Physikalisches Institut der Universität Bayreuth PHYSIKALISCHES PRAKTIKUM FÜR FORTGESCHRITTENE ELEKTRONENSPINRESONANZ (ESR) W. Bietsch / W. Hartl Seite Inhalt 1. Physikalische Fragestellung 2 2. Vorbereitung 4 3. Apparatur 5 4. Warnungen und Hinweise 15 5. Messprogramm 16 Version 5-2001 1. Physikalische Fragestellung Magnetische Resonanz ist heute eine Standardmessmethode in Physik, Chemie und Biologie zur Untersuchung der mikroskopischen Eigenschaften von Festkörpern, Flüssigkeiten und Gasen. Die Elektronenspinresonanz (ESR) ermöglicht die detaillierte Charakterisierung von Systemen mit quasifreien Elektronen, z.B. Leitungselektronen in hochdotierten Halbleitern, bzw. von Systemen mit ungepaarten Elektronenspins, z.B. chemische Radikale. Ziel dieses Versuchs ist es, sich in die theoretischen Grundlagen der ESR einzuarbeiten und den Aufbau eines einfachen ESR-Spektrometers zu verstehen. E mS = +1/2 ∆E = gµBB0 mS = -1/2 B0 0 Abbildung 1: Energieniveauschema für ein freies Elektron im äußeren Magnetfeld Das einfachste System in der ESR ist ein freies Elektron1. In einem äußeren Magnetfeld sind für das Elektron zwei Spineinstellungen erlaubt, parallel und antiparallel zum Magnetfeld (vgl. Abb. 1). Diese beiden Einstellungen sind energetisch aufgespalten. Die Aufspaltungsenergie beträgt: ∆E = h⋅ν = g⋅µBB0 µB bezeichnet das Bohrsche Magneton (siehe 1.1), B0 bezeichnet das von außen angelegte Magnetfeld und g steht für den g-Faktor des Elektrons. Für den Fall eines freien Elektrons gilt: g=2.002322. Die Frequenz ν entspricht der klassischen Larmorfrequenz des präzedierenden Elektrons. Im Fall von nicht freien Elektronen weicht der g-Faktor vom Wert des freien Elektrons ab. Eine Ursache dafür ist z.B. die Spin-Bahn-Wechselwirkung von nicht s-artigen Elektronen (siehe 1.2). Im einfachsten Fall besteht das ESR-Spektrum aus einer einzigen Linie. Wechselwirkt nun der Elektronenspin mit einem oder mehreren Kernspins, werden die Spektren unter bestimmten Bedingungen (siehe 5.3.1) komplizierter. Die Linie wird durch die Hyperfeinwechselwirkung aufgespalten. Bei Wechselwirkung mit einem Kernspin von z.B. I = 3/2 werden 2I+1 = 4 Linien sichtbar. 1 d.h. keine Wechselwirkung mit der Umgebung 2 In der Praxis wird die zu untersuchende Probe zwischen die Polschuhe eines Magneten gebracht. Zusätzlich wird ein (kontinuierliches) hochfrequentes elektromagnetisches Feld hν eingestrahlt. Im Resonanzfall, d. h. wenn h⋅ν = gµBB0 ist, werden in der Probe magnetische Dipolübergänge (vgl. 1.1) zwischen unterem und oberem Energieniveau angeregt (veranschaulicht durch den Doppelpfeil in Abb. 1). Dabei wird dem Hochfrequenzfeld die Energie h⋅ν entzogen. Dies kann im Fall keiner Sättigung durch eine geeignete Anordnung sehr empfindlich und genau gemessen werden. Im Praktikumsversuch ist ein sehr einfaches ESR-Spektrometer aufgebaut, das aber alle Komponenten enthält, aus denen kommerzielle Spektrometer bestehen. Mit ihm sollen gFaktor und Hyperfeinstruktur von ausgewählten Systemen gemessen werden. 1.1 Das Bohrsche Magneton Ein Elektron, das auf einer Kreisbahn umläuft, ist einem elektrischen Ringstrom äquivalent. Aus der Elektrodynamik ist bekannt, dass ein Ringstrom ein magnetisches Dipolfeld erzeugt. 2 Das magnetische Moment µ einer Leiterschleife ist definiert als µ = I⋅A. Dabei ist A die vom Strom I umschlossene Fläche. Für ein Elektron, das auf einer Kreisbahn mit der Geschwindigkeit v umläuft, gilt: I= q e⋅ω =− T 2π 1 µ = I ⋅ A = − eωr 2 2 d. h. Führt man den Bahndrehimpuls l = mvr = mωr2 ein, so erhält man für das magnetische Moment des umlaufenden Elektrons µ =− e l. 2m 0 Als Einheit des magnetischen Moments im atomaren Bereich wird dasjenige Moment definiert, das einem Elektron mit dem Drehimpuls l = h entspricht. Dies ist der Bahndrehimpuls eines Elektrons auf der innersten Bahn eines Wasserstoffatoms im Bohrschen Modell. Dieses sogenannte Bohrsche Magneton ist definiert durch µB = 2 e⋅h = 9.274078 ⋅ 10 -24 Am 2 . 2m 0 hier seien nur die Beträge der jeweiligen vektoriellen Größen betrachtet. 3 1.2 Landé-Faktor Der g-Faktor verknüpft die Größe des magnetischen Moments eines Atoms mit seinem Gesamtdrehimpuls. Für reinen Bahnmagnetismus (s = 0) ist g = 1, für reinen Spinmagnetismus (l = 0) gilt g = 2 (genauer 2.002322). Allgemein lässt sich folgende Beziehung angeben: j(j + 1) + s(s + 1) - l(l + 1) . g = 1+ 2j(j + 1) Diese Formel kann aus dem Vektormodell der Atomphysik hergeleitet werden. Zur Vertiefung sei auf die angegebene Literatur verwiesen. 2. Vorbereitung 2.1 Stichworte Die folgenden Stichworte seien als grober Leitfaden für die Vorbereitung gegeben. Die angeführten Literaturzitate seien als grober Anhaltspunkt zur Einarbeitung in die jeweiligen Fragestellung empfohlen: − − − − − − − − − Resonanzbedingung Linienform der ESR-Linie Relaxation und Sättigung Linienverbreiterung und Linienverschmälerung von Resonanzlinien Hyperfeinstruktur Erzeugung von Mikrowellen mit dem Reflexklystron Ausbreitung elektromagnetischer Wellen in Rechteck-Hohlleitern Prinzipielle Funktionsweise eines ESR-Spektrometers Lock-In-Verstärker 2.1 Literatur (1) (2) (3) (4) (5) (6) (7) (8) Haken Wolf, Atomphysik und Quantenphysik Carrington and A.D. McLachlan, Introduction to Magnetic Resonance. K. Scheffler und H.B. Stegmann, Elektronenspinresonanz G.E. Pake, Paramagnetic Resonance J. E. Wertz and J. R. Bolton, Electron Spin Resonance. Gerthsen, H.O. Kneser, H. Vogel, Physik. C. P. Slichter, Principles of Magnetic Resonance Po..... 4 2.2 Fragen zur Vorbereitung 1) Was versteht man unter Sättigung? Welches ESR-Signal würde man ohne Relaxation beobachten? 2) Welche Arten der Linienverbreiterung bzw. -verschmälerung gibt es? 3) Wie sieht das ESR-Spektrum aus, wenn ein Elektron mit einem Kern mit I = 1 wechselwirkt? Erklären Sie anschaulich mit Hilfe einer Skizze das Zustandekommen des ESR-Spektrums. Was kann man aus dem Abstand der Linien ablesen? 4) Wie sieht das Spektrum aus, wenn ein Elektron mit zwei äquivalenten Kernen mit I = 1 wechselwirkt (Skizze der Energieniveaus)? Unter welchen Bedingungen kann man es experimentell beobachten? 5) Was ändert sich im Vergleich zum vorhergehenden Fall, wenn die Kerne nicht äquivalent sind, d.h. wenn die Kerne unterschiedliche Hyperfeinkopplungskonstanten haben? 6) Welche Information über die Elektronenverteilung gewinnt man aus der Größe der Hyperfeinwechselwirkung? Gilt das ohne Einschränkung für alle Elektronen? 7) Erklären Sie den Versuchsaufbau. 8) Welche Möglichkeiten der Mikrowellenerzeugung gibt es? Erklären Sie die Funktionsweise eines Klystrons. Welchen Vorteil hat es, wenn man die Frequenz des Hochfrequenzfeldes möglichst groß wählt? 9) Erklären Sie den Abgleich der Brückenanordnung. Wie wird beim vorliegenden Aufbau die Diode vorgespannt? 10) Wie ändert sich die Diodenvorspannung, wenn die Mikrowellenleistung erhöht wird? 11) Erklären Sie die Wirkungsweise eines Lock-In-Verstärkers. Warum verbessert sich das Signal-Rausch-Verhältnis? Erklären Sie wie mit Hilfe des Lock-In-Verstärkers das Messsignal als die 1. Ableitung der Absorptionskurve nach dem B0-Fled entsteht. 3. Apparatur 3.1 Allgemeines Der Aufbau eines ESR-Spektrometers ergibt sich unmittelbar aus der oben angeführten Resonanzbedingung: h⋅ν= g⋅µBB0. 5 Abbildung 2: Blockschaltbild des ESR-Spektrometers 6 Es wird ein statisches Magnetfeld, ein Mikrowellenquelle und ein Mikrowellendetektor benötigt. Grundsätzlich besteht jedes ESR-Spektrometer (mindestens) aus den drei folgenden Komponenten: • • • Mikrowellenteil: Erzeugung und Detektion des Mikrowellenfeldes Elektronik: Verstärkung und Aufzeichnung der Messsignale Magnetfeld: Steuerung und Stabilisierung des statischen Magnetfelds Die Probe befindet sich zwischen den Polen eines Elektromagneten in einem Hohlraumresonator. Bei Erfüllung der Resonanzbedingung wird ein Teil der einfallenden Leistung absorbiert und der Resonator wird gedämpft. Dies bewirkt eine Amplitudenänderung der Mikrowelle am Detektor. Das Signal wird durch einen Lock-In verstärkt und über einen Vorverstärker zum Computer geleitet. Das Programm ESR steuert über einen DigitalAnalog-Konverter das Netzteil für das statische Magnetfeld und liest über einen AnalogDigital-Wandler das Ausgangssignal des Lock-In-Verstärkers ein (siehe Abb. 2). Aus technischen Gründen wird im Festfrequenzbetrieb (hier bei 9.4 GHz, X-Band) gearbeitet, d. h. die Mikrowellenfrequenz bleibt konstant und das Magnetfeld wird zur Aufnahme eines Spektrums über einen bestimmten Bereich verändert. 3.2 Mikrowellenerzeugung Im Praktikum wird zur Erzeugung der Mikrowellen ein Reflexklystron (Nr. 1 in Abb. 2) verwendet. Die Frequenz wird hauptsächlich durch die geometrischen Abmessungen des Resonators bestimmt. Durch Ändern des Resonatorvolumens ist eine mechanische Abstimmung zwischen 8.5 GHz und 9.7 GHz möglich. Zusätzlich können kleine Frequenzänderungen durch Verstellen der Reflektorspannung erzielt werden. Abbildung 3: Klystron 2K25 (rechts), Modenkurven und Abhängigkeit der Klystronfrequenz von der Reflektorspannung (links) 7 Abb. 3 rechts zeigt den Zusammenhang zwischen Ausgangsleistung, Schwingungsfrequenz und Reflektorspannung. Man sieht, dass das Klystron bei verschiedenen Spannungen schwingt, man sagt das Klystron schwingt in verschiedenen Moden. Über die Reflektorspannung ist auch eine Frequenzmodulation des Klystrons möglich. Die HF-Leistung wird über eine Antenne in den angeflanschten Hohlleiter eingekoppelt. Klystrons besitzen eine relativ hohe Frequenz- und Leistungsstabilität. Nach dem Einschalten des Klystron-Netzgeräts wird zunächst die Kathode aufgeheizt. Der Strom wird angezeigt und sollte ca. 0.4 A betragen. Erst nach ca. 30 s können Resonatorund Reflektorspannung eingeschaltet werden (elektronische Verriegelung). Der Resonatorstrom wird angezeigt und muss ca. 25 mA betragen. Die Reflektorspannung kann mittels eines Potentiometers verändert werden. Zusätzlich ist es möglich, der Reflektorspannung eine 50 Hz Wechselspannung zu überlagern. Damit kann auf dem Oszilloskop direkt die "Modenkurve" betrachtet werden. Die Aufnahme von ESR-Spektren ist jedoch nur im Betrieb mit konstanter Reflektorspannung möglich! 3.3 Mikrowellentransport Die Ausbreitung von Mikrowellen geschieht beim ESR-Spektrometer im Praktikum in Rechteck-Hohlleitern – im sogenannten T10-Mode. Die größte elektrische Feldstärke tritt in der Mitte des Hohlleiters auf. Die magnetischen Feldlinien sind geschlossen und parallel zu den Breitseiten des Hohlleiters. Abb. 4 zeigt eine Momentaufnahme der Feldverteilung im Rechteck-Hohlleiter. Abbildung 4: Feldverteilungen im Rechteck-Hohlleiter 8 Der Einwegleiter (Nr. 2 in Abb. 2) verhindert das Eindringen reflektierter Mikrowellen in das Klystron. Durch den Richtkoppler (Nr. 3 in Abb. 2) wird ein Teil der Mikrowellenleistung zur Frequenzmessung abgezweigt. Mit dem Dämpfer (Nr. 4 in Abb. 2) kann die hindurchtretende Mikrowellenleistung definiert abgeschwächt werden. Die Skala ist in Dezibel (dB) geeicht. Es gilt folgende Beziehung: P Dämpfung = −10 ⋅ log aus . dB Pein 0 dB bedeutet keine Abschwächung, -10 dB bedeutet Dämpfung auf 1/10, -20 dB bedeutet Dämpfung auf 1/100 usw. 3.4 Resonatoren Der Resonator des Praktikumsspektrometers ist als Hohlraumresonator (Nr. 9 in Abb. 2) ausgeführt und wird durch ein abgeschlossenes Stück Hohlleiter gebildet. Durch Reflexionen an den Stirnseiten bildet sich eine stehende Welle aus. Abbildung 5: Feldverteilung im TE102-Rechteckhohlraumresonator Abb. 5 zeigt die Feldverteilung im Resonator. Die Probe befindet sich am Ort der maximalen Magnetfeldamplitude. Am Probenort oszilliert das Magnetfeld mit der Mikrowellenfrequenz. Wird das Klystron mit der Resonanzfrequenz des Resonators betrieben, so ist die Magnetfeldamplitude im Resonator stark überhöht. Sie ist um den Faktor Q größer als im 9 Hohlleitersystem außerhalb des Resonators. Q ist die Güte des Resonators, völlig analog zur Güte eines mechanischen oder elektrischen Oszillators. Die Güte Q eines Oszillators ist definiert durch das Verhältnis Q = 2π ⋅ im Resonator gespeicherte Energie . pro Periode verbrauchte Energie Q ist umso höher, je geringer die Verluste in den Resonatorwänden und in der Probe sind. Der Resonator im Praktikum erreicht eine Güte von etwa Q=1600. Mit anderen Resonatoren sind Güten bis über 10000 möglich. Die Güte geht also durch die Magnetfeldamplitude direkt in die Nachweisempfindlichkeit des Spektrometers ein. Über eine kleine in der Stirnwand befindliche Bohrung (Iris) wird der Resonator an den Hohlleiter angekoppelt. Mit einem Metallplättchen, das auf der Stirnseite einer Kunststoffschraube sitzt, wird der Grad der Kopplung des Resonators an das Mikrowellenfeld im Hohlleiter eingestellt. 3.5 Mikrowellenbrücke Die von der Probe absorbierte Leistung ist im Verhältnis zur vom Klystron gelieferten Leistung sehr klein, d.h. ein direkter Nachweis ist kaum möglich. Mit Hilfe einer Brückenanordnung lässt sich dies umgehen. Man lässt das Spektrometer in "Reflexion" arbeiten, d.h. Eingang und Ausgang des Resonators werden zusammengelegt und man misst die reflektierte Leistung. Wird das statische B0-Feld so eingestellt, dass keine ESR-Absorption stattfindet, kann der Resonator mit der Koppelschraube so abgeglichen werden, dass reflektierte Leistung minimal wird (Idealfall: keine Reflektion). Bei Auftreten der Elektronenspinresonanz wird der Resonator gedämpft, es wird Leistung reflektiert. Zur Trennung der ein- und auslaufenden Welle dient ein "magisches T" (Nr. 7 in Abb.2). Abbildung 6: Das "magische T" 10 Dieses Bauelement (Abb. 6) teilt eine aus A kommende Welle zu gleichen Teilen auf B und C auf. Arm D erhält keine Leistung also keine Leistung von A. Die vom Resonator reflektierte Leistung geht zur Hälfte in den Detektorarm D und zur Hälfte in den Arm B, wo in einem "Wellensumpf" (Nr. 8 in Abb. 2) die gesamte einfallende Mikrowellenleistung absorbiert wird. 3.6 Detektion Der Nachweis von Mikrowellen geschieht mit einer Kristalldiode, die wie in Abb. 7 gezeigt, längs der Schmalseite des Hohlleiters parallel zum elektrischen Feld steht. Die Punktkontaktdiode richtet die HF-Spannung gleich und erzeugt einen Gleichstrom (siehe Abb. 8). Die Gleichrichtung geschieht in einem Metall-Punktkontakt gegen eine Silizium-HalbleiterOberfläche. Dies hat den Vorteil sehr geringer Kapazitäten. Für kleine Feldamplituden ist der Diodenstrom I ∝ U2; d. h. die Diode besitzt also eine quadratische Kennlinie. Das Signal wird nichtlinear. Ferner ist aufgrund der geringen Steigung der Kennlinie die Empfindlichkeit sehr gering. Eine Linearisierung des Signals und eine Steigerung der Empfindlichkeit lässt sich durch eine Verschiebung des Arbeitspunkts in einen steileren Bereich der Kennlinie erreichen. Abbildung 7: Der Detektor Beim Spektrometer im Praktikum wird diese Verschiebung des Arbeitspunktes durch eine gezielte Fehlanpassung der Brücke erreicht. Der Detektor erhält zusätzlich eine konstante Leistung, die den „Vorstrom“ (durchgezogene Linie 3 in Abb. 8) erzeugt. Tritt ESR auf, so verändert sich der Strom entlang der Kennlinie. Durch die Vorspannung erzielt man einen deutlichen Gewinn an Empfindlichkeit. Das hier verwendete Verfahren hat allerdings den Nachteil, dass der Diodenvorstrom von der in die Brücke eingespeisten Leistung abhängig ist. 11 Abbildung 8: Gleichrichtung und Arbeitspunkt der Diode Eine wichtige Eigenschaft der Detektordioden ist ihr Rauschverhalten. Besonders bei bei kleinen Frequenzen um 0 Hz ist das Rauschen sehr hoch. Da sich ESR-Signale im allgemeinen nur langsam verändern, wird durch dieses Rauschen ein empfindlicher Nachweis effektiv verhindert. Die Lock-In-Technik (siehe 3.8), bei der das Signal mit einer Frequenz von 10 kHz moduliert wird, ermöglicht eine weitgehende Eliminierung des Rauschens. 3.7 Frequenzmessung Im Praktikum wird die Mikrowellenfrequenz mittels eines Durchgangsresonators (Nr. 5 in Abb. 2) gemessen, dessen Eigenfrequenz mechanisch verändert werden kann. Die eingestellte Frequenz kann anhand einer Mikrometerskala (Abb. 9) auf der Einstellschraube und einer Eichtabelle bestimmt werden. Abbildung 9: Mikrometerskala 12 Stimmt die eingestellte Frequenz mit der Klystronfrequenz überein, so ist die Absorption maximal, die transmittierte Mikrowellenleistung geht zurück. Dies wird von einer Detektordiode registriert und auf einem Voltmeter angezeigt. Eine Frequenzmessung ist nur bei Festfrequenzbetrieb möglich. Drehen Sie die Mikrometerschraube langsam durch und beobachten Sie den Zeiger des Messinstruments. Bei Resonanz sinkt die Spannung stark ab. Suchen Sie das Minimum und lesen Sie die Mikrometerstellung ab (rote Zahlen). Das Ablesen des in Abb. 9 veranschaulichten Beispiels ergibt 4.237 Skalenteile. Aus der im Praktikum vorhandenen Eichtabelle ergibt sich die zugehörige Frequenz zu 9.646 GHz. 3.8 Phasenempfindliche Detektion, Lock-In-Technik Die durch ESR-Absorption hervorgerufenen Änderungen des Detektorsignals sind vor allem für Proben mit schwacher Absorption so klein, dass sie nicht direkt als Spannungsänderung Messbar sind. Zur Empfindlichkeitssteigerung nutzt man die sogenannte Lock-In-Technik, bei der das ESR-Signal moduliert wird. Das erreicht man durch die Überlagerung eines mit 10 kHz oszillierenden B-Feldes über das statische Magnetfeld B0. Das Zusatzfeld wird durch zwei kleine Helmholtzspulen (Nr. 10 in Abb. 2) erzeugt, die an den Breitseiten des Resonators angebracht sind. Die Amplitude des Modulationsfeldes ist am Lock-In-Verstärker einstellbar. Das Entstehen des Wechselspannungssignals am Detektor kann mit Hilfe von Abb. 10 verstanden werden. Abbildung 10: Das Entstehen des ESR-Signals 13 Für fünf verschiedene Werte des statischen Magnetfeldes innerhalb der Absorptionslinie ist die Magnetfeldmodulation und die am Detektor abgegriffene Wechselspannung skizziert (Hierbei wurde angenommen, dass die Brücke abgeglichen ist, also außerhalb der Resonanz keine Diodenspannung auftritt). Das Diodensignal ist dem Betrag der Steigung der Resonanzlinie proportional. Links des Maximums ist die Phase von Modulationssignal (B0-Modulation) und Diodensignal (moduliertes ESR-Signal) identisch. In der rechten Hälfte unterhalb der Resonanzline sind ESR-Signal und B0-Modulation gegenphasig. Da der Lock-In-Verstärker phasenempfindlich detektiert, führt dies zu einer Vorzeichenumkehr beim Ausgangssignal (positiv für linke Flanke der Absorptionskurve, negativ für rechte Flanke der Absorptionskurve). Man erhält also als Messkurve die differenzierte Absorptionskurve (Abb. 11). Abbildung 11: Das demodulierte Signal Die Intensität des registrierten Signals ist bei kleinen Modulationsamplituden in etwa proportional zur seiner Amplitude. Zur Erreichung eines günstigen Signal/RauschVerhältnisses ist es also sinnvoll, den Modulationshub möglichst groß zu wählen. Eine Grenze ist erreicht, wenn der Hub größer wird als die Linienbreite der Absorption. Die ESRLinie wird dadurch breiter und flacher. Diesen Effekt bezeichnet man als Modulationsverbreiterung. Optimal ist eine Modulationsamplitude in der Größenordnung der Linienbreite. Mit der Modulationstechnik legt man das Messsignal in einen Frequenzbereich, in dem die Detektordiode kaum mehr rauscht. Durch die schmalbandige Verstärkung bei der Modulationsfrequenz wird auch das Eingangsrauschen des Lock-In-Verstärkers weitgehend eliminiert. So sind extrem hohe Verstärkungsfaktoren möglich. Beim Spektrometer im Praktikum können noch Diodenspannungsänderungen bis 2.10-8 Volt nachgewiesen werden. Die Grenzempfindlichkeit beträgt etwa 5.1013 Spins pro Gauß Linienbreite bei einer 14 Zeitkonstante von 1 s. (Die Zeitkonstante wird durch ein RC-Glied am Ausgang des Lock-InVerstärkers bestimmt und bewirkt eine Mittelung des Rauschens.) 3.9 Das statische Magnetfeld Zur Aufnahme eines Spektrums wird die Mikrowellenfrequenz konstant gehalten und das statische Magnetfeld computergesteuert mit konstanter Geschwindigkeit variiert. Das statische Magnetfeld muss räumlich homogen sein – ansonsten würde man eine zusätzliche Linienverbreiterung erhalten. Um maximale Homogenität des Magnetfeldes zu erreichen, wird der Resonator in einem möglichst engen Luftspalt zwischen den Polschuhen eines Elektromagneten positioniert. Die Kurzzeitstabilität des Netzteils, das den Magneten versorgt, muss sehr gut sein, da sich Schwankungen des Feldes ebenfalls auf die gemessene Linienbreite auswirken. Der Magnet im Praktikum erreicht eine maximale Feldstärke von 0.53 Tesla. Die Feldstärke wird (zusätzlich) mit einer Hallsonde (Nr. 11 in Abb. 2) gemessen und digital angezeigt. 4. Warnungen und Hinweise − Gehen sie mit den Probenröhrchen vorsichtig um. Sie bestehen aus Quarz und sind daher leicht zerbrechlich! Dasselbe gilt auch für die kristallinen Proben. − Folgende Bedienelemente dürfen nur vorsichtig und mit wenig Kraft verdreht werden: die Schraube an der Probenhalterung die Koppelschraube der mechanische Abstimmknopf des Klystrons. − Vermeiden Sie eine Verschmutzung des Resonatorinnenraums! − Legen Sie bei Arbeiten in der Nähe des Magneten Ihre Armbanduhren ab! − Stellen Sie den Dämpfer für die Klystronleistung immer auf Minimum, bevor Sie − das Klystron auf Betrieb schalten oder die Probe herausnehmen oder einsetzen. Umbauten oder Reparaturen nur in Anwesenheit des Betreuers vornehmen! RUFEN SIE BEI STÖRUNGEN SOFORT DEN BETREUER! 5. Messprogramm 15 5.1 Apparatives − Messen Sie die Klystronleistung als Funktion der Reflektorspannung für eine Mode. Tragen Sie hierzu die Spannung der Messdiode (relativer Maßstab) gegen die Reflektorspannung auf. − Messen Sie die Klystronfrequenz als Funktion der Reflektorspannung für einen Mode. (Beachten Sie, dass für diese beiden Messungen zwei getrennte Messreihen erforderlich sind!) − Stellen Sie die Klystronfrequenz auf Resonanz mit dem leeren Resonator und bestimmen Sie die Resonanzfrequenz. Die Verkabelung für die jeweiligen Messungen sind selbst vorzunehmen und vor in Betriebnahme mit dem Betreuer zu besprechen. 5.2 Abstimmung des Spektrometers, Bestimmung des g-Faktors von DPPH − Mit polykristallinem DPPH (siehe 5.3.1 Abb. 12) soll die Mikrowellenbrücke, der Lock-InVerstärker und der Magnetfeldsweep eingestellt werden. Das Signal soll bezüglich seiner Form und des Signal-Rausch-Verhältnisses optimiert werden. Stimmen Sie die Brücke zunächst ohne und dann mit Probe ab. Bestimmen Sie die Resonanzfrequenz. − Messen Sie das ESR-Spektrum von DPPH mit ca. 15 verschiedenen Modulationsamplituden. Was stellen Sie fest? Welche Modulationsamplitude würden Sie als optimal bezeichnen? Beachten Sie hierzu die Breite und die Amplitude der aufgenommenen Linie. Tragen Sie Linienbreite und Linienamplitude in Abhängigkeit von der Modulationsamplitude auf. Wo liegen die optimalen Messbedingungen vor? − Bestimmen Sie den g-Faktor und die Linienbreite BSS von DPPH. Schätzen Sie den Fehler ab. Welche Linienform finden Sie? Achten Sie bei allen Aufgabenstellungen generell auf rauscharme und bezüglich der Linienform einwandfreie Spektren (Symmetrie und Nullinie). Optimieren Sie bei jedem Spektrum die Modulationsamplitude, Verstärkung und Zeitkonstante des Lock-In-Verstärkers und Magnetfeldsweepbereich (zentriertes Spektrum). Notieren Sie zu jedem Spektrum folgende Parameter: 16 Probe Sweepbereich und Linienmitte (Magnetfeld im Nulldurchgang) Linienbreite BSS Sweepgeschwindigkeit Klystronfrequenz und Klystronleistung (Dämpferstellung) Verstärkung, Phasenwinkel und Zeitkonstante Modulationsamplitude Beachten Sie bei den einzelnen Messungen die Fehlerquellen, die Sie haben und berücksichtigen Sie deren Auswirkung auf das Messergebnis. 5.3 Bestimmung der Hyperfeinstruktur 5.3.1 polykristallines DPPH Diphenylpikrylhydrazyl (DPPH) ist ein organisches Radikal mit einem ungepaarten Elektron. Das Elektron hält sich hauptsächlich an den beiden zentralen Stickstoffkernen des Moleküls auf. Diese beiden Kerne sind als äquivalent zu betrachten. Stickstoff besitzt einen Kernspin I = 1. Aus diesem Grund beobachtet man im Spektrum einer verdünnten DPPH-Lösung 2nI+1 = 5 Linien (n ist dabei die Zahl der äquivalenten Kerne). Grundbedingung für die Beobachtung einer aufgelösten Hyperfeinstruktur ist, dass die Kernspinrelaxationszeit mindestens so lang ist wie die Korrelationszeit des Elektrons. Das ist die Zeit, in der, vereinfacht gesagt, der Elektronspin mit einem bestimmten Kernspin wechselwirkt. Abbildung 12: Struktur von DPPH Zusätzlich darf die Hyperfeinstruktur nicht durch eine schnelle Bewegung des Elektronenspins, bei der er mit vielen verschiedenen Kernen wechselwirkt, ausgemittelt werden. Es gibt zwei Möglichkeiten der Linienverschmälerung: • • Über mehrere Moleküle/Kerne hinweg delokalisierte Elektronen in Festkörpern (z. B. Leitungselektronen in hochdotierten Halbleitern und Metallen) und In Kristallen (siehe 5.4), bei denen die elektronischen Wellenfunktionen der einzelnen Moleküle/Atome stark überlappen ist das paarweise Umklappen benachbarter Spins in jeweils entgegengesetzte Richtung möglich. Dieser durch die sogenannte Austauschwechselwirkung vermittelte Spinumklapp ermöglicht die Bewegung eines Spins durch einen Festkörper, ohne dass Ladungsträger ihren Ort verändern. Genau das ist in (poly-) kristallinem DPPH der Fall. 17 In diesem Teil des Versuchs soll die Hyperfeinstruktur von DPPH untersucht werden. Hierzu verwendet man eine Lösung von DPPH. Die Intensität des Signals dieser Probe ist ziemlich klein. Durch Optimierung der Messparameter soll ein möglichst unverrauschtes Spektrum erreicht werden. Jedoch darf die Modulationsamplitude nicht zu weit erhöht werden, denn durch Modulationsverbreiterung würde die Hyperfeinstruktur im Spektrum nicht mehr aufgelöst. − Bestimmen Sie die isotrope Hyperfeinwechselwirkungskonstante. − Welches Intensitätsverhältnis der Linien ist theoretisch zu erwarten? 2+ 5.3.2 Mn in Lösung In einer wässrigen Lösung von MnCl2 liegen isolierte hydratisierte Mn2+-Ionen vor. In der 3dSchale befinden sich 5 ungepaarte d-Elektronen. Die Hyperfeinstruktur des 55Mn2+ wird durch die Wechselwirkung des Mn2+-Kerns mit den Elektronen in der 3d-Schale verursacht. 55 Mn2+ aufgrund der experimentell beobachteten − Wie groß ist der Kernspin von Linienzahl? − Bestimmen Sie die isotrope Hyperfeinkopplungskonstante. Berechnen Sie damit die Spindichte |Ψ(0)|2 am Kernort. − Warum findet man eine endliche Aufenthaltswahrscheinlichkeit von d-Elektronen am 55 2+ Kernort? Welchen Wert finden Sie für Mn ? 5.4 Bestimmung des g-Tensors eines CuCl2 5 H2O Einkristall − Bestimmen Sie die Anisotropie des g-Faktors für einen Cu(II)Cl2-Einkristall − Welche Linienform finden Sie für den Cu(II)Cl2-Einkristall? − Bestimmen Sie die Austauschfrequenz νex = J/h entlang der Kristallachse mit den kürzesten Cu-Cu-Abständen. Hinweis (vgl. Principles of Magnetic Resonance ed. C. P. Slichter, oder FP-Handapparat, E. Dormann "ESR-Spektroskopie" in Spektroskopie amorpher und kristalliner Festkörper von D. Haarer et al., etc.): ∆Bpp ≈ <∆Bdd>/(J/h) ~ "Verhältnis der dipolaren Wechselwirkung zum Spinaustausch" Überlegen Sie sich schon zur Vorbereitung an Hand von Abb. 13 und der Zusatzliteratur, welche und wie viele Messungen man durchführen muss, um die Anisotropie des g-Faktors eindeutig zu bestimmen? Welchen Vorteil für die Messung hat es, wenn man die Kristall- 18 struktur, d. h. die Kristallachsen bzw. die Wachstumsrichtung des CuCl2 5 H2O Einkristall kennt? Abbildung 13: Kristallstruktur von CuCl2 5 H2O Einkristall O− Cl− Cu2+ Projektion auf die a-b-Ebene Projektion auf die b-c-Ebene Projektion auf die a-c-Ebene 19