Folie 1

Werbung
Aufbau und Funktionweise der Nervenzelle
- Wiederholung Vorlesung -
Fragen zur Vorlesung:
• Welche Zellen können im Nervensystem unterschieden werden?
• Aus welchen Teilstrukturen bestehen Neuronen?
• Welche intrazellulären Strukturen sind in Neuronen zu finden und
welche Funktionen erfüllen sie?
• Welche Typen von nicht-Nervenzellen sind im Nervensystem zu
finden und welche Aufgaben haben sie?
Aufbau der Nervenzelle
Ein Neuron (eine Nervenzelle) ist eine Körperzelle, die sich im Laufe der Evolution auf die
Übertragung von Information spezialisiert hat
Jedes Neuron besitzt einen charakteristischen
Aufbau
• Zellkörper
• Axon
• Dendrit
Der Zellkörper enthält u.a.:
• Zellkern
• Mitochondrien
• Endoplasmatisches Retikulum
• Golgi Apparat
• Ribosomen
Axone, Dendriten, Synapsen
Das Axon hat zwei Hauptaufgaben:
1. die Weiterleitung von Informationen in Form von Aktionspotentialen
2. den Transport von chemischen Substanzen in beide Richtungen (Ri.
Zellkörper und Ri. Axon); Mikrotubuli; Endozytose (Phago- & Pinozytose)
Ad 1)
• Informationen werden an andere Neuronen, Muskelzellen oder
Drüsenzellen weitergegeben
• Ort der Informationsübermittlung ist die Synapse. Sie besteht
– aus präsynaptischen Axonterminal (synaptisches Endknöpfchen)
– dem synaptischen Spalt und
– der postsynaptischen Membran
Ad 2)
• Beim axonalen Transport werden drei Formen unterschieden
– der schnelle (10-20mm/Tag) anterograde Transport
– der schnelle retrograde Transport
– der langsame (1mm/Tag) anterograde Transport
Axone, Dendriten, Synapsen
Dendriten sind alle Faserfortsätze eines Neurons, mit Ausnahme des Axons
• dienen dazu, die reizaufnehmende Oberfläche der Nervenzelle zu
vergrößern
• Dendriten sind meist von Synapsen übersät
• In den meisten Neuronen haben Dendriten „Dornen“, auf denen jeweils ein
präsynaptischees Axonterminal sitzt
Synapsen bilden den funktionellen Kontakt zwischen Zellen
• aus dem präsynaptischen Neuron werden in Vesikel verpackte
Neurotransmitter ausgeschüttet
• an der postsynaptischen Membran befinden sich in Bindungsstellen für
Neurotransmitter (Rezeptoren)
• Man unterscheidet exitatorische und inhibitorische Synapsen. An
exitatorischen Synapsen wird die postsynaptische Nervenzelle erregt, so
dass sie im Anschluss Informationen weitergibt. An inhibitorischen
Synapsen wird die postsynaptische Nervenzelle gehemmt, der weiter
Informationsfluss gehemmt bzw. blockiert
Axone, Dendriten, Synapsen
Dendriten sind alle Faserfortsätze eines Neurons, mit Ausnahme des Axons
• dienen dazu, die reizaufnehmende Oberfläche der Nervenzelle zu
vergrößern
• Dendriten sind meist von Synapsen übersät
• In den meisten Neuronen haben Dendriten „Dornen“, auf denen jeweils ein
präsynaptischees Axonterminal sitzt
Synapsen bilden den funktionellen Kontakt zwischen Zellen
• aus dem präsynaptischen Neuron werden in Vesikel verpackte
Neurotransmitter ausgeschüttet
• an der postsynaptischen Membran befinden sich in Bindungsstellen für
Neurotransmitter (Rezeptoren)
• Man unterscheidet exitatorische und inhibitorische Synapsen. An
exitatorischen Synapsen wird die postsynaptische Nervenzelle erregt, so
dass sie im Anschluss Informationen weitergibt. An inhibitorischen
Synapsen wird die postsynaptische Nervenzelle gehemmt, der weiter
Informationsfluss gehemmt bzw. blockiert
Organellen
Interessant:
Mitochondriale DNA
Welche Typen von nicht-Nervenzellen sind im Nervensystem zu finden
und welche Aufgaben haben sie?
Gliazellen
• Die Gliazellen bilden das Stütz- und Ernährungsgewebe des Nervensystems
• Es gibt sehr viel mehr Gliazellen als Nervenzellen im Gehirn
• Vielzahl von Funktionen, z.B.
– Reparatur von Nervenschäden
– beteiligen sich vermutlich auch an der Informationsverarbeitung
– sind an der Lenkung des Neuronenwachstums beteiligt
• Man unterscheidet:
– Astrozyten: bilden die Blut-Hirn-Schranke und dienen
als Reservoir für neuronal freigesetzte Kaliumionen
– Oligodendrozyten: bilden die Markscheiden der
zentralen Nervenzellen (Schwann-Zellen in Peripherie)
– Mikroglia: Immunfunktion
Blut-Hirn-Schranke
Gliazellen: Beteiligung an der Informationsverarbeitung
• Neben dem Netzwerk der Neuronen besteht anscheinend ein zweites
Netzwerk, das die Gliazellen unterhalten
• So findet man an der Außenmembranen von Astrocyten Ionenkanäle und
Rezeptoren
• „Glia horcht an Nervenzellen“: Registrierung der Informationsverarbeitung
zwischen Neuronen
• Astrocyten Können selbst auch NT freisetzen. Wirken nicht nur lokal auf
Erregungsübertragung, sondern beeinflussen auch weiter entfernt liegende
Neurone
Unterschied zu Neuronen:
• Astrozyten können kein Aktionspotential entwickeln
• Informationsweiterleitung geschieht auf chemischem Weg und elektrische
Kopplung über gap junctions
Beispiel Einstein: In Assoziationszentren der Stirn- und Schläfenregionen fanden
sich ungewöhnlich viele Gliazellen (hoher Glia-Neuronen-Index)
Gliazellen: Wichtig für Lernen, Entwicklung und nach Schädigung
• Gliazellen weichen zurück um Kontakt zwischen Neuronen zu ermöglichen
Lernprozesse
• Gliazellen als Wegweiser bei Hirnentwicklung
• „Segen & Fluch“ der Glianarbe:
- Hohlraumfüllung nach Schädigung; Stützfunktion; alle Gliazelltypen
beteiligt
- Physikalische & Neurochemische Barriere für Neuronenwachstum
(Stichwort: Bspl. Querschnittslähmung nach RM-Läsion)
siehe Abb. nächste Seite
- Beteiligung an sekundärer Degeneration (~ 2/3 d. Neur.)
Abb. 2: Nach einer Schädigung kommt es zur vermehrten Teilung von
Astrozyten, die den entstandenen Hohlraum mit einer dichten
GLIANARBE auszufüllen beginnen (Ramon-Cueto et al., 1998).
Herunterladen