Astronomie für NichtPhysiker SS 2011

Werbung
 Astronomie für Nicht­Physiker SS 2011
14.4. Astronomie heute (Just, Fendt)
21.4. Teleskope, Instrumente, Bilder, Daten (Fendt)
28.4. Sonne, Mond und Erde (Just)
5.5. Sonne und Planetensystem (Just)
12.5. Sterne: Zustandsgrößen (Fendt)
19.5. Sterne: Entwicklung (Fendt)
26.5. Die Milchstraße (Just)
9.6. Galaxien (Just)
16.6. Galaxienhaufen (Just)
30.6. Quasare und Schwarze Löcher (Just)
7.7. Materiekreislauf und Leben (Fendt)
14.7. Urknall und Expansion (Just)
21.7. Weltmodelle (Just)
2. Teleskope, Daten, Bilder
Grundproblematik astronomischer Beobachtung:
1) alle Information kommt über das “Licht”
-> Informtion aus Lichtsignal “herausfiltern”
2) astronomische Objekte sind lichtschwach
-> Licht muß also “aufgesammelt” werden
Lösung:
Teleskope:
-> durch Linsen, Spiegel große Sammelfläche
-> große Auflösung
-> Nebeneffekt: Vergößerung
Instrumente:
-> Speicherung des Lichts mit Detektoren
(vgl. Photoplatte, digitale Kamera)
-> Analyse der “Licht”-Eigenschaften
2. Teleskope, Daten, Bilder
Astronomische Untersuchung:
1. Beobachtung (Observatorium):
mit Teleskop wird Objekt verfolgt
mit Instrument Signal zerlegt
mit Detektor gespeichert -> Daten
0. Theoretische Modellierung:
theoretische Untersuchung physik.
Prozesse:
-> Analytisch-mathem. Lösungen
astrophysikalischer Gleichungen (z.B.
Massenerhaltung, Energieerhaltung)
-> Oder: Computersimulationen der
Prozesse
-> aus Berechnungen: “theoretische”
Beobachtungsdaten zum Vergleich
2. Datenanalyse (im Büro):
Signalverarbeitung: Reduktion von
Vorder- und Hintergrundeffekten
Vergleich verschiedener Datensätze:
-> Zeitentwicklung des Signals
-> Bestimmung z.B. Farbe
3. Interpretation der Daten:
Berücksichtigung physik. Prozesse:
aus gemessener Helligkeit, Farbe
-> Temperatur, Dichte, Geschw.
Interpretation abgeleiteter Größen
-> Entfernung, Masse. Energie
Verständnis ablaufender physikalischer
Prozesse, Entwicklungszustand, Alter
2. Teleskope, Daten, Bilder
“Licht”:
Quantenphysik: Welle - Teilchen - Dualismus:
-> Licht kann als Lichtwelle oder als Lichtteilchen (Photon) betrachtet werden
-> “Welle” und “Teilchen” tragen Energie mit sich
(Vergleiche mit Tsunami-Welle oder Gewehrkugel)
-> physikalische Größen von “Welle”:
Wellenlänge  (Länge von Wellenberg zu Wellenberg)
Frequenz (wie schnell schlägt Welle an?)
-> Quantentheorie: physikalische Größe von “Teilchen”:
Energie E = h
 -> Geschwindigkeit von “Welle” oder Photon:
Lichtgeschwindigheit c = 300000km/s
Merke: c =
2. Teleskope, Daten, Bilder
“Licht”:
Licht- “Welle” oder -“Teilchen” mit verschiedener Enegie
-> Licht verschiedener Wellenlänge oder Frequenz
-> also Licht unterschiedlicher Farbe
-> Spektrum: Verteilung der “Wellen” oder Photonen verschiedener Energie
in eine Lichtquelle
Beispiel: Sonnenlicht wird aufgespalten in mehrere Farben
2. Teleskope, Daten, Bilder
“Licht”:
-> Spektrum: Verteilung der “Wellen” oder Photonen verschiedener Energie
in eine Lichtquelle
Beispiel: Sonnenlicht wird aufgespalten in mehrere Farben
Spektralanalyse
des Lichts
astronomischer
Quellen
Achtung: Linien im Spektrum (dunkle und helle) zeigen die Existenz bestimmter
Elemente an (Calzium Ca, Eisen Fe, Sauserstoff O2, etc)
2. Teleskope, Daten, Bilder
Astronomische Teleskope:
Prinzip = “Lichtsammler”:
-> großes Objektiv, beste Optik:
1) Lichtsammelvermögen
2) Auflösungsvermögen
-> Präzessionsmechanik:
genaueste Verfolgung der Objekte am Himmel
(Ausgleich der Erdrotation)
-> Standort für beste Beobachtungsbedingungen:
1) stabiles, “gutes” Wetter (trockene Lage ohne Niederschläge)
2) wenig störende Atmosphärenschichten (hohe Lage)
zum Vergleich: menschliches Auge:
Wellenlängenbereich 400-800nm (blau-rot)
Öffnung (Pupille) 7mm
Auflösung 1 Bogenminute (1/60 Grad = 1/30 Vollmonddurchmesser)
2. Teleskope, Daten, Bilder
Astronomische Teleskope:
Optisches Prinzip Linsenteleskop (Refraktor):
Licht, das durch die Objektivlinse fällt wird auf das Okular fokussiert.
Okular wird mit dem Auge angeschaut.
Leistungsvermögen: große “Lichtstärke”
-> Öffnungsverhältnis: o = D/f (= Durchmesser / Brennweite )
kleines Öffnungsverhältnis = große Lichtstärke
Auflösungsgvermögen: Trennung zweier Lichtpunkte im Abstand d
Auflösungsgrenze d = /D
Vergrößerung: Verhältnis Brennweiten Objektiv/Okular
Beispiel für die Lichtverstärkung: mit Lupe Feuer entzünden:
2. Teleskope, Daten, Bilder
Astronomische Teleskope:
Linsenteleskope (Refraktoren):
Amateurteleskop ~10cm Linse
Yerkes-Refraktor 1897, 102 cm
2. Teleskope, Daten, Bilder
Astronomische Teleskope:
Refraktoren - Reflektoren:
Problem Linsenteleskop:
Linse wird von außen gehalten
-> Durchmesser < 100cm, da Linse sich sonst durchbiegt
Andere optische Probleme:
- farbliche Fehler, Fokusierung unterschiedlicher Wellenlängen
Lösung: verwendung “achromatischer” Linsen (teuer)
Alternative: Spiegel als Objektiv
Spiegel wird großflächig “unten” unterstützt
-> Spiegeltelekope (Reflektoren) mit großen Durchmessern < 10m
2. Teleskope, Daten, Bilder
Astronomische Teleskope:
Spiegelteleskope (Reflektoren):
Leistungsvermögen, Auflösungsgvermögen, Vergrößerung
definiert wie für Refraktor,
-> aber viel größere Durchmesser D möglich,
da Spiegel extern unterstützt werden kann
Beispiel Auflösungsgrenze HST (2.4 m Spiegel) d = 0.05 Bogensekunden
E-ElT (42m-Spiegel) 15x schärfer
2. Teleskope, Daten, Bilder
Astronomische Teleskope:
Geschichte (optische Teleskope):
- Erste Linsenteleskope: Holländer Lippershey, Jansen, Metius ~1608;
Galilei 1609, Kepler 1611
- Erstes Spiegelteleskop Newton 1668
- 18. Jhdt: erstes Großteleskop (Herschel); 19. Jhdt: große Linsentelskope
- 1917: Mt Wilson 2.5m Spiegel: extragalaktischer Ursprung d. Spiralnebel
(Hubble 1928), Entdeckung Expansion des Universums (Hubble 1929)
- 1948: Mt. Polamar 5m Spiegel
- 1976: Selentschuk (Kaukasus) 6m Spiegel
- 70er, 80er: 3.5-4m Spiegel (Calar Alto 3.5, ESO 3.6, AAT 3.9, Kitt Peak 4m)
- ab 1969 European Southern Observatory (ESO), La Silla
- 1990: Start des Hubble Space Telescope mit Space Shuttle
- ab 1996 VLT (Very Large Telescope), ESO, 4x 8m Spiegel, Ziel Interferometrie
- ab 2008 LBT (Large Binocular Telescope), Arizona unter MPIA/LSW-Beteiligung
- ab 2018 E-ELT (European Extremely Large Tel.), ESO , 42m, Kosten 1 Mrd Euro
2. Teleskope, Daten, Bilder
Astronomische Teleskope:
Jan Hevel
Riesenteleskop in
Danzig 1670:
Linsenteleskop
46m lang, am 20m
langen Masten mit
Flaschenzug aufgehängt
Lange Brennweite um
Farbfehler auszugleichen
Blenden um Streulicht
abzuschirmen
2. Teleskope, Daten, Bilder
Astronomische Teleskope:
Friedrich Wilhelm Herschel (1738-1822):
- Erfinder der Großteleskope
- Uranus Entdeckung (1781)
- “Nebel” sind Sternsysteme
- größtes Teleskop (1789):
Spiegeldurchmesser: 122 cm
Länge: 12 m
-> Öffnungsverhältnis 1:10
2. Teleskope, Daten, Bilder
Astronomische Teleskope:
E-ELT (European Extremely Large Telescope) :
42m Durchmesser,
5-Spiegel-Strahlengang,
5000 Tonnen Teleskop,
Hauptspiegel aus
~1000 Segmenten
(jedes 1.4m breit,
50mm dick,
unterstützt von 5000
Stellwerken, die Spiegelform
1000x/Sekunde optimieren)
Kuppel 100m Durchmesser
2. Teleskope, Daten, Bilder
Astronomische Teleskope:
Teleskop-Montierung:
bewegt das mehrere 100(0) Tonnen schwere Teleskop auf 1/100 mm
Nachführung des Teleskops = Ausgleich der Erdrotation
= (Ausgleich der scheinbaren Himmelsbewegung)
-> 2 Hauptachsen
Parallaktische Montierung:
eine Achse der Montierung auf Erdachse ausgerichtet:
mechanisch einfache Nachführung hauptsächlich um eine Achse
traditionell, limitiert durch Gewicht des Teleskops
Azimutale Montierung:
Achsen auf Horizont (und Schwerkraft) ausgerichtet
Vorteil: kann schwere Telekope unterstützen
Nachführung komplex: um drei Achsen -> geht nur computer-gesteuert
Nachteil: Bildrotation während der Belichtung (3. Achse)
2. Teleskope, Daten, Bilder
Astronomische Teleskope:
Teleskop-Montierung:
2. Teleskope, Daten, Bilder
Himmelskoordinaten:
Von der Erde aus gesehen:
Erde rotiert von W -> O:
Himmel (Sonne, Mond, Planeten)
bewegen sich von O -> W
Links -> rechts auf Nord-Halbkugel,
rechts -> links auf Süd-HK
Erdbewegung um Sonne von W -> O :
Sonne bewegt sich von W -> O durch
die Sternbilder
Sterne gehen jede Nacht früher auf
Mond bewegt sich von W -> O;
Mondaufgang jeden Tag verzögert
Planetenbewegung komplizierter ....
2. Teleskope, Daten, Bilder
Himmelskoordinaten:
Ebene der “Ekliptik”
Großkreis der Sonnenbewegung am Himmel
Sonne bewegt sich durch “12” Sternbilder -> Zodiak
(eigentlich durch 13 Sternbilder)
2. Teleskope, Daten, Bilder
Himmelskoordinaten:
Problematik:
Orientierung am Beobachtungsplatz:
-> horizontale Koordinaten
Orientierung am Himmel:
-> “mitbewegte” Himmels- Koordinaten
2. Teleskope, Daten, Bilder
Himmelskoordinaten:
Mitbewegtes äquatoriales Koordinatensystem
Rektaszension α:
Winkeldifferenz zwischen
Stundenwinkeln von
Objekt und
Frühlingspunkt 
Gemessen in “Stunden”,
d.h. 24 Std entsprechen 360°
Dekination δ:
Winkeldistanz zum
Himmelsäquator:
-90º. . .+90º
2. Teleskope, Daten, Bilder
Astronomische Teleskope:
Teleskop-Montierung:
2. Teleskope, Daten, Bilder
Astronomische Teleskope:
Teleskop-Montierung:
Parallaktische Montierung
Calar Alto 2.2m Spiegel :
Azimutale Montierung
LBT (Large Binocular Telescope):
2x 8m Spiegel
2. Teleskope, Daten, Bilder
Astronomische Teleskope:
http://rohr.aiax.de/FDD/entwicklung.php
2. Teleskope, Daten, Bilder
Astronomische Teleskope:
Teleskop-Kuppel:
- Um Teleskop “herum” gebaut: keine Erschütterung des Teleskops
- Schutz des Teleskops vor Schmutz und Windlast
- Bewegt sich unabhängig vom Teleskop:
Teleskop wird auf Stern/Galaxie eingestellt und folgt diesem
Kuppelöffnung folgt dem Sehstrahl des Teleskops
- Wichtig: Temperaturgleichgewicht zwischen
Teleskop / Teleskopgebäude / Umgebung muß erhalten bleiben,
ansonsten Luftturbulenzen, die die Bildqualität stören
2. Teleskope, Daten, Bilder
Astronomische Teleskope:
Standort-Wahl:
Primäre Anforderungen:
- Gute klimatische Bedingungen: trocken
- Gleichmäßige thermische Bedingungen: wenig Turbulenz -> gutes “Seeing”
- Wenig Streulicht -> entfernt von Besiedlung
- Geringe Luftfeuchtigkeit
Weitere Anforderungen:
- Politische Stabilität
- Logistische Machbarkeit
-> Standorte:
allgemein in Wüsten, Berglagen
in Hawaii, Chile, Südspanien,
USA-Südwesten, Australien,
Südpol
Mauna Kea, Hawaii
2. Teleskope, Daten, Bilder
Astronomische Instrumente:
Teleskop sammelt Licht - Instrument untersucht Lichteigenschaften
Teleskop ohne Instrument wertlos
- Instrument oft ähnlich teuer wie Teleskope, ähnlich lange Entwicklungszeit
Verschiedene Instrumente:
- CCD-Detektoren (früher Photoplatten):
er geben Abbildung, Helligkeitsverteilung (räumliche Verteilung)
- Spektrographen:
erzeugen Spektrum des beobachteten Objekts (spektrale Energieverteilung)
- Farbfilter: untersuchen Licht verschiedener “Farben” (verschiedener Energie)
- Polariationsfilter: untersuchen Schwingungsrichtung der (Licht)wellen
2. Teleskope, Daten, Bilder
Astronomische Instrumente:
CCD - Detektoren :
Früher: Photographische Platten, lange Belichtungszeiten (z.T. Stunden)
Quantitative Auswertung schwierig -> Messung der Helligkeit?
Heute: CCD-Kameras (Charge-coupled Device),
- seit Mitte 80er in der Astronomie,
- seit ~10 Jahren in jeder digitalen Kamera/Camcorder
- 2009: Nobelpreis für Physik: W. Boyle, G: E. Smith, für CCD-Sensor
Prinzip CCD-Kamera:
- Anordnung von bis zu 4000x4000 lichtempfindlichen elektronischen Zellen
- fällt Licht (ein Photon) in die Zelle, wird di e Zelle elektrisch aufgeladen
- elektrische Ladungen werden gezählt
-> quantitative Messung der Helligkeit
2. Teleskope, Daten, Bilder
Astronomische Instrumente:
Prinzip CCD-Kamera:
- Anordnung von bis zu 4000x4000 lichtempfindlichen elektronischen Zellen
- fällt Licht (ein Photon) in die Zelle, wird di e Zelle elektrisch aufgeladen
- elektrische Ladungen werden gezählt
2. Teleskope, Daten, Bilder
Astronomische Instrumente:
Spektrographische Untersuchung:
Spektrum: Verteilung der “Wellen” oder Photonen
verschiedener Energie in eine Lichtquelle
->
Licht von heißeren Objekten ist “blauer”
Licht von kühleren Objekten ist “roter”
-> physikalisches Gesetz,
durch Laborexperimente bestätigt
-> gilt immer, nicht nur astronomisch,
-> Anwendung auf astronomische Objekte
-> Spektralverteilung:
gemessene Lichtintensität für
verschiedene Wellenlängen
-> Planck-Kurve
2. Teleskope, Daten, Bilder
Astronomische Instrumente:
Spektrographische Untersuchung:
-> Spektralverteilung:
gemessene Lichtintensität für verschiedene Wellenlängen
Astronomen untersuchen alle Wellenlängenbereiche
2. Teleskope, Daten, Bilder
Astronomische Instrumente:
Spektrographische Untersuchung:
Astronomen untersuchen alle Wellenlängenbereiche
Erdatmosphäre nicht für alle Wellenlängen durchlässig -> Weltraum, Satelliten
2. Teleskope, Daten, Bilder
Andere Wellenlängenbereiche:
Radioastronomie:
- untersucht die Strahlung im
Wellenlängenbereich der Radiowellen
- Radiolicht gibt Hinweise auf
Magnetfelder im Universum und
kühles Gas
-> große Wellenlänge (cm)
-> große Teleskope nötig um
vergleichbare Auflösung zu erzielen
(Oberfläche kann aber gröber sein)
Beispiel: 100m Radiotelekop
bei Bonn (Effelsberg)
2. Teleskope, Daten, Bilder
Andere Wellenlängenbereiche:
Radioastronomie - Interferometrie:
-> große Teleskope nötig um vergleichbare Auflösung zu erzielen
Aber: Grenze ist ~100 m
Daher: Zusammenschalten mehrerer Teleskope
Trick: Nicht mehr Durchmesser, sondern Abstand zwischen den Teleskopen
zählt für Auflösung
Maximaler Abstand auf der Erde = Erddurchmesser
= Teleskop mit 12000km Durchmesser
VLBI (Very Long Baseline Interferometry)
= Netwerk von Radiotelekopen ueber die Erde verteilt
-> Auflösung = Millibogensekunden (je nach Wellenlänge)
Für noch größere Auflösung: VSOP ( VLBI Space Observatory Program)
= ein Teleskop in den Weltraum (Abstand 32000km)
-> Auflösung = 90 Microbogensekunden
2. Teleskope, Daten, Bilder
Andere Wellenlängenbereiche:
Radioastronomie - Interferometrie:
-> große Teleskope nötig um vergleichbare Auflösung zu erzielen
VLA (Very Large Array): 27x 25m-Teleskope, verfahrbar entlang 'Y' mit 35 km,
Auflösung 0.05 Bogensekunden Golfball in 150 km)
2. Teleskope, Daten, Bilder
Andere Wellenlängenbereiche:
Röntgenastronomie (X-ray astronomy) :
-> wichtiger Bereich der Hochenergieastronomie
Wellenlänge 12 - 0.0025nm,
(= Photonenergie 0.1 - 500 keV)
-> Röntgenstrahlung zeigt heißes Gas: T > 107 K
Atmosphäre undurchlässig für Röntgenstrahlen
-> Satellitentelekope:
ROSAT 1990-1999 (Deutschland), Bahn 550km Höhe
-> 100000 neue Röntgenquellen
CHANDRA
(Sterne, Schwarze Löcher, Quasare, ...)
Spiegel
CHANDRA 1999- ... (USA)
stark eliptische Umlaufbahn
bis 80000 km Distanz
Problem Röntgenoptik: andere ”Spiegel”, da
Brechung und Reflexion sehr schwierig
ROSAT
2. Teleskope, Daten, Bilder
Vergleich verschiedenen Wellenlängenbereiche:
Bsp: Galaxie Centaurus A
Radiodaten (lila):
-> Magnetfeld, “Jet”
Optisch (weiß):,
-> Sterne
Röntgen (rot):
-> heißes Gas
X-ray (CXC/NASA/CfA/Hardcastle et al, 2007);
radio (VLA/NSF/U.Hertfordshire/Hardcastle et al);
optical (ESO/VLT/ISAAC/Rejkuba et al)
2. Teleskope, Daten, Bilder
Zusammenfassung 1:
Teleskop sammelt Licht - Instrument untersucht Lichteigenschaften
Teleskop ohne Instrument wertlos
Verschiedene Instrumente
-> verschiedene Datensätze
-> verschiedene physikalische Eigenschaften des Lichtquelle
Helligkeit(sverteilung):
räumliche Anordnung der strahlenden Materie in der Quelle
Farbe des Objekts (Spektrum):
Helligkeitsdifferenz z.B.im blauen und im roten Licht
Zeitliche Änderung (von Helligkeit / Farbe / Ausdehnung):
Ablauf / Entwicklung physikalischer Prozesse
2. Teleskope, Daten, Bilder
Zusammenfassung 2:
Astronomische Meßdaten:
Position am Himmel: Rektaszension, Deklination 
Koordinaten an der Himmelskugel
Helligkeit: physikalisch: “Anzahl der Photonen”,
astronomisch: Magnituden “m”, historisch bedingt, vergleichende
Einheit angelehnt an das Auge:
m=6 gerade noch sichtbar, m = 0 hellste Sterne
Farbe des Objekts: physikalisch: Spektralverteilung
astronomisch: Helligkeitsdifferenz, z.B. mBLAU - mGELB = 0.5
Zeitliche Änderung (von Helligkeit / Farbe / Ausdehnung):
z.B. Winkeldifferenz pro Jahr, Helligkeitsdifferenz pro Stunde etc
Astronomie für Nicht­Physiker SS 2011
14.4. Astronomie heute (Just, Fendt)
21.4. Teleskope, Instrumente, Bilder, Daten (Fendt)
28.4. Sonne, Mond und Erde (Just)
5.5. Sonne und Planetensystem (Just)
12.5. Sterne: Zustandsgrößen (Fendt)
19.5. Sterne: Entwicklung (Fendt)
26.5. Die Milchstraße (Just)
9.6. Galaxien (Just)
16.6. Galaxienhaufen (Just)
30.6. Quasare und Schwarze Löcher (Just)
7.7. Materiekreislauf und Leben (Fendt)
14.7. Urknall und Expansion (Just)
21.7. Weltmodelle (Just)
Herunterladen