügbarkeit ist begrenzt. Die beiden Stoffe Indium und Gallium
werden mit Sicherheit schon bald sehr knapp werden. Grund genug also, Handys dem Recycling zuzuführen und so die darin enthaltenen Stoffe als so genannte Sekundärrohstoffe wieder zu verwenden.
Ökobilanz eines Handys
Vermutlich hat Ihr Handy (oder Teile davon) schon mehr von der Welt gesehen als mancher Tourist in
seinem ganzen Leben –. Ihr Handy wurde vielleicht in China produziert. Das Lithium für die Herstellung
des Lithium-Ionen-Akkus kommt wahrscheinlich aus Chile, das Kupfer ebenfalls. Das Gold stammt aus
Südafrika und das Silber aus Russland. Der Lebensweg eines Handys beginnt mit der Gewinnung und der
Aufbereitung der Rohstoffe sowie deren Transport zum Produktionsstandort. Dabei können bereits einige
1000 Kilometer zusammenkommen. Das benötigt Energie, genauso wie die Montage eines Handys. Auch
die Herstellung, der Transport der Verpackung und der Weg des verpackten Gerätes zu den Verkaufsmärkten verbrauchen Energie. Danach folgt der Stromverbrauch des Handys während der Gebrauchsdauer. Anschliessend braucht es Energie, um das Gerät zu demontieren und zu entsorgen. Alle diese Faktoren zusammen ergeben die Ökobilanz beim Handy. Für eine gute Ökobilanz ist wichtig, das Handy am
Ende seiner Lebensdauer dem Recycling zuzuführen. Laut www.focus.de kann man von folgender Tatsache ausgehen: Wenn alle drei Milliarden Handybesitzer auf der Welt je ein Handy rezyklieren würden,
könnte man 240’000 Tonnen Rohstoffe einsparen und die Treibhausgase entsprechend dem jährlichen
Ausstoss von vier Millionen Autos reduzieren.
Gekürzt aus: www.umweltschutz.ch, Stiftung Praktischer Umweltschutz (PUSCH) Schweiz
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 25
Informationstext: "Eure Computer vergiften unsere Kinder"
100’000 Tonnen Elektroschrott werden jedes Jahr aus Deutschland in Drittweltländer verschoben. Ein
Grossteil landet in Ghana, wo Kinder den Müll nach Wertstoffen durchsuchen. Sie verbrennen die Geräte und vergiften sich dabei.
SPIEGEL ONLINE: Herr Anane, jedes Jahr kommen neue, bessere Computer auf den Markt - was
passiert mit den alten?
Anane: In den meisten Ländern gelten Umweltschutzgesetze, es gibt Recyclingsysteme für Schrottcomputer - doch die haben grosse Lücken. Von Jahr zu Jahr wird deshalb mehr Elektromüll in die Dritte Welt
verschifft. Die Gründe liegen auf der Hand. Niemand will den Schrott bei sich haben. Also schicken sie ihn
zu uns, die Amerikaner vor allem, aber auch die Deutschen, die Niederländer, die Briten. Ich schätze, hier
in Ghana kommen inzwischen jeden Monat 500 Container an. Entwicklungsländer haben keine Chance,
derartige Massen ohne enorme Schäden für die Umwelt und die Menschen zu entsorgen.
SPIEGEL ONLINE: Wer schafft den Computerschrott ins Ausland?
Anane: Es sind zum einen Leute aus den Recyclingfirmen, die damit viel Geld verdienen. Denn eine saubere Entsorgung in Deutschland etwa ist teuer, es ist viel billiger, die Uraltgeräte per Schiff nach Ghana zu
schicken. Dazu gibt es Händler, die solche Deals abwickeln. Die wenigen Computer, die in den Lieferungen noch funktionieren, verkaufen sie dann hier - alles andere werfen sie weg. Im Schnitt sind wohl 80%
der Computer, die hier ankommen, Schrott. Der Rest lässt sich noch brauchen, aber oft nicht mehr lange.
Und dann müssen diese Rechner ebenfalls verschwinden.
SPIEGEL ONLINE: Was passiert damit?
Anane: Eure alten Computer vergiften hier
unsere Kinder. Es gibt mehrere Plätze allein in
Ghana, auf denen Kinder die alten Rechner
auseinanderreissen und die Bildschirme zertrümmern müssen. Dann werfen sie den Kram
ins Feuer, damit alles aus Plastik wie zum
Beispiel die Kabel-Isolierungen verbrennt. Die
Metallreste können sie schliesslich verkaufen.
Der mit Abstand grösste solcher Plätze liegt
hier in Accra, in Agbogbloshie.
Bild oben: Die jüngeren Elektroschrott-Kinder ziehen mit Eimern oder Beuteln über den Platz von Agbogbloshie in Accra und sammeln die kleinen Metallteile ein, die ältere Kinder beim Ausschlachten und Verbrennen der Computer übrig lassen. Vom Verkauf
leben sie.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 26
SPIEGEL ONLINE: Was bedeutet das für die Kinder?
Anane: Greenpeace-Leute haben vergangenes Jahr Bodenproben in Agbogbloshie genommen. Sie fanden Dioxine, Furane, polychlorierte Biphenyle, Blei, Kadmium - einen hochgefährlichen Giftcocktail, der
Krebs auslösen kann, die Leber schädigt, die Nieren, die Gehirne, gerade bei Kindern. Und die Kinder
arbeiten dort jeden Tag, sie sind noch sehr jung, manche erst fünf oder sechs Jahre alt. Sie haben keine
Schutzmasken, keine Handschuhe und natürlich kein Geld für Medikamente. Sie nehmen die Schwermetalle auf und all die anderen Gifte im Rauch der brennenden Computer. Zudem gibt es dort einen Fluss
und eine Lagune, inzwischen regt sich nichts mehr in den Gewässern. In der Regenzeit wird das ganze
Gift in den Atlantik gespült, dort gelangt es in die Fische und dann wieder in die Menschen. Denn die meisten dieser Stoffe verschwinden nicht einfach, sondern reichern sich in Lebewesen an.
SPIEGEL ONLINE: Befürworter der Computerexporte argumentieren, die alten Rechner seien doch
gut für Entwicklungsländer, weil sie die sogenannte digitale Kluft überbrückten - auch die Armen
bekämen so Zugang zum Wissen der globalen Informationsgesellschaft.
Anane: Das ist doch Unsinn. Die meisten Geräte funktionieren ja gar nicht. Wie soll man mit einem Computer ins Internet, der nicht einmal mehr hochfährt? Man kann die digitale Kluft nicht mit Digitalmüll zuschütten.
SPIEGEL ONLINE: Es gibt einen internationalen Vertrag, die Basler Konvention. Sie verbietet den
Export von Computerschrott in die Dritte Welt. Warum funktioniert das nicht?
Anane: Die USA zum Beispiel haben den Exportbann der Baseler Konvention nie ratifiziert. Und viele andere Länder, etwa die EU-Staaten, haben zwar unterschrieben - setzen das Verbot aber nicht durch. Sie
müssten die Container viel wirksamer kontrollieren, die Schiffe stoppen, die Giftexporteure hart bestrafen.
All das passiert aber nicht. Und Länder
wie Ghana bräuchten viel mehr und
besser ausgebildete Kontrolleure, die
das Zeug wieder zurückschicken. Sonst
werden immer mehr Computer kommen und immer mehr Kinder vergiften.
Quelle: Spiegel online, unter
http://www.spiegel.de/panorama/gesellschaft/0,1
518,665030,00.html
Bild rechts: Der Slum wird von Beamten der
Stadt Accra "Sodom und Gomorrha" genannt. Er
liegt direkt neben dem Platz Agbogbloshie, auf
dem
Kinder
Computer
ausschlachten
und
verbrennen. In den Hütten leben die älteren Elektroschrott-Kinder, die genug Geld verdienen, oder jene, die noch ihre Eltern haben.
Die jüngeren und die Waisen schlafen meistens irgendwo zwischen den Hütten.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 27
Arbeitsblatt 1:
Das Gold in meinem Handy
Ich beschreibe die erforderlichen Arbeitsschritte und ihre Auswirkungen auf Gesellschaft und Umwelt
Name
des
Arbeitsschritts
Was passiert im
Einzelnen?
Welche Auswirkungen auf die
Umwelt vermute
ich?
Fachgruppe Geographie, PHZH – focusTerra
Spielen soziale Aspekte eine Rolle, z.B.
hinsichtlich der Arbeitsbedingungen?
Ich beurteile den
Arbeitsschritt
aus wirtschaftlicher Sicht:
Fragen, die für
mich offen bleiben:
H. Moser, S. Padberg, M. Reuschenbach
Seite 28
Arbeitsblatt 2:
Meine Gedanken dazu, wie ich mir das Recycling eines Handys vorstelle:
Was ich im Text zusätzlich erfahren habe:
Was mich beeindruckt:
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 29
Aufbau der Erde
Aufgaben für die Schüler-/innen:
a. Verfassen Sie ein Reisetagebuch auf Ihrer Reise zum Erdmittelpunkt. Sie haben dazu sieben Tage
Zeit. Das Reisetagebuch beinhaltet:

Angabe, wie weit sie pro Tag reisen

Aufzeichnungen darüber, was Sie an jedem Tag erleben, sehen, empfinden, ...

ein treffendes Bild pro Tag (Handy oder Kamera)

Notizen zu Ihrer Ausrüstung pro Tag

Reflektierende Gedanken zur Reise, wenn Sie am Erdmittelpunkt angekommen sind.
Der Umfang beträgt ca. 2 Seiten Notizen. Sie können auch eine Tabelle erstellen (vgl. Arbeitsmaterialien).
b. Lesen Sie die Zusammenfassung der Geschichte von Jules Verne: „Reise zum Mittelpunkt der Erde“
(siehe Arbeitsmaterialien). Jules Verne lebte von 1828 bis 1905. Er war einer der Erfinder des Science-Fiction-Romans, bezeichnete sich selbst aber als Autor von wissenschaftlich belehrenden Romanen. Führen Sie nach der Lektüre folgende Aufträge aus:

Recherchieren Sie, welche Bedeutung die fettgedruckten Wörter im Bezug auf unser heutiges
Wissen über die Welt haben. Einen Teil der Antworten finden Sie in der Ausstellung, einen anderen Teil müssen Sie recherchieren.

Vergleichen Sie die Geschichte mit der von Ihnen erarbeiteten „Wirklichkeit“. Halten Sie Gemeinsamkeiten und Unterschiede fest.

Als Jules Verne die Geschichte schrieb, war dies Science-Fiction. Heute hat die Wissenschaft einen ganz anderen Stand. Beurteilen Sie aufgrund der heutigen Kenntnisse den Wahrheitsgehalt
der Geschichte von Jules Verne. Achten Sie auf eine möglichst differenzierte Beantwortung der
unterschiedlichen Aspekte in der Geschichte. Zeigen Sie auf, was Wissenschaft und was Fiktion
ist.
c.
Finden Sie heraus bzw. denken Sie darüber nach, wie Wissenschaftler die heutigen Erkenntnisse über
das Erdinnere gewonnen haben, wenn man bedenkt, dass Bohrungen heute nur bis maximal 13 Kilometern möglich sind. Stichworte für Ihre Recherchen können sein: Mond, Meteoriten, Gebirgsbildung,
Seismik, Tektonik, Analogien, Vulkanismus, Modellierungen. Notieren Sie Ihre Gedanken auf dem
Antwortblatt und überprüfen Sie sie gegebenenfalls im Gespräch mit Expertinnen oder Experten.
d. Präsentieren Sie Ihre Ergebnisse während 5 Minuten der Klasse. Stellen Sie dabei die Geschichte von
Jules Verne ihren eigenen Recherchen gegenüber, z.B. in einem kurzen Theaterspiel. Zeigen Sie besonders die Unterschiede auf, und bringen Sie Ihre Überlegungen über die Zeit, in der die Geschichte
geschrieben wurde, in die Präsentation ein.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 30
e. Fortführung im Klassenzimmer (Vorschläge)

Lesen der ganzen Geschichte von Jules Verne

Wissenschaftliche Theorien in den Kontext der Zeit setzen, z.B. Kontinentaldrift (18. und frühes 19.
Jahrhundert, z.B. A.Wegener); ab 1960: Plattentektonik

Erdgeschichte / Evolution thematisieren; Vergleiche zur Geschichte von J. Verne erarbeiten
Bezüge zur Ausstellung „focusTerra“

Aufbau der Erde

Plattentektonik

Erdgeschichte
Materialien

Schreibzeug, Unterlage, Farbstifte

Taschenrechner

Fotoapparat / Handy
Informationen für Lehrerinnen und Lehrer
Am Beispiel der Reise zum Mittelpunkt der Erde soll die oft als trocken empfundene Thematik des Erdaufbaus spielerisch und im Kontext einer Literaturquelle angegangen werden. Die Schülerinnen und Schüler
müssen bei der ersten Aufgabenstellung folgende Schritte durchlaufen bzw. Recherchen vornehmen:
b. Berechungen dazu anstellen, wie weit man in einem Tag ins Erdinnere reisen kann, d.h. die Strecke,
die dem Radius bis zum Erdmittelpunkt entspricht, auf sieben Tage aufteilen. Dazu werden auch Überlegungen zur Reisegeschwindigkeit offensichtlich, die z.B. in die Frage der Ausrüstung einbezogen
werden können.
c.
Unterscheiden und Kennenlernen der verschiedenen Materialien -> Bezüge zur Ausrüstung und den
Empfindungen herstellen
d. Durch die Frage nach den persönlichen Erlebnissen auf dieser Reise werden Materialien und Zusammensetzungen erlebbarer (heiss, kalt, zäh, hart, weich, ...). Dadurch wird das Vorstellungsvermögen
besser angesprochen und aktiviert.
Der zweite Teil der Aufgabenstellung hat zum Ziel, wissenschaftliche Ergebnisse mit einer Geschichte,
damaliger Science-Fiction, zu vergleichen. Es gibt Elemente aus der Geschichte, deren Herkunft sich geologisch und phänomenologisch erklären lassen, andere entsprechen der Phantasie des Autors. Es stellt
sich auch die Frage, woher man die heutigen Erkenntnisse hat und wie gesichert sie sind. Diese Diskussion soll durch die Aufgabenstellung ebenfalls angeregt werden. Die Schülerinnen und Schüler werden dabei sensibilisiert für einen kritischen Blick auf wissenschaftliche oder auch populärwissenschaftliche Informationen z.B. aus dem Fernsehen.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 31
Die Lehrperson kann aufgrund ihres eigenen Wissens die Schülerinnen und Schüler bei der notwendigen
Schrittigkeit der Aufgabe unterstützen, so dass die Lernenden in der Vorgehensweise angeleitet werden.
Bei Schülerinnen und Schülern der Sekundarstufe II kann auch davon ausgegangen werden, dass sie
dazu selbständig in der Lage sind. Zudem wird das Wissen über den Aufbau der Erde, das sie schon in
früheren Klassen erworben haben, in einen neuen Kontext gestellt und hier angewendet. Die Informationen in der Ausstellung helfen, diese Transferleistung zu vollziehen.
Die Frage nach den wissenschaftlichen Erkenntnissen öffnet eine weitere Tür im Hinblick auf das Verstehen wissenschaftlichen Arbeitens. Obwohl man „nur“ 13 Kilometer in die Tiefe bohren kann, weiss man
trotzdem ziemlich genau über den Erdaufbau Bescheid. Erreicht wird diese Erkenntnis über Beobachtungen der Gebirgsbildung / Tektonik, die Zusammensetzung von Meteoriten, vulkanische Ereignisse, seismische Messungen und Vergleiche oder die Altersbestimmung von Meteoriteneinschlägen. Es ist wichtig,
dass die Schülerinnen und Schüler zu eigenen Gedanken angehalten werden. Sinnvoll ist, wenn sie zu
Erkenntnissen kommen und diese dann gegebenenfalls in einem Expertengespräch (siehe didaktische
Einleitung) klären und austauschen können.
Lösungshinweise:
 Tag 1: bis Kilometer 910; Reise durch die Erdkruste (hart) und den Erdmantel (zähplastisch);
Ausrüstung z.B. Stahlkappe, Helm, Pickel, dann Schutzanzug, Gummistiefel, ...
 Tag 2 und 3: bis Kilometer 1820 bzw. 2730; Weiterreise durch den Erdmantel
 Tag 4: bis Kilometer 3640: Reise durch den Rest des Erdmantels und dann durch den flüssigen
Teil des Erdkerns (Eisen); Ausrüstung z.B. Magnet, Sauerstoffgerät, ...
 usw.
Lösungshinweise zu den fett gedruckten Wörtern in der Geschichte von Jules Verne:
 Zum Beispiel: Weggabelungen gibt es im Erdinnern nicht.
 Zum Beispiel: Obwohl es einen eigentlichen Kraterboden nicht gibt, liegt die Vorstellung nahe,
durch den Vulkan ins Erdinnere zu gelangen, weil von dort ja auch Material aus dem Erdinnern
nach draussen geschleudert wird.
Kompetenzen:
 Fachwissen
 Methoden
 Orientierung
 Beurteilung
 Kommunikation
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 32
Arbeitsmaterialien „Aufbau der Erde“
Tabelle für die Reise zum Erdmittelpunkt
Tag
Distanz
Aufzeichnungen über die Erlebnisse,
Empfindungen
Bild
Notizen zur Ausrüstung
1
2
3
4
5
6
7
Reflexion:
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 33
Zusammenfassung der Geschichte von J. Verne „Reise zum Mittelpunkt der Erde“
Hauptfigur ist der eigenwillige Professor Otto Lidenbrock, der in Hamburg lebt und dort Mineralogie und
Geologie unterrichtet. In einem Manuskript von Snorri Sturluson findet Professor Lidenbrock eine verschlüsselte Mitteilung des fiktiven isländischen Alchimisten Arne Saknussemm. Da er davon ausgeht, dass
Saknussemm eine wissenschaftliche Entdeckung mitteilen will, zwingt der Professor seinen Neffen und
Assistenten Axel, den Ich-Erzähler des Romans, ihm bei der Entzifferung der Geheimschrift zu helfen. Zu
diesem Zweck schliesst er die Haushälterin Martha, Axel und sich selbst in seinem Haus ein.
Durch Zufall kann Axel das Dokument entziffern, schweigt aber zunächst. Erst als ihn der Hunger zermürbt, teilt er dem Professor seine Entdeckung mit. Arne Saknussemm schreibt, dass ein Reisender, wenn
er in den Krater des isländischen Vulkans Snæfellsjökull steigt, zum Mittelpunkt der Erde gelangt; er habe
die Reise selbst gemacht. Professor Lidenbrock als echter Geologe beschliesst, ebenfalls zum Mittelpunkt
der Erde zu reisen, Axel soll ihn begleiten.
Der ungeduldige Professor Lidenbrock und der ängstliche Axel verlassen Hamburg. Nach einem Aufenthalt in Kopenhagen gelangen sie nach Island. In Reykjavík engagieren sie den Eiderentenjäger Hans
Bjelke als Führer. Zu dritt besteigen sie den Snæfellsjökull, klettern in den Krater und finden auf dem Kraterboden den Eingang einer Höhle.
Sie gelangen immer tiefer ins Erdinnere. Als sie eine Weggabelung erreichen, wählen sie zunächst den
falschen Weg. Als der Gang jedoch endet, müssen sie zur Gabelung zurückkehren. Unterdessen ist aber
der Wasservorrat zur Neige gegangen und die Expedition droht zu scheitern. Hans verlässt während des
Nachtlagers die Gefährten, um Wasser zu suchen. Als er eine Wasserader findet, die hinter der Höhlenwand vorbeifliesst, holt er seine Gefährten. Sie hauen mit der Spitzhacke ein Loch in die Wand, sodass
nun ein kleiner Bach durch die Höhle fliesst. Während des weiteren Abstieges wird Axel von seinen Gefährten getrennt, kann aber zu ihnen zurückfinden.
Sie gelangen an das Ufer eines unterirdischen Meeres, das sie auf einem Floss überqueren. Sie stossen
auf riesige Pilze, frühgeschichtliche Pflanzen und auf eine kleine Insel mit einem Geysir. Nachdem sie
anfangs nur wenige kleine Fische zu Gesicht bekommen, werden sie im Verlauf der Flossfahrt Zeugen
eines Kampfes zwischen Dinosauriern. Kurz darauf gerät das Floss in einen Sturm. Während des
Sturms rollt ein Kugelblitz über das Floss. Der Sturm jagt sie über das Meer, bis sie an seinem Ufer Schiffbruch erleiden. Als sie die unbekannte Küste erkunden, stossen Axel und der Professor auf weitere heute
ausgestorbene Tier- und Pflanzenarten sowie Muschelschalen der „ersten Erdperiode“.
Sie finden Spuren Saknussemms und einen weiteren Höhleneingang. Die Höhle endet nach wenigen Metern. Als die Reisenden den Weg freisprengen, reissen sie einen Abgrund auf. Auf dem Floss gelangen sie
zuerst auf Wasser, dann auf Lava in den Krater des ausbrechenden Vulkans auf der Insel Stromboli. Durch
den Krater werden sie zurück auf die Erdoberfläche geschleudert.
(Quelle: Wikipedia)
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 34
Arbeitsblatt zur Weiterführung
Frage: Wie konnten und können Wissenschaftlerinnen und Wissenschaftler die Erkenntnisse über das
Erdinnere gewinnen? Suchen Sie dazu auch Belege in der Ausstellung.
a. Meine / unsere Gedanken
b. Die Antwort der Expertinnen und Experten
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 35
Erdbeben I
Aufgaben für die Schülerinnen und Schüler:
a. Am 26. Dezember 2004 erschütterte ein Seebeben der Stärke 9,2 auf der Richterskala im Indischen
Ozean den Meeresboden vor der indonesischen Küste Sumatra. Der Meeresboden riss 150 km vor der
Küste auf einer Länge von rund 1200 km auf. Es handelte sich um das zweitstärkste je gemessene
Erdbeben.
Klären Sie mit Hilfe der Ausstellung, was genau passiert ist. Beschreiben Sie auch die Bilder und Grafiken genau.
b. Finden Sie heraus, was die Piraterie vor Somalia mit dem Seebeben nach Weihnachten 2004 zu tun
hat (Zusatzmaterialien) und wieso sich viele Somalis mit den "Seeräubern" solidarisch erklären. Zeichen Sie dazu ein Wirkungsgefüge.
c.
Diskutieren Sie, ob Sie selbst etwas mit der Piraterie vor Somalia zu tun haben.
d. "Der Sprecher des somalischen Präsidenten bestätigte die Bergung von über 200 Leichen; mindestens
150 Menschen wurden vermisst. Zudem wurde die Küstenstadt Hafun vollständig zerstört und ferner
sollen Boote gekentert sein. Nach Angaben des U.N. World Food Programme (WFP) unter Berufung
auf somalische Regierungsstellen benötigten 30’000 bis 50’000 Somalis in den küstennahen Städten
der Region Puntland dringende Hilfe."
Erklären Sie, wie es dazu kam, angesichts der Tatsache, dass zwischen dem Ort des Seebebens und
Somalia ein grosser Ozean liegt.
Bezüge zur Ausstellung „focusTerra“

Aufbau der Erde, Plattentektonik

Erdbeben bzw. Seebeben

Visualisierung von Tsunamiausbreitung via Globus

Erdbebensimulator
Materialien

Schreibzeug, Unterlage

Atlas oder Weltkarte
Informationen für Lehrerinnen und Lehrer
Siehe Erdbeben II
Kompetenzen
 Fachwissen
 Methoden
 Beurteilung
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 36
Arbeitsmaterialien:
Lesetext: So sehen sich die somalischen Piraten selbst:
"Die Seeräuber sehen sich eigentlich als Patrioten. So erklärten die Entführer des Schiffes 'Ponant', sie
gehörten zu einer Gruppe, die sich 'Die Küstenwache' nennt. Rund fünf solche patriotischen Piratengruppen gibt es. Und hier liegt auch die Wurzel des Problems. Als der Staat Somalia 1991 mit dem Sturz Siad
Barres zerfiel, gab es auch keine Marine mehr, welche die Küstengewässer vor den inzwischen fünf Teilstaaten bewachen konnte. Bald schon tauchten europäische und asiatische Fischdampfer vor der somalischen Küste auf. Bis zu 700 solcher ausländischen Fischdampfer waren in den somalischen Gewässern
unterwegs. Die Fischgründe dort gehören zu den reichhaltigsten der Welt - Thunfisch, Schwertfisch, Kabeljau, Hummer und Krabben gibt es hier. Einige der Fischer gaben an, Genehmigungen der somalischen
Regierung zu haben. Oft waren das einfache Passierscheine, die ihnen Warlords gegen ein entsprechendes Entgelt auf dem Briefpapier der gestürzten Regierung ausgestellt hatten. Andere operierten ganz ohne
den Schein der Legalität. Nach Schätzungen der Ernährungsorganisation der UN (FAO) erbeutet diese
internationale Fangflotte in somalischen Gewässern jedes Jahr Fisch im Wert von rund 300 Millionen USDollar.
Die selbsternannten Küstenwächter begannen Mitte der neunziger Jahre, Fischdampfer zu stürmen. Zunächst wollten sie diese nur vertreiben. Dann begannen sie, eigenmächtig eine Fischereisteuer zu erheben. Diese belief sich schon bald auf mehrere Hunderttausend US-Dollar pro gekapertem Fischdampfer.
Es war nur eine Frage der Zeit, bis sich das organisierte Verbrechen für diesen Einkunftszweig interessierte.
Wie wenig Recht und Gesetz vor der Küste Somalias allerdings gelten, zeigte erst der Tsunami von 2004.
Die gewaltige Flutwelle zerstörte nicht nur einige Fischerdörfer entlang der 3300 Kilometer langen Küste.
Sie schwemmte auch einige rostbefallene Stahltanks an Land. Und überall dort, wo diese Tanks anschwemmten, klagten die Bewohner der Küstendörfer schon bald über Ausschlag und Krankheiten. Giftund Atommüll fanden Spezialisten aus dem Ausland in diesen Tanks, denn vor der Küste Somalias bereichern sich nicht nur internationale Fischereikonzerne. Auch die italienische Mafia versenkte dort giftige
Fracht in der See - ein lohnendes Geschäft. Die Entsorgung einer Tonne Giftmüll kostet in Europa um die
tausend Euro, die Mafia erledigt das diskret für acht Euro.
Kein Wunder also, dass sich die meisten Somalier mit den Piraten identifizieren, auch wenn sie von den
Raubzügen nur wenig profitieren. Nicht einmal die Piraten selbst verdienen ja mit ihren Aktionen viel Geld.
Zwischen fünf- und zwanzigtausend Dollar bleibt einem Seeräuber von den Lösegeldern, die sich für einen
Frachter oder Tanker inzwischen um die ein bis drei Millionen bewegen. Den Rest teilen sich die Warlords
und begüterten Schattenmänner im Ausland, welche die Kaperfahrten finanzieren."
Auszug aus: Kreye, Adrian (2009): Piraten vor Somalia. In: Süddeutsche Zeitung vom 11. Oktober 2009.
Vollständiger Artikel unter: http://www.sueddeutsche.de/politik/292/467862/text/print.html
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 37
Lesetext:
Firmen mit Sitz in der Schweiz profitieren von den "günstigen" Giftmüll-Entsorgungs-Möglichkeiten
Wenn Omar Abdulle Hayle über das Meer vor Somalia spricht, dann spricht er nicht über Piraten oder Marineschiffe. Der ehemalige Fischer spricht über die somalischen Fischgründe: "Die waren einst die reichsten der ganzen Region." Doch 1991 stürzten Rebellen den Diktator Siad Barre, der Staat brach zusammen
und damit auch die Küstenwache. "Und dann kamen die Fischtrawler aus Asien und Europa, immer mehr
und immer mehr, um unsere Gewässer leer zu fischen", sagt Hayle. Viele kommerziell gefragte Fische gibt
es vor Somalia, allen voran den kostbaren Gelbflossen-Thunfisch. Weil sie keine Regierung mehr hatten,
wandten die Fischer sich in ihrer Not an die UN. Deren Experten stellten in einer Untersuchung fest, dass
allein 2005 mehr als 700 Fischerboote illegal vor Somalia im Einsatz waren. Den wirtschaftlichen Schaden
schätzten sie auf gut 250 Millionen Euro pro Jahr. "Ökonomischen Terrorismus" nennt das Hayle. Lokale
Fischer berichteten, wie die ausländischen Fangflotten ihre Boote rammten oder ihre Netze zerstörten.
Doch niemand half. "Keiner hat protestiert, als die somalischen Gewässer leer gefischt wurden", sagt Hayle. "Da haben die Fischer sich bewaffnet und gewehrt." So wie Hayle beschreiben viele Somalis die Geburtsstunde der Piraterie vor Somalia. Und die Geschichte der Fischer, die von den übermächtigen westlichen Fangflotten zu einem Robin-Hood-Dasein auf dem Meer gezwungen wurden, ist zweifellos wahr.
Doch wie alles in Somalia hat sie eine Kehrseite: Die der Warlords, der mächtigen Politiker, Geschäftsleute und Clanführer mit Privatarmeen, die ab 1991 bis zur kurzzeitigen Machtübernahme der Islamisten 2006
Somalia unter sich aufgeteilt hatten und seit dem Sturz der Islamisten durch Äthiopien Ende 2006 inzwischen wieder fast alle Geschäfte kontrollieren.
Warlords liessen sich schon in den 90er Jahren von Kapitänen bezahlen. Dieselben Warlords waren es,
die nach dem Schwinden der Fischvorkommen und dem steigenden Unmut die neuen Piratentruppen ausrüsteten - beispielsweise die 200 Mann starken Somali Marines. Ihr Ziel war es nicht etwa, die illegalen
ausländischen Fischer zu vertreiben, sondern von ihnen Schutzgelder zu erpressen. Und das, sagt Andrew Mwangura von Kenias Seafarers Association, gilt heute noch. "Die Einnahmen aus der illegalen Fischerei sind ein wichtiges Standbein der Warlords, sie haben die Piraterie im grossen Stil und die derzeitige Schutzgelderpressung erst möglich gemacht." Wenn es um die Piraterie vor Somalia geht, besitzt der
Kenianer Mwangura eine Schlüsselposition. Meist weiss er als Erster, wenn ein neues Schiff gekidnappt
wird, oder ein anderes befreit wurde. Journalisten steht er Tag und Nacht am Telefon für Fragen zur Verfügung. Doch woher er sein Wissen hat, verrät er nicht, auch über die sonstige Arbeit der Seafarers’ Association schweigt er sich aus. Skrupel kennen die Fischer offenbar genauso wenig wie ihre Hintermänner,
die auch noch mit anderen illegalen Geschäften Geld machen, so Mwangura. "Das gleiche System gilt bis
heute nicht nur für die illegale Fischerei, sondern auch für die illegale Verklappung von Giftmüll."
Dafür, dass Geschäftsleute im Meer und an der Küste Somalias seit Anfang der 90er Jahre Abfälle abladen, für deren Entsorgung in Europa viel Geld gezahlt werden müsste, gab es 2005 erstmals zweifelsfreie
Beweise. Bis dahin hatte es viele Gerüchte gegeben, doch als der Tsunami im Indischen Ozean Ende
2004 auch Somalias Küste aufwühlte, lagen auf einmal rostige Fässer an den Stränden. In Benadir bei
Mogadischu und in Hobyo 500 Kilometer nördlich klagten Bewohner über Hautkrankheiten, Atemwegsbe-
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 38
schwerden und schwere Blutungen im Mund- und Unterleibsbereich. Fotos wurden herumgereicht. Manche Fischer, die die Behälter aufbrachen, waren mit eitrigen Geschwüren übersät, andere erblindeten.
Illegale Giftmüllverklappung
"Ich bin überzeugt, dass auch heute noch Abfälle vor Somalia verklappt werden", sagt der UNSonderbeauftragte für Somalia, Ahmedou Ould Abdallah. "Darunter sind chemische Abfälle und mit ziemlicher Wahrscheinlichkeit auch nukleare Materialien." Mit grosser Sicherheit stammen die hochgiftigen Abfälle aus Europa, exportiert über italienische und schweizerische Scheinfirmen zu sagenhaft billigen Preisen. Von einer "Mafia" spricht der ehemalige Direktor des UN-Umweltprogramms, Mustafa Tolba. Eine
italienische Fernsehjournalistin, die der Geschichte vor einigen Jahren nachgehen wollte, wurde in Somalia gemeinsam mit ihrem Kameramann ermordet. Seither versucht niemand mehr, der Sache auf den
Grund zu gehen. "Es gibt in Somalia sehr wenig Menschen mit Moral", sagt Ould Abdallah. Dass internationale Marinepräsenz vor Somalia die illegalen Aktivitäten eindämmen wird, glaubt niemand. Im Gegenteil:
Als somalische Piraten den spanischen Trawler "Playa de Bakio" entführten, legte die spanische Regierung in weniger als einer Woche mehr als 750’000 Euro Lösegeld auf den Tisch. Das Thunfisch-Fangboot
wurde laut Mwangura auf frischer Tat gekapert, während es in somalischen Gewässern nach GelbflossenThunfischen suchte. Heute müssten wohl EU-Soldaten seine Kaperung verhindern."
Engelhardt, Marc (2008): Vom Selbstschutz zur Erpressung. In: Die Tageszeitung vom 18. Dezember 2008, Berlin.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 39
Grafiken zum Tsunami 2004
Vom Tsunami betroffene Staaten; Quelle: http://www.chaitanyaconsult.in/chaitanya/guide/tsunamimap.gif
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 40
Die Geschwindigkeit einer Tsunamiwelle im tiefen Ozean beträgt rund 800 km/h, das entspricht rund
220 m pro Sekunde. Auf offener See war kein aussergewöhnlicher Wellengang bemerkt worden. Das hat
mit der Tiefseesteilküste vor Japan zu tun: Die Riesenwellen türmen sich erst kurz vor dem Ufer auf,
schlagen über die Hafenmauern und zerstören alles, was sich in ihrer Bahn befindet.
Quelle: GeoFoschungsZentrum, Potsdam (2008): Broschüre GITEWS, S. 7
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 41
Bild 1: Das Seebeben erschüttert um 02.00 Uhr
Bild 2: Die Wasserwelle hat um 3.45 Sri Lanka
die Insel Sumatra.
erreicht.
Bild 3: Die Wasserwelle hat um 4.45 Uhr Indien
Bild 4: Die Wasserwelle hat sieben Stunden nach
erreicht.
dem Beben, um 9.00 Uhr, Somalia erreicht.
Quelle: http://h1015346.serverkompetenz.net/, 8.2.2010
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 42
Zusatzmaterial:
Die Zahl 9,2 auf der Richterskala muss korrekt verstanden werden. Dafür ist es wichtig zu wissen, dass
Stärke neun nicht nur 9=3x3, also dreimal, oder 9=6+3 also sechsmal so stark wie drei bedeutet. Vielmehr
ist Stärke neun 30 x 30 x 30 x 30 x 30 x 30 mal stärker als Stärke drei, also 729'000’000-mal so stark.
Der Tsunami bewegte mehr als 30 Kubikkilometer Wasser. Dessen Ausläufer sind bis zu den Küsten der
Arktis, der Antarktis sowie im Osten und Westen Amerikas gemessen worden und sogar in Europa, mehr
als 10'000 km entfernt, konnten Wasserbewegungen von anderthalb Zentimetern gemessen werden.
Die Auswirkungen des Tsunami waren enorm. Über 230’000 Tote und über eine Million Obdachlose waren
die Folge.
Einfaches Experiment zum Tsunami:
http://www.schulphysik.de/tsunami.html
Aktuelle Tsunami-Warnungen der letzten 5 Tage:
http://www.prh.noaa.gov/ptwc/
Auftreffen der Tsunami-Welle auf die Küste Thailands. / Foto von David Rydevik, veröffentlicht als Creative Commons
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 43
Erdbeben II
Aufgaben für die Schülerinnen und Schüler:
a. Am 26. Dezember 2004 erschütterte ein Seebeben der Stärke 9,2 auf der Richterskala im Indischen
Ozean den Meeresboden vor der indonesischen Küste Sumatra. Der Meeresboden riss 150 km vor der
Küste auf einer Länge von rund 1200 km auf. Es handelte sich um das zweitstärkste je gemessene
Erdbeben.
Klären Sie mit Hilfe der Ausstellung, was genau passiert ist. Beschreiben Sie auch die Bilder und Grafiken genau.
b. Tilly Smith aus Grossbritannien ist 1994 geboren. 2004 war sie mit ihren Eltern am Maikhao-Strand in
Phuket/Thailand. Ein paar Wochen zuvor hatte sie in der Schule eine schriftliche Arbeit angefertigt.
Nun beobachtete sie im Urlaub in Richtung Meer und wusste sofort, was sie zu tun hatte: Sie warnte
so viele Menschen um sich herum wie sie konnte und rannte mit Ihnen so schnell es ging in höher gelegene Gebiete, weg vom Strand. So rettete sie viele Menschenleben. An diesem Strandabschnitt gab
es durch den eintreffenden Tsunami keine Toten.
Rekonstruieren Sie die schriftliche Arbeit, die Telly Smith geschrieben hatte und beschreiben Sie, was
sie sah, als sie Richtung Meer schaute und sicher war, dass sie vor einem Tsunami warnen musste.
Verwenden Sie dafür auch die Photos.
c.
Warum kann man Erd- und auch Seebeben nicht voraussagen, Tsunamis aber schon? Erarbeiten Sie
eine Antwort anhand der Ausstellung und beantworten Sie die Fragen, welche Wellen sich schnellerbewegen.
Diskutieren Sie zudem, warum das Konzept für ein Frühwarnsystem im Indischen Ozean erst 2005 erarbeitet wurde. Was wäre anders gewesen, wenn das Frühwarnsystem bereits Ende 2004 funktioniert
hätte?
Bezüge zur Ausstellung „focusTerra“

Aufbau der Erde

Plattentektonik

Erdbeben bzw. Seebeben

Erdbebensimulator
Materialien

Schreibzeug, Unterlage
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 44
Informationen für Lehrerinnen und Lehrer
Es mag auf den ersten Blick verwundern, dass das didaktische Konzept und Material, das die PHZH für
die Ausstellung focusTerra bezüglich Erdbeben erstellt hat, die Thematik Erdbeben über den speziellen
Inhalt Tsunamis aufgreift. Wir haben uns dafür entschieden, da die Darstellung der Hintergründe und Entstehung von Erdbeben sowie das Anführen von lokalen Beispielen (Visp) in der Ausstellung ausführlich
und abschliessend erfolgt. Der Alterststufe gemäss wählten wir mithin eine Didaktisierung aus, die einen
Transfer erforderlich macht, um die Aufgaben zu bewältigen.
Besonders hinweisen möchten wir auf die Vorhersagemöglichkeit des Frühwarnsystems im Indischen
Ozean. Wichtig daran ist, dass es nicht einfach ist, die Bevölkerung zu warnen, vor allem wenn Kenntnisse
über Naturgewalten fehlen. Die Aufklärung und rechtzeitige Warnung hätte viele Menschen retten können.
Lösungshinweise:
 Tsunamis können deshalb vorhergesagt werden, weil sie auf das Erstereignis, das Erd, bzw.
Seebeben, folgen. Sie sind eine Auswirkung des Seebebens und nicht das Primärereignis.
Kompetenzen:
 Fachwissen
 Methoden
 Beurteilung
 Kommunikation
 Handlung
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 45
Arbeitsmaterialien
Beim Beben wurde der Boden des Meeres mancherorts um einige Meter angehoben, andernorts gesenkt.
Diese ruckartige Bewegung versetzte den Ozean in heftige Schwingungen. Die entlang des Bruches entstandenen Wellen bereiteten sich nach allen Seiten hin aus und liefen auf die umliegenden Küsten mit bis
zu 800 km/h zu.
Quelle: Deutsches GeoFoschungsZentrum Potsdam (2008): Broschüre GITEWS, S. 8
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 46
Das Wasser ist am Ufer zurückgewichen, Boote liegen brach. Im Hintergrund sieht man die Tsunamiwelle,
die auf das Ufer zukommt.
Zusatzaufgabe: Diskutieren Sie, ob Tilly Smith den Tsunami erst jetzt oder bereits zu einem früheren Zeitpunkt erkannt hatte.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 47
Die Insel Sumatra, sechs Wochen nach dem Tsunami vom 26.12.2004
Quelle: Wikipedia
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 48
Endlagerung radioaktiver Abfälle
Aufgaben für die Schüler-/innen:
a) Sie sind ein vorsichtiger Mensch und möchten ganz sicher sein, dass Ihr neuer Wohnort (oder ein Ferienziel) in der Schweiz geologisch betrachtet „unspektakulär“ ist. Suchen Sie deshalb drei Orte aus,
die kaum bis nicht erdbebengefährdet sind. Begründen Sie die Wahl Ihrer Orte und erklären Sie, wie
Sie vorgegangen sind.
Die Informationen zur Aufgabe finden Sie in der Ausstellung in den Bereichen „Aufbau der Erde“, „Plattentektonik“, „Geologie der Schweiz“ und an der Medienstation „Nutzung des Untergrundes“.
b) Überprüfen Sie nun, welche Charakteristika das Gestein an den drei von Ihnen gefundenen Orten hat
und ob der Untergrund stabil ist. Folgende Kriterien müssen dabei berücksichtigt werden:

Das Gestein darf nicht porös, nicht wasserdurchlässig und nicht rutschgefährdet sein.

Es dürfen keine tektonischen Verschiebungen oder Brüche vorkommen.

Das Gestein darf nicht stark deformiert worden sein.

Tiefe Rinnen, die während der Eiszeit entstanden sind, sind zu heikel, weil dort zu viel Wasser lagern könnte.
Beschreiben Sie den Gesteinsuntergrund ihrer drei Orte.
Sollten diese den genannten Anforderungen nicht entsprechen, müssen Sie neue Orte suchen.
Möglicherweise brauchen Sie für diese Aufgabe auch die geologische Karte der Schweiz (siehe Arbeitsmaterialien) und eine Schulkarte der Schweiz.
c) Möglicherweise liegen an einem der drei Orte Bedingungen vor, welche es erlauben würden, dort radioaktive Abfälle endzulagern. Vergleichen Sie Ihre Auswahl mit der Karte der NAGRA (Nationale Genossenschaft für die Lagerung radioaktiver Abfälle) und ihrem Auswahlverfahren (siehe Arbeitsmaterialien). Beschaffen Sie sich weitere Informationen zur Endlagerung radioaktiver Abfälle in der Ausstellung (Medienstation „Nutzung des Untergrundes“), u.a. die Information, welche Eigenschaften radioaktive Abfälle haben.

Halten Sie die Informationen stichwortartig fest.

Beurteilen Sie die Auswahl Ihrer Orte im Vergleich zu dem Verfahren der NAGRA, indem Sie auflisten, was Sie bei Ihrer Recherche gut und richtig gemacht haben und wo Sie falsch lagen.
d) Sie haben nun einen Bereich kennengelernt, in dem radioaktive Abfälle für die Energiebeschaffung
anfallen. Überlegen Sie, ob sie noch andere Bereiche kennen, bei denen radioaktive Materialen eine
Rolle spielen.
e) Die Schweiz muss eine Lösung finden, ihre heute bereits vorhandenen radioaktiven Abfälle zu entsorgen. Erstellen Sie eine Übersicht der damit verbundenen Risiken und den ergriffenen Massnahmen,
um diese zu reduzieren. Diskutieren Sie in diesem Zusammenhang, ob radioaktive Abfälle in der Zukunft vermieden werden könnten oder sollten und wie dies möglich wäre. Besprechen Sie auch, welche Konsequenzen dies auf Politik, Wirtschaft und Alltag hätte.
Erstellen Sie eine Tabelle (siehe Arbeitsmaterialien) für die Ergebnisse.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 49
f)
Präsentieren Sie Ihre Ergebnisse in Form eines Rollenspiels, bei dem Sie die Argumente für und gegen die Lagerung radioaktiver Abfälle diskutieren. Beziehen Sie dabei auch die Orte (Aufgaben a) und
b)) und die Anforderungen an die Orte mit ein. Diskutieren Sie mit der Klasse, wie Sie bei einer Volksabstimmung entscheiden würden – wenn Sie an einem dieser Orte leben bzw. wenn Sie dort nicht leben würden.
g) Fortführung im Klassenzimmer (Vorschläge)

Exkursion zur NAGRA bzw. in eines der Felslabore Grimsel oder Mont Terri

Zeichnen von geologischen Profilen von verschiedenen Standorten

Thema Tunnelbau (Neat, Gotthard, Üetliberg) –> geologische Beurteilung, Recherche von Problemen, Beurteilung von Kosten und Nutzen

Weitere Unterrichtsmaterialien im Lehrerordner der NAGRA (www.nagra.ch)
Bezüge zur Ausstellung „focusTerra“

Geologie der Schweiz

Plattentektonik, Erdbeben, Seismik

Endlagerung

Rohstoffe und Energie
Materialien

Schreibzeug, Unterlage, Farbstifte

Schulkarte der Schweiz
Informationen für Lehrerinnen und Lehrer
Das brisante Thema der Lagerung radioaktiver Abfälle wird in zwei wichtige Kontexte gestellt. Einerseits
geht es um die Frage der geologischen Beschaffenheit und im Zuge von Erdbeben und anderen Störungszonen auch um geologisch „unspektakuläre“ Gebiete. Es stellt sich die Frage nach dem „ruhigen Raum“,
der dann zur Lagerung hochgefährlicher Materialien dienen soll.
Andererseits muss und soll die Frage nach der Lagerung dieser Abfälle diskutiert werden. Mit dem Versuch, diese Diskussion an einen konkreten Raum, der unter besonderen Gesichtspunkten ausgewählt
wurde, anzubinden, wird ein empathisches Vorwissen initiiert, das die Diskussion authentischer werden
lässt. Erst durch den Einstieg an einen Raum, den man sich aus bestimmten Gründen z.B. als Ferienziel
ausgesucht hat, wird die Lagerung radioaktiver Abfälle auch zu einem „persönlichen“ Problem, einem Anliegen, das mit mir zu tun hat. Diese Kombination, bzw. diese persönliche Anbindung ist für die kritische
Beleuchtung des Anliegens wesentlich, denn sonst fehlt der Bezug zum eigenen Leben. Erst so kann die
Frage beantwortet werden, ob man selbst in der Nähe oder über gelagertem radioaktivem Material leben
möchte.
Gleichermassen müssen sich die Schülerinnen und Schüler auch mit den geologischen Beschaffenheiten
des Untergrundes auseinandersetzen. Dies vollständig lösen zu können, wird in der Ausstellung allein
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 50
kaum möglich sein, dennoch bieten die Grundlagen erste Anhaltspunkte und visualisieren z.B. verschiedene Gesteinsformationen. Zudem sollten die Lernenden in der Lage sein, die geologische Karte dahingehend zu interpretieren und die Ergebnisse aus den Beobachtungen zu übertragen.
Die Beantwortung der Fragen steht im Spannungsfeld zwischen „wir produzieren radioaktive Abfälle und
müssen sie irgendwo sicher lagern“, „wo und wie lagern wir die Abfälle heute“, und „niemand möchte diese
in seiner Nähe haben“. Deshalb schliesst an die Fragestellungen auch die Thematik der alternativen Energien und der zukünftigen Energieversorgung, welche hier aufgegriffen werden soll. In diesem Zusammenhang kann/soll auch eine Initiative „Abschaltung der Atomkraftwerke diskutiert werden.
Lösungshinweise:
Es müsste den Schülerinnen und Schülern eigentlich leicht fallen, als Regionen mit wenig seismischer
Aktivität das Mittelland der Schweiz auszumachen. Dies wird sowohl aus der geologischen Karte deutlich,
da es als grosse, wenig komplexe Fläche auffällt. Auch im Relief können Informationen dazu gewonnen
werden, denn dort wird sichtbar, dass der Untergrund kaum verzahnt, hochgestellt oder verschoben ist.
Die konkrete Fixierung der Regionen durch die NAGRA erfolgt durch Hintergrundwissen, das sich die
Schülerinnen und Schüler nicht ohne weiteres erschliessen, aber durch die Informationen verständlich
wird.
Kompetenzen:

Fachwissen

Methoden

Orientierung

Beurteilung

Kommunikation

Handlung
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 51
Arbeitsmaterialien „Endlagerung radioaktiver Abfälle“
a) Geologische Karte der Schweiz
Quelle: Labhart, Toni (2003): Geologie der Schweiz. Ott Verlag
Sedimente
<- Ophiolith
Kristallin
Fachgruppe Geographie, PHZH – focusTerra
Mesozoische Sedimente im Jura und im Südtessin
(in den Profilen auch autochthon) der massive und des Mittellandes
<- Faltenjura
Helvetische Decken
Ostalpine Decken
Penninische
Decken
Tertiär
(Molasse-) Becken
<- Nagelfluh
Subalpine Molasse
Sedimente
Vulkanische Gesteine
Grössere Granitkörper
Kristallin
Kristallines Grundgebirge
H. Moser, S. Padberg, M. Reuschenbach
Seite 52
b) Auswahlverfahren der NAGRA und geeignete Standorte in der Schweiz
Um geeignete Standorte für die Lagerung radioaktiver Abfälle zu finden, werden der Tafeljura und die Molasse, die Alpen und der Faltenjura mit folgenden Fragen geprüft:

Welche Teile der Schweiz kommen aufgrund der geologischen Beschaffenheit in Frage?

Welche Gesteine in diesen Grossräumen erfüllen die Sicherheitsanforderungen an ein Lagergestein?

Wo liegt das Lagergestein in geeigneter Tiefe?

Wo ist das Lagergestein geologisch ruhig gelagert, in genügender Mächtigkeit und Qualität vorhanden und deshalb für ein Tiefenlager geeignet?
Die Karte zeigt, welche Gebiete als geeignet befunden wurden.
Quelle: www.nagra.ch
Aufträge:

Beurteilen Sie die Regionen im Hinblick auf Gemeinsamkeiten aus geologischer Sicht (d.h. in Bezug auf Tektonik, Lage, Gestein, ...).

Diskutieren Sie, wie man den Untergrund untersuchen kann, um zu zuverlässigen Ergebnissen zu
kommen.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 53
c) Die Endlagerung radioaktiver Abfälle in der Schweiz: pro und contra
Argumente für die Endlagerung
Argumente gegen die Endlagerung
Vermeidung radioaktiver Abfälle
Konsequenzen für Alltag, Wirtschaft und Politik
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 54
Alpenentstehung, Geologie Schweiz
Aufgaben für die Schüler-/innen:
a) Tiefenprofil der Alpen (Bodensee – Bergamo):
Das Tiefenprofil der Alpen zeigt das Resultat der Verkeilung von Gesteinseinheiten zweier ursprünglich getrennter Kontinentalplatten. Gewinnen Sie einen Überblick über die verschiedenen Decken und
Massive innerhalb der Alpen.

Orientieren Sie sich im Alpenprofil (evtl. mit Hilfe einer Landkarte der Schweiz), indem Sie die folgenden Ortschaften richtig lokalisieren: Frauenfeld, Glarus, Disentis, Mesocco, Bergamo. Suchen
Sie nach weiteren Ihnen bekannten Ortschaften oder Regionen.

Beschreiben Sie an vier ausgewählten Orten das Profil so präzise wie möglich. Halten Sie die Unterschiede an den Orten fest. Suchen Sie die auf dem Informationsblatt „Geologie Schweiz“ erklärten Regionen im Profil.

Beschreiben und erklären Sie aufgrund des Profils den Bau der Alpen.

Untersuchen Sie mit Hilfe von Lehrbüchern, ob Sie die Phasen der Alpenfaltung im Profil erkennen
können. Notieren Sie Ihre Feststellungen auf dem Arbeitsblatt.
b) Die Entstehung von Gebirgen:
Gewinnen Sie einen ersten Überblick zur Entstehung der Alpen und entdecken Sie wichtige Gesetzmässigkeiten. Experimentieren Sie dazu mit den Modellen „Isostasie“ und lesen Sie die Tafel „Die Entstehung von Gebirgen“. Sie behandelt exemplarisch die Entstehung der Alpen zwischen St. Gallen und
Bergamo.

Erklären Sie anhand des „Tiefenprofils der Alpen“ in eigenen Worten, weshalb im Bereich der Alpen Hebungsprozesse stattfinden, im Mittelland aber nicht.

Die Alpen heben sich heute um bis zu 1 mm pro Jahr. Dasselbe dürfte auch für die letzten 20 Millionen Jahre gegolten haben. Demnach müssten die Alpen gegen 20 bis 30 km hoch sein. Suchen
Sie nach einer Begründung, weshalb der höchste Berg der Alpen, der Mont Blanc, nur 4808 m, also knapp 5 km hoch ist.

Formulieren Sie eine Prognose für das Aussehen des Tiefenprofils und der Oberfläche zwischen
dem Bodensee und Bergamo in 20 bis 30 Millionen Jahren, wenn es nicht zu einer erneuten Gebirgsbildung aufgrund horizontaler wirkender Kräfte kommt.
c) Lernen Sie verschiedene Gesteinsbeispiele kennen. Untersuchen Sie die Handstücke in der Gesteinskiste mit Hilfe der Textkärtchen und ordnen Sie die Kärtchen den Gesteinen zu.
Halten Sie verschiedene Gesteinsstücke dort an das Profil, wo Sie die passenden Gesteinseinheiten
vermuten. Bitte berühren Sie das Profil nicht! Überprüfen Sie Ihre Zuweisung mit Hilfe der geologischen Karte (siehe Auftrag Endlagerung) oder im Gespräch mit den Fachexpertinnen und Experten.
d) Austausch mit den anderen Gruppen: Präsentieren Sie Ihren gewonnenen Überblick zur Entstehung
der Alpen als Pantomime. Geben Sie anschliessend Ihren Mitschülerinnen und Mitschülern Zeit, das
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 55
von Ihnen bebilderte „Tiefenprofil der Alpen“ zu studieren. Machen Sie diese auf Ihre Erkenntnisse
aufmerksam.
e) Fortführung im Klassenzimmer (Vorschläge)

Prozess der Bildung der Alpen vertiefen; Entstehungsgeschichte repetieren

Prozess der Entstehung von Gebirgen auf andere Gebirgsregionen (z.B. Himalaya und Anden)
anwenden: Gemeinsamkeiten und Unterschiede herausarbeiten

Als Klasse in Gemeinschaftsarbeit eine geologische Karte der Schweiz mit Fotos und Texten veranschaulichen

Gesteinskreislauf erarbeiten

Gesteine bestimmen
Bezüge zur Ausstellung „focusTerra“

Omniglobe

Aufbau der Erde

Plattentektonik

Erdgeschichte

Mineralien

Gesteine im Eingangsbereich
Materialien

Schreibzeug, Unterlage, Farbstifte

Fotoapparat / Handy

Schweizer Karte

Lehrmittel, welche die Alpenfaltung erklären (z.B. Schweiz (Lehrmittelverlag Zürich))

Gesteinskiste von focusTerra mit Lösungshinweisen (Nummern und Liste)
Informationen für Lehrerinnen und Lehrer
Um eine erste Vorstellung vom Bau der Alpen zu bekommen, setzen sich die Schülerinnen und Schüler
mit dem komplexen „Tiefenprofil der Alpen“ auseinander. Sie lokalisieren zuerst die geologischen Einheiten, indem sie einige grössere Ortschaften und ihnen bekannte Regionen suchen. Besondere Regionen
werden aufgrund von Beschreibungen im Profil gesucht.
Danach verschaffen sich die Schülerinnen und Schüler durch das Experimentieren mit dem Modell „Isostasie“ und dem Lesen der Tafeln „Die Entstehung von Gebirgen“ einen ersten theoretischen Überblick zur
Entstehung der Alpen.
Ziel ist es die isostatische Hebung der stark verdickten Kruste im Bereich der Alpen zu verstehen. Anschliessend kann auf deren Erosion und anschliessende Ablagerung im Mittelland (Molasse) und in der
Poebene geschlossen werden.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 56
Die Zuordnung von Gesteinsbeispielen zu Texten und deren Verortung im Profil soll noch einmal Unterschiede verdeutlichen. Zu beachten ist, dass die Kiste mit den Gesteinsbeispielen bei den Koordinatorinnen und Koordinatoren der Ausstellung anzufordern ist und dass die Gesteine zum Schutz des Profils
nicht darauf abgelegt, sondern nur hingehalten werden dürfen.
Diese schrittweise Auseinandersetzung mit Ausschnitten mit dem Alpenprofil bietet den Schülerinnen und
Schülern einerseits eine Veranschaulichung, andererseits ermöglicht sie selbstständig weitere Gesetzmässigkeiten zum Bau der Alpen zu erkennen.
Dies können sein:

Für das Gebiet nördlich der Insubrischen Linie gilt: Je weiter südlich ursprünglich die Einheiten lagen, desto höher im Deckenbau liegen bzw. lagen sie innerhalb der Alpen. Dies gilt für das Gebiet
nördlich der Insubrischen Linie.

Die Schichtdicke der Molasse nimmt mit zunehmender Entfernung vom Alpenrand ab. Damit verbunden ist auch eine Abnahme der Korngrösse.

Der Metamorphosegrad in Richtung Süden nimmt bis zur Insubrischen Linie zu.
Die Darstellung der Entstehung der Alpen als Gruppenpantomime macht diesen Prozess durch die eigene
Bewegung vierdimensional (inkl. Zeit) erlebbar.
Kompetenzen

Fachwissen

Methoden

Orientierung

Beurteilung

Kommunikation
Wichtig!
Gesteinskiste mit Handstücken vor der Bearbeitung bei den Koordinatorinnen und Koordinatoren von
focusTerra anfordern.
Handstücke: Mergel, Sandstein, Nagelfluh, Kalkstein, Verrucano, Flysch, Granit, Granodiorit, Marmor,
Gneis
Quellen
Labhart, Toni (2003): Geologie der Schweiz. Ott Verlag
Pfiffner, Adrian (2009): Geologie der Alpen. Haupt UTB
Weissert, Helmut, Stössel, Iwan (2009): Der Ozean im Gebirge. 180 Seiten, vdf Hochschulverlag.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 57
Arbeitsmaterialien „Alpenentstehung“
a) Arbeitsblatt: Beschreibung des geologischen Profils an vier Beispielen
Ort 1
Beschreibung
Ort 2
Beschreibung
Ort 3
Beschreibung
Ort 4
Beschreibung
Unterschiede:
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 58
b) Informationsblatt: Geologie Schweiz
Glarner
Die Glarner Hauptüberschiebung gehört zum UNESCO-Weltnaturerbe „Tekto-
Hauptüberschiebung
nikarena Sardona“. Ein viel älteres Gestein, der permische Verrucano (rund
280 Millionen Jahre alt), liegt sich gut sichtbar über den viel jüngeren tertiären
Flyschsedimenten (rund 35 Millionen Jahre alt).
Bereits im 17. Jahrhundert wurde ein geologisches Gesetz formuliert, das besagt, dass in einer sedimentären Schichtenfolge die älteren Schichten immer
unter den jüngeren liegen. 1809 entdeckte Hans-Conrad Escher das umgekehrte Phänomen in den Glarner Alpen. Erst rund 70 Jahre später wurde die Glarner Hauptüberschiebung durch den Franzosen Marcel Bertrand erstmals als
eine einzige grosse Überschiebung gedeutet. Damit war der Weg frei für das
Erkennen des Deckenbaus in weiten Teilen der Alpen.
Subalpine Molasse
Durch einen letzten Vorschub der helvetischen Decken wurden die Molas-
z.B. Speer, Rigi
seablagerungen am Alpenrand von Süden nach Norden um 15 bis 25 km überfahren. Vor der Überschiebungsfront wurden die davor und darunter liegenden
Molasseschichten zusammen gepresst und alpeneinwärts schräg gestellt. Durch
Erosion entstanden langgestreckte und parallel zum Alpenrand verlaufende
Höhenzüge.
Helvetische Decken
Die helvetischen Decken wurden über viele Zehner Kilometer nordwärts ver-
z.B. Churfirsten
schoben. Schichtung und Faltung sind in diesem Bereich besonders klar erkennbar. Nur südliche Teile der helvetischen Decken wurden durch die (heute
weitgehend erodierte) Überlagerung durch penninische Sedimentdecken
schwach metamorph überprägt.
Zentralmassive
Diese Massive sind Stücke des europäischen Grundgebirges. Sie bestehen aus
z.B. Aaremassiv, Ta-
verschiedensten metamorphen und magmatischen Gesteinen, meist Graniten.
vetscher-
Sie sind das Resultat von weit zurück liegenden Gebirgsbildungen. Da sich die
Zwischenmassiv und
Gesteine der „Massive“ während der Alpenbildung unter den heute abgetrage-
Gotthardmassiv
nen helvetischen, penninischen und ostalpinen Decken befanden, wurden sie im
Laufe der Alpenbildung noch einmal schwach bis mittelstark metamorph überprägt.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 59
Nordtessin
Die Gesteine des Nordtessins wurden während der Alpenbildung mittelstark bis
stark metamorph überprägt. Gneise und untergeordnete Marmore sind typische
Gesteine für die Zone nördlich von Bellinzona. Marmor entstand durch die Metamorphose von Karbonatgesteinen (Kalk oder Dolomit). Gneise können sowohl
Umwandlungsprodukte aus magmatischen Gesteinen als auch aus Sedimentgesteinen sein.
Bergeller Intrusion
Zwischen dem Bergell und dem Veltlin drangen vor rund 30 Millionen Jahren
Magmen aus grösserer Tiefe in die darüber liegenden Deckengesteine ein und
kristallisierten unter anderem zum bekannten Bergeller-Granodiorit. Die Wärme
der Magmen führte im umliegenden Gestein zu einer klassischen Kontaktmetamorphose: sehr hohe Temperaturen bei relativ niedrigen Druckverhältnissen.
Insubrische Linie
Während die Gesteine nördlich der insubrischen Linie während der Alpenbildung
mittelstark bis stark metamorph überprägt wurden, fand in den Südalpen keine
metamorphe Überprägung statt. Die Gesteinspakete südlich der Insubrischen
Linie wurden nach Süden geschoben, während Decken nördlich davon in der
Regel nach Norden überschoben wurden.
Südalpine Überschie-
Die Gesteine der südalpinen Überschiebungspakte wurden bei der Alpenbildung
bung
nicht metamorph überprägt. Das Grundgebirge der Südalpen besteht aber sehr
wohl aus metamorphen Gesteinen, die während früherer Gebirgsbildungsphasen umgewandelt wurden. In der Poebene werden die südalpinen Überschiebungspakete von jungen Ablagerungsgesteinen des Po-Beckens überdeckt.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 60
c) Arbeitsblatt: Die Entstehung der Alpen
Stichworte zum Bau der Alpen und der Entstehung aufgrund meiner Beobachtungen:
Vergleich mit der Entstehungsgeschichte der Alpen in Lehrmitteln:
Prozess
Alpenprofil focusTerra
Fachgruppe Geographie, PHZH – focusTerra
Bericht Lehrmittel
H. Moser, S. Padberg, M. Reuschenbach
Seite 61
d) Arbeitsblatt: Kärtchen für die Bestimmung von Gesteinen
Mergel
Sandstein
Sedimentgestein, das zu gleichen Anteilen aus
Sedimentgestein aus mit einem Mineralzement
Ton und Kalk besteht. Es sind verschiedene
verbundenen Sandkörnern. Die Farbe ist in der
Mischformen denkbar. Das Gestein ist feinkörnig,
Regel hell, es kommen aber auch dunkelgrüne,
es kann hell oder dunkel sein. Bei Nässe wird es
rote oder gelborange Sandsteine vor. Die Sand-
leicht schmierig.
partikel sind von blossem Auge erkennbar.
Vorkommen: Ablagerung weit entfernt am Nord-
Vorkommen: Sandsteine wurden vorwiegend im
rand des Molassebeckens
mittleren Teil des Molassebeckens abgelagert.
Nagelfluh
Kalkstein
Nagelfluh besteht aus Geröllen, die durch ein fei-
Sedimentgestein aus Calciumcarbonat mit sehr
nes Material (= Verbundmaterial) miteinander ver-
variabler Erscheinungsform (weiss bis schwarz in
kittet sind. Sind die Gerölle gerundet, spricht man
allen Farben, oft mit weissen Adern durchzogen).
von Konglomerat, sind sie eckig ist es eine Brek-
Kalkstein reagiert mit verdünnter Salzsäure, so
zie. Nagelfluh bezeichnet ein Konglomerat.
dass er damit einwandfrei erkannt werden kann.
Vorkommen: Ablagerung in Alpennähe (kurze
Vorkommen: Kalksteine wurden in den Schelfge-
Transportdistanz); Herkunft aus höheren Bauein-
bieten sowohl am Nordrand als auch am Südrand
heiten der Alpen, weshalb sie Informationen über
und auf dazwischen liegenden Schwellen der
deren Zusammensetzung zur Zeit der Abtragung
ehemaligen Tethys („Ur-Mittelmeer“) abgelagert.
enthalten
Verrucano
Flysch
Alte Konglomerate und Sandsteine, hervorgegan-
Bezeichnung für ein Ablagerungsgestein, das sich
gen aus der Abtragung eines früheren Gebirges;
durch Schuttströme in tiefen Meeresbecken bilde-
rötliche oder selten grünliche Farbe.
te. Flysch ist – wenn er nass wird – sehr rutschig,
Vorkommen: Die ältesten Gesteine über der Glar-
weshalb sich Gesteinspakete an Flyschhängen
ner Überschiebung, aber auch Sedimentfüllungen
zuweilen langsam bewegen. (Flysch kommt von
von Trögen im Untergrund der Nordschweiz
Fliessen, es ist ein Innerschweizer Begriff)
Vorkommen: Unter anderem unterhalb der Verrucano-Schichten in der Region der Glarner Überschiebung (Dachschiefer von Engi)
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 62
Granit
Granodiorit
Magmatisches Gestein, das aus sichtbaren Kristal-
Magmatisches Gestein, das dem Granit ähnlich ist,
len besteht. Von blossem Auge sind Quarz (durch-
sich aber durch die Anteile der Feldspatmineralien
sichtig, glasig), Feldspäte (hell, rosa, weiss) und
von ihm unterscheidet (eher dunkle Farbe); die
Glimmer (dunkle, glitzernde Mineralien).
Körnung ist gut sichtbar, die Mineralien sind nicht
Granite gibt es in vielen Ausprägungen.
gerichtet
Vorkommen: in den zentralen Massiven (Aaremas-
Vorkommen: bei magmatischen Intrusionen z.B.
siv, Gotthardmassiv usw.)
der Bergeller Intrusion zwischen Bergell und Veltlin
Gneis
Marmor
Metamorphes Gestein, das aus Granit oder aus
Marmor ist ein metamorphes Gestein, das aus
Ablagerungsgesteinen entstanden ist. Im Unter-
Karbonatsedimenten entstanden ist. Er ist meist
schied zum Granit sind die blättrigen Mineralien
hell und bisweilen sehr grobkörnig. Besonders in
(Glimmer) eingeregelt, das Gestein weist eine ein-
geschliffenem Zustand sind die Mineralien am
deutige Schieferung und auch eine Bänderung auf.
Glitzern zu erkennen.
Vorkommen: in den kristallinen Decken des Tes-
Vorkommen: in den metamorphen Gebieten nörd-
sins nördlich der Insubrischen Linie und in den
lich der Insubrischen Linie, meist in schmalen Zo-
Grundgebirgen des Aar- und Gotthardmassivs
nen
sowie der Alpen südlich der Insubrischen Linie
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 63
Zürich: einst – heute – zukünftig
Aufgaben für die Schüler-/innen:
a. Lesen Sie die Landschaftsentwicklung von Zürich während der letzten 12 Millionen Jahre anhand der
Modelle. Beim Modell „Heutiges Stadtbild“ wird gefragt, wie das Stadtbild in Zukunft aussehen wird.

Wie könnte sich Zürich entwickeln, wenn im Jahr 28’000 n. Chr. der Zürichsee endgültig verlandet
ist? Formulieren Sie mögliche Chancen und Gefahren. Treffen Sie Massnahmen, um die Chancen
zu ergreifen bzw. den Gefahren zu begegnen.

Welche Auswirkungen auf den Grossraum Zürich hätte ein erneuter Gletschervorstoss? Mit welchen Problemen hätten sich die Bewohner dieses Raumes auseinander zu setzen? Schlagen Sie
mögliche Massnahmen vor.

Machen Sie eine Prognose für das Aussehen der Landschaft rund um Zürich in 20 Millionen Jahren. Stellen Sie diese Prognose bei der anschliessenden Kurzpräsentation (vgl. Punkt f) zur Diskussion. Tauschen Sie die Ergebnisse in den Gruppen aus und vergleichen Sie die Resultate.
b. Die Schotterkörper, welche im Vorfeld von Gletschern entstanden, sind die grossen Grundwasserspeicher des Mittellandes:

Zeichnen Sie ein Profil oder eine Karte Ihrer Vorstellung zum Grundwasservorkommen im Raum
Zürich. Überlegen Sie dazu: Wie wird das Grundwasser im Limmattal gespiesen? Wie gross sind
die Anteile der verschiedenen Einspeisungen? Wovon ist die Grösse dieser Anteile abhängig?

10% des Trinkwassers von Zürich stammt aus dem Grundwasser. Dieses ist durch Industrie- und
Verkehrsunfälle im Raum Zürich stark gefährdet. Im Hardhof hat das Grundwasser Trinkwasserqualität und wird (im Gegensatz zum Seewasser) ohne weitere Aufbereitung ins Trinkwassernetz
eingespiesen. Schlagen Sie Massnahmen vor, welche eine grösstmögliche Reinheit des Grundwassers im Bereich des Hardhofs garantieren.
c.
Skizzieren Sie ein mögliches Vorgehen, um Ihre Hypothesen mittels Modellversuchen zu überprüfen.
Sie haben folgende Materialien zur Verfügung:

Plexiglaswanne

Sand, Kies, Ton

wasserdurchlässige Röhrchen (mit Löchern): Diese können Sie als Brunnen zum Abpumpen von
Wasser benützen.

Farbstoff, um das Wasser einzufärben
d. Lesen Sie die Arbeitsmaterialien a) und b) durch und modifizieren oder erweitern Sie eventuell Ihre
geplanten Versuchsanordnungen.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 64
e. Bis 2013 wird die Durchmesserlinie Zürich-Altstetten – Zürich HB – Zürich-Oerlikon gebaut:
Machen Sie Vorschläge für das Bauen von Tunneln im Bereich des „lockeren“, grundwassergesättigten Schotters.
Informieren Sie sich nachträglich im Internet.
f.
Präsentieren Sie Ihre Erkenntnisse, Hypothesen und geplanten Versuchsanordnungen während 5
Minuten der Klasse.
g. Fortführung im Klassenzimmer (Vorschläge)

Hypothesen mittels eigener Versuche überprüfen

Wasserversorgung der Schweiz heute und in Zukunft erarbeiten

Tipp zu den Grundwasservorkommen und deren -gefährdung innerhalb des Kantons Zürich: vgl. www.grundwasser.zh.ch -> Grundwasserkarte bzw. Gewässerschutzkarte

Zürich als Verkehrsknotenpunkt: Eigenständiges Informieren zum Bau der Durchmesserlinie Altstetten-Zürich-Oerlikon mit nachfolgender Exkursion der Baustelle.
Bezüge zur Ausstellung „focusTerra“

Omniglobe

Plattentektonik

Erdgeschichte

Quartärgeologie
Materialien

Schreibzeug, Unterlage, Farbstifte

Fotoapparat / Handy
Informationen für Lehrerinnen und Lehrer
Die Schülerinnen und Schüler lernen mittels der vier Modelle die Landschaftsentwicklung von Zürich währende der letzten 12 Millionen Jahre kennen. Die Formulierung von Zukunftsperspektiven ermöglicht eine
Anwendung ihrer gewonnenen Erkenntnisse. Wie entwickelt sich das Klima derzeit weltweit? Herrscht
Konsens? Welche unterschiedlichen Modelle gibt es?
Grosse Teile der Stadt Zürich inkl. wichtiger Verkehrsachsen und Industrieanteile liegen auf Schotter und
damit auf den eigenen Grundwasservorkommen. Die Gefährdung der eigenen Ressourcen macht die
Thematik interessant.
Alltagsvorstellungen zum Grundwasservorkommen und dessen Gefährdung sind sehr unterschiedlich.
Deshalb ist es sinnvoll, diese erst in Form von Hypothesen abzurufen. Danach schlagen die Schülerinnen
und Schüler selbst Versuchsanordnungen zur Überprüfung ihrer Hypothesen vor. Diese Pläne werden
gemeinsam diskutiert und schliesslich im Klassenzimmer umgesetzt. Dieses Vorgehen ist problem- und
handlungsorientiert. Es ermöglicht ein eigenständiges Verfeinern bzw. Korrigieren falscher Vorkenntnisse.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 65
Wer kein eigenes Grundwassermodell herstellen möchte, kann eines unter
http://www.ecovia.ch/bildung/medienpakete/demo-koffer-grundwasser.html bestellen bzw. ausleihen.
Lösungshinweise:
Zukunft: Probleme mit dem Grund- und Trinkwasser; zunehmende Bautätigkeit, Verlust von Grünflächen,
Rutschungen – alternativ dazu: Campingplatz auf dem Delta, Biotop usw.
Gletschervorstoss: Veränderungen im Wasserregime, verändertes Klima, andere Vegetation, reduzierte
oder unmögliche Landwirtschaft, fragliche Ernährungsversorgung, andere Transportwege, aussterben von
Tier- und Pflanzenarten, verändertes Freizeitverhalten, erhöhter Energiebedarf usw.
Grundwasser: Speisung durch Limmat und Zürichsee, vereinzelt auch kleinere Seitenflüsse und versickerndes Regenwasser; Anteile sind abhängig von Niederschlagsverteilung, Temperaturen, Gletscherschmelze, Verbrauch;
Trinkwasser: Zürichsee nimmt den grössten Teil ein (40,6 Mio m3 / 2008), gefolgt von Quellwasser
(7.8 Mio. m3 / 2008) und Grundwasser (5,1 Mio m3 / 2008).
Quelle: http://www.stadt-zuerich.ch/dib/de/index/wasserversorgung/ueber_die_wasserversorgung/zahlen_und_fakten.html
Informationen zur Durchmesserlinie gibt es unter http://infra.sbb.ch/durchmesserlinie und unter
http://www.bgbau.de/d/pages/presse/fach_tief/tbg_ausgaben_2009/bpt1209.pdf.
Kompetenzen:

Fachwissen

Methoden

Orientierung

Beurteilung

Kommunikation
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 66
Arbeitsmaterialien „Zürich: einst – heute - zukünftig“
a) Gletscherablagerungen im Vorfeld eines Gletschers
Vorstoss der Gletscher
Flüsse im Vorfeld von Gletschern sind häufig Zopfmusterflüsse: Sie bestehen aus einer Vielzahl von Flussarmen, die sich talabwärts aufteilen, wieder vereinigen oder kreuzen. Sie zeichnen sich durch eine jahreszeitlich unausgeglichene Wasserführung aus. Zur Zeit der Schneeschmelze ist reichlich Wasser vorhanden.
Sie überfluten praktisch das gesamte Flusstal und führen viel Gesteinsschutt, der vom Gletscher transportiert
wurde, mit. In Abhängigkeit von ihrer Fliesskraft lagern sie Kiese und Sande im Vorfeld des Gletschers sortiert und geschichtet ab.
So entstanden die grossen Schottervorkommen des schweizerischen Mittellandes.
Rückzug der Gletscher
Zog sich durch die Erwärmung ein Gletscher zurück, so entstand vorerst ein langgezogener Stausee, unten
gestaut durch die Endmoränenwälle, oben begrenzt durch das Gletschereis. In Eisnähe wurde Moränenmaterial vermischt mit feinem Seeton abgelagert. Abseits des Eises bildete sich reiner, fein gebänderter Seeton.
Sobald der See aufgefüllt war, wurde über diesen feinen Ablagerungen grober Kies als Flussablagerungen
abgelagert. Diese Rückzugsschotter sind häufig
nicht sehr mächtig, schlecht
sortiert und nicht verkittet.
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 67
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 68
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 69
b) Der Hardhof – das Herz der Zürcher Wasserversorgung
Quelle: http://www.stadt-zuerich.ch/content/dam/stzh/dib/Deutsch/BILDERwasserversorgung/Bilder-pdfab2009/OEFFENTLICHER%20RUNDGANG%20Version%20Internet-Intranet16%2004%2009.pdf
Zürich ist bezüglich Wasserversorgung in einer komfortablen Lage. Mit dem riesigen Wasserspeicher Zürichsee, den umliegenden Quellen und dem Grundwasser ist reichlich Trinkwasser vorhanden. Das Grundwasser wird im Grundwasserfeld Hardhof in Zürich-Altstetten gefördert. Es ist ebenso hochwertig in Bezug auf
seine Qualität wie das See- und Quellwasser. Seit über 70 Jahren fördert die Wasserversorgung Zürich
Trinkwasser aus dem heute 25 Hektaren grossen Grundwasserfeld Hardhof. Eine Schutzzone mit strengen
Nutzungsbeschränkungen und die künstliche Erhöhung des Grundwasserspiegels schützen das Grundwasser vor Verunreinigungen.
Bild 1: Schematische Darstellung der Wassergewinnung am Hardhof Zürich
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 70
Der Weg in die Haushalte:
Aus vier 25 Meter tiefen Horizontalfilterbrunnen fördern je drei Unterwasserpumpen das Trinkwasser ins
Pumpwerk Hardhof. Von hier wird es weiter in die auf verschiedenen Höhen gelegenen Reservoire gepumpt.
Über die Verteilleitungen gelangt das Trinkwasser anschliessend in die Haushalte – und dies alleine durch
die Schwerkraft.
Bild 2: Ansichten einer Wasserpumpe real und im Schema
Zu wenig Grundwasser – eine raffinierte Anreicherung hilft
Um die maximale Fördermenge von 150’000 Kubikmeter pro Tag ohne Absenkung des Grundwasserspiegels aufrecht zu erhalten, wird der Grundwasserstrom dank einer raffinierten Methode angereichert. Dabei
wird Uferfiltrat der Limmat in 19 Vertikalfilterbrunnen gefasst und in drei je 4000 Quadratmeter grosse Becken und 12 Schluckbrunnen geführt, wo es versickern kann. Die Versickerungsanlagen liegen am Rande
des Grundwasserfeldes.
Quellen:
Jäckli, Heinrich (1989). Geologie von Zürich: Von der Entstehung bis zum Eingriff des Menschen. Orell Füssli
www.stadt-zuerich.ch
Fachgruppe Geographie, PHZH – focusTerra
H. Moser, S. Padberg, M. Reuschenbach
Seite 71
Herunterladen