Was sind die meteorologischen Grundgleichungen? Clemens Simmer Meteorologisches Institut Gliederung 1. Übersicht 2. die meteorologischen Basisvariablen und ihre Verknüpfung 3. die Bewegungsgleichung 4. Zusammenfassung 2 1 Übersicht Zur Bestimmung der ...benötigen wir sieben grundlegenden meteorologischen Variablen: die sieben meteorologische Grundgleichungen: Wind (3) Luftdruck Lufttemperatur Luftdichte Luftfeuchtigkeit ... Bewegungsgleichung (3) Kontinuitätsgleichung 1. Hauptsatz der Wärmelehre Wasserdampfbilanzgleichung Zustandsgleichung der Luft. Sechs der meteorologischen Grundgleichungen betreffen zeitliche Ableitungen der meteorologischen Variablen -> (Wetter)Vorhersagen sind möglich! 3 2 Die meteorologischen Basisvariablem und ihre Verknüpfungen 1. Druck, Dichte und Temperatur Zustandsgleichung für ideale Gase statische Grundgleichung 1. Hauptsatz der Wärmelehre 2. Wind Kontinuitätsgleichung 3. Feuchte Kontinuitätsgleichung für Wasserdampf 4 2.1 Druck, Dichte und Temperatur • • • • • • Was ist Temperatur? Was ist Luftdruck? Wie erzeugt Luftdruck Luftbewegung? Die Gleichung für ideale Gase Die statische Grundgleichung Der erste Hauptsatz der Wärmelehre 5 Was ist Temperatur? • Die Temperatur hängt mit der mittleren kinetischen Energie (Bewegungsenergie) der einzelnen Moleküle zusammen: m 2 3 v k BT mit m Masse eines Moleküls 2 2 v Geschwindi gkeitsvekt or eines Moleküls k B 1.3806 10-23 J/K Boltzmann - Konstante • Temperatur hängt also nicht von der Anzahl der Moleküle (also z.B. von der Dichte) ab! (siehe Ausdehnung ins Vakuum) • Der Wärmeenergie eines Luftvolumens (genauer: Definition der inneren Energie E) ist proportional zu Temperatur T und zur Wärmekapazität bei kontantem Volumen CV ([CV]=J/K) E CVT mcvT ; e E cVT mit cv 717 J/(kgK) m 6 Was ist Luftdruck? • Luftdruck ist auf molekularer Ebene die Flussdichte der Impulse der Luftmoleküle, denn Druck = Kraft / Fläche = kg x m/s2 / m2 = (kg x m/s) / (m2 s) = Impuls / (Fläche x Zeit) • Luftdruck ist daher – proportional zur Dichte der Luft (mehr Moleküle→mehr Impulse), und – proportional zum Quadrat der Geschwindigkeit der Luftmoleküle, denn • Impuls =mv, (m Masse, v Geschwindigkeit) und • Häufigkeit des Durchfliegens eine Fläche ~ v. • Bei ruhender Luft ist die Impulsflussdichte durch eine Fläche unabhängig von der Orientierung (Druck ist kein Vektor!) • Warum bewegen Druckunterschiede die Luft? 7 Warum bewegen Druckunterschiede die Luft ? (1) Betrachte alle Moleküle, die an beiden Enden des Luftvolumens in der Zeit Δt mit Umgebung ausgetauscht werden. Rechts herrsche ein höherer Druck (Impulsdichte) als links durch höhere Temperatur (T~v²). t=to t=to+Δt Das Volumen hat eine Gesamtimpulsänderung nach links erfahren. Es wird also nach links beschleunigt! 8 Warum bewegen Druckunterschiede die Luft ? (1) Betrachte alle Moleküle, die an beiden Enden des Luftvolumens in der Zeit Δt mit Umgebung ausgetauscht werden. Rechts herrsche ein höherer Druck (Impulsdichte) durch mehr Moleküle. t=to t=to+Δt Das Volumen hat eine Gesamtimpulsänderung nach links erfahren. Es wird also nach links beschleunigt. 9 Statische Grundgleichung • Offensichtlich beschleunigt der Druckgradient dp/dx (x beliebige Raumkoordinate) Luft zum niedrigeren Druck. • Ein Dimensionsanalyse des Druckgradienten ergibt, dass sich die Druckgradientbeschleunigung durch Division mit der Dichte ergibt 2 2 kg dp kgms / m 3 dx m m m 2 s Dichte Beschleuni gung • In der Vertikalen wird die Druckgradientbeschleunigung mit sehr guter Näherung durch die Schwerebeschleunigung g=9,81 m/s² kompensiert – es folgt die statische Grundgleichung: 1 dp g dz 10 Zustandsgleichung für ideale Gase • Druck (p), Temperatur (T) und Partikelanzahl (n= Anzahl der Mole des Gases im Volumen) sind verknüpft durch: pV nRT pV mit R 8314,4 J/(kmol K) allgemeine Gaskonstan te m R RT m T mRM T mit RM R/M spezielle Gaskonstan te M M M Molekularg ewicht des Gases m ist die Masse des Gases (kg) • Luft ist ein Gasgemisch; die spezifische Gaskonstante ergibt sich aus einem mittleren Molekulargewicht → RM=RL=R/ML=const mit ML=28,965 kg/kmol, RL=287 J/(kg K) • Üblicherweise nutzen wir in der Meteorologie die Formulierung mit der Dichte m p RMT RMT V 11 Analyse von pV=nRT V p=const V=const T nR* T p V const 1 p nR T const V p * T=const warm kalt p V nR* T V p const V=const T V p=const T 12 1. Hauptsatz der Wärmelehre (1) Bei fester Wand ändern auftreffende Luftmoleküle nur ihre Richtung; ihre kinetische Energie bleibt konstant und damit auch die Temperatur im Volumen. Bewegt sich die Wand z.B. durch den Druck der Luftmoleküle nach rechts, so haben die reflektierten Luftmoleküle eine geringere kinetische Energie; da die Temperatur proportional zur mittleren kinetischen Energie eines Luftmoleküls ist, nimmt die Temperatur im Volumen ab. Ausdehnung eines Gases gegen einen äußeren Druck führt zur Abnahme der Temperatur des Gases. Die Temperatur hängt mit der inneren Energie des Gases zusammen. Es gibt also eine Umwandlung zwischen innerer Energie und Ausdehnungsarbeit (→ Erster Hauptsatz der Wärmelehre) 13 1. Hauptsatz der Wärmelehre (2) V → V + ΔV p ΔV = (Kraft/Fläche) x Volumen = Kraft x Weg = A (Arbeit) • Diese Ausdehnungsarbeit muss also auf Kosten der inneren Energie des Gases gehen, also pΔV=-mcVΔT. • Nun könnte aber das Gas durch andere Wärmeströme ΔQ zusätzlich erwärmt oder abgekühlt werden (über die Wände, Kondensation von Wasserdampf), also ΔQ = pΔV+mcVΔT • Das ganze differentiell nach Division durch m mit α=1/ρ und cp=cv+RL dq cV dT pd oder dq c p dT dp 14 1. Hauptsatz der Wärmelehre (3) • Lässt man weder Kondensation noch andere Wärmeflüsse zu (sogenannte adiabatische Veränderungen) so gilt dT RLT dT RL dp T p dp c p c p p T cp p T0 p0 RL cp • Wendet man die statische Grundgleichung auf dp an, so gibt sich für vertikale adiabatische Bewegungen dT g c pdT dp gdz 0,98K / 100m dz cp • Ohne externe Wärmezufuht kühlt sich Luft beim Aufsteigen um ca 1 K/ 100m Höhenunterschied ab 15 2.2 Wind • Wind als Vektor • Konvergenz und Massenänderungen • Kontinuitätsgleichung 16 Wind als Vektor • • Geschwindigkeit, mit der sich die Luft bewegt und ihre Richtung Bezug ist dabei ein endliches Luftvolumen – nicht einzelne Moleküle (Kontinuumsmechanik, Hydrodynamik). z w i u x (Ost) v k j vh v y (Nord) u v sin cos v v sin sin w v cos v ui vj wk v u 2 v 2 w2 Dabei ist λ die Winkelabweichung von der Ostrichtung, und φ die Winkelabweichung von der Vertikalen. 17 Horizontale Windgeschwindigkeit Für große Skalen (lange Zeitmittelung (mehrere Minuten) oder Mittelung über viele Kilometer gilt u~v>>w. N 36 W 27 9O u vh ui vj v vh u 2 v 2 18 S Achtung: Die übliche Windrichtungsangabe ist dem Windvektor entgegengesetzt. Merksatz: Strom: wohin er geht, Wind: woher er weht. 18 Divergenz der Windgeschwindigkeit Die Divergenz eines Windfeldes quantifiziert das Zusammen- (Konvergenz, negative Divergenz) oder Auseinanderströmen (Divergenz) der Luft. u v w div v v i ui x y z u v div v H v H x y • Bei Beschränkung auf die horizontalen Windkomponenten wird der Zusammenhang zwischen Strömungsfeld und Divergenz unmittelbar deutlich. • Die ∂ (sprich „del“) bezeichnen partielle Ableitungen (d.h. hier wird z.B. die Zeit konstant gehalten) t=0 t=t1 x <0 >0 <0 19 Divergenz und Massenerhaltung M Nettomasse nfluss aus einem festen Volumen, [M] kg/s Mi M m ( V ) V mit m Masse und Dichte t t t Massenflus s durch eine Randfläche senkrecht zu x, M x V,m,ρ=m/V M x v Fx Fx ρ 0 wenn Fluss aus V heraus Es interessie rt aber nur die Änderung von Mx einer Stirnseite zu anderen also z.B M̂x Mx - Mx v Fx ρ M x x Fx x. x x V Das gilt dann auch für die anderen zwei Doppelfläc hen u v w Mˆ x V , Mˆ y V , Mˆ z V x y z Zusammen ergibt sich u v w ˆ ˆ ˆ V v V M V M x M y M z t y z x d und schließlic h v oder v t dt ohne Beweis 20 2.3 Feuchte • Feuchtemaße • Kontinuitätsgleichung für Wasserdampf 21 Feuchtemaße • w absolute Feuchte [kg m-3] • e Partialdruck des Wasserdampfs [hPa] • Td Taupunkt [K] Abkühlung auf Taupunkt führt zur Kondensation • q spezifische Feuchte [kg/kg] Masse des Wasserdampfes zur Gesamtmasse der feuchten Luft • m Mischungsverhältnis [kg/kg] Masse des Wasserdampfes zur Gesamtmasse der trockenen Luft • f relative Feuchte [%] =e/es mit es Sättigungsdampfdruck 22 Auswirkungen der Feuchte • Gaskonstante für Luft RL aber auch die spezifischen Wärmekapazitäten von Luft (cV und cp) sind leicht vom Wasserdampfgehalt abhängig • Gegenüber der Masse der „trockenen“ Luft bleibt die Masse des Wasserdampfes nicht konstant (Kondensation, Verdunstung). • Entsprechend muss die „Kontinuitätsgleichung“ für Wasserdampf Quellen und Senken enthalten. d Anstatt v müssen wir schreiben dt d w w v W wobei W alle Phasenumwa ndlungen dt von Wasser beeinhalte t. • Schließlich muss der 1. Hauptsatz bei der externen Wärmezufuhr die Umwandlungswärmen enthalten. 23 3 Die Bewegungsgleichung • Die Bewegungsgleichung im Inertialsystem • Auswirkung der rotierenden Erde – Bewegung in einem rotierenden Koordinatensystem • Skalenanalyse der Bewegungsgleichung – geostrophische Approximation – hydrostatische Approximation 24 Die Bewegungsgleichung im Inertialsystem • In einem Inertialsystem gelten die Newtonschen Axiome, insbesondere – N2: Greift eine Kraft an einem Körper an, so reagiert der mit einer Beschleunigung in Richtung der Kraft mit einem Betrag umgekehrt zu seiner trägen Masse – N4: Greifen mehrere Kräfte an, müssen diese vektoriell addiert werden. • In der Erdatmosphäre gilt insgesamt mit sehr guter Näherung dv a dv a K m K , f mit v a Absolutge schwindigk eit dt dt m f massenspez ifische Kraft 3 1 f fi mit f1 Druckgradi entkraft p ρ i 1 f2 Schwerkraf t g -gk , f3 Reibungskr aft fR dv a 1 p gk fR dt 25 Auswirkung der rotierenden Erde –Bewegung in einem rotierenden Koordinatensystem • Das erdfeste System ist kein Inertialsystem, da jeder feste Punkt (bis auf die Pole) durch die Erddrehung ständig seine Bewegungsrichtung ändern muss. • Massen auf der Erde reagieren auf diese Beschleunigungen mit Trägheit, d.h. sie versuchen ihre momentane Bewegung im Inertialsystem beizubehalten. • Im erdfesten System erscheinen diese Trägheitsbewegungen als Beschleunigungen, die dann als Reaktion auf Scheinkräfte interpretiert werden (Zentrifugal- und Coriolisbeschleunigung). • Die Zentrifugalbeschleunigung führt zur gz Erdabplattung, die sich so einstellt, dass die Summe aus Zentrifugalbeschleunigung und Erdanziehung normal zur Erdoberfläche sind. gN g • Sie „verschwindet“ in g. 26 Coriolisbeschleunigung - anschaulich (1) • • Q‘‘ Q Q‘ P‘ P t+Δt t0 • • • Ein von P (fest auf der Scheibe) nach Q geworfener Körper hat auch eine xKomponente der Geschwindigkeit; sie entspricht etwa der u-Bewegung von P. Nach der Zeit Δt ist P bei P‘ und auch der Körper muss etwa die gleiche Strecke in x-Richtung nach Q‘zurückgelegt haben. Der Punkt Q hat sich aber nur nach Q‘‘ verlagert, durch die kleinere Entfernung von der Drehachse. Der Körper hat sich relativ zur Scheibenoberfläche nach rechtsbewegt. Analoges ergibt sich für die umgekehrte Richtung. 27 Coriolisbeschleunigung - anschaulich (2) - Q‘ • Q P P‘ Q‘‘ Q‘ Q P‘ P Q‘‘ Die Vektoren seien Wege nach einer festen Zeit. • P wirft nach Q (blauer Vektor). • Doch gleichzeitig ist die Drehung der Scheibe zu berücksichtigen (roter Vektor). • Die Summe ist der grüne Vektor. • Beachte die Position des Körpers Q‘‘ in Relation zu Q‘, dem Ort, an dem der Zielpunkt nach der zeitspanne ist. Rechtsablenkung 28 Bewegung in einem rotierenden Koordinatensystem • Eine formale Ableitung liefert für die Coriolisbeschleunigung fC 2 v , wobei Ω der Vektor der Winkelgeschwindigkeit der Erddrehung ist (=2π/60x60x24 s-1) • Offensichtlich (Rechte-Hand-Regel) zeigt diese Beschleunigung auf der Nordhalbkugel nach rechts und auf der Südhalbkugel nach links. • Insgesamt haben wir dann (v ist hier die Geschwindigkeit in einem Koordinatensystem, das fest auf der Erde verankert ist) dv 1 p gk 2 v fR dt 29 Bewegung in einem rotierenden Koordinatensystem dv 1 p gk 2 v fR dt komponentenweise du 1 p 2v sin w cos dt x dv 1 p 2v sin dt y dw 1 p 2u cos -g dt z fR,x fR,y fR,z gekoppelte nichtlinear Diff‘gleichungen 2. Ordnung 30 Skalenanalyse (1) - synoptische Systeme der mittleren Breiten - • Synoptische Skalenanalyse der z-Komponente (Vertikalwind) -> statische Grundgleichung • Synoptische Skalenanalyse der x/y- Komponente (Horizonalwind) -> der geostrophische Wind 31 Skalenanalyse (2) - charakteristische synoptische Größen - • • • • • • • • • Horizontalgeschw. Vertikalgeschw. Länge Höhe Luftdruckvariat. Zeit Coriolisparam. Luftdichte Luftdruck am Boden U ~ W ~ L ~ H ~ P ~ L/U = T ~ f = 2sin ~ ~ po ~ 10 m/s 10-2 m/s 106 m 104 m 103 Pa 105 s 10-4 s-1 1 kg/m3 105 Pa (1000 km) (10 km) (10 hPa) (ca. 1 Tag) (1000 hPa) 32 synoptische Skalenanalyse (3) – horizontale Bewegungsgleichung - du 1 p 2(v sin w cos ) FFr , x dt x dv 1 p dt y 2u sin U/T 1/ p/L 10-4 10-3 T fU 10-3 FFr , y fW - 10-6 - m/s2 p 3 p FP,H p 2 p vg p 1 p FC,H p H ...Coriolisbeschleunigung und Druckgradientbeschleunigung heben sich gegenseitig auf! 33 synoptische Skalenanalyse (5) - 3. Bewegungsgleichung - dw 1 p g 2u cos fF ,z dt z W/T 10-7 1/ po/H g 10 p g z 10 fU - 10-3 - m/s2 ...Schwerebeschleunigung und Druckgradientbeschleunigung heben sich gegenseitig auf! 34 4 Zusammenfassung dv 1 p 2 v g FFr dt d v dt dT dp 1 H dt c p dt c p d w w v W dt p RLT 6 prognostische Gleichungen 1 diagnostische Gleichung für sieben meteorologische Basisvariablen Alle Gleichungen sind mehrfach mit einander gekoppelt. Sie lassen sich durch die Zeitabhängigkeit für die Zukunft lösen Wetter und Klimavorhersage ist möglich! 35