Stromstärke Ladungstransport pro Zeiteinheit STROM und SPANNUNG Dimension: 1 A = 1 Ampere = 1 C/s EX-II SS2007 dQ I= = dt ! ! !j · dS Stromdichte : Stromträger A/cm2 Driftgeschwindigkeit mittlere gerichtete Geschwindigkeit Elektronen bzw. positiv oder negativ geladene Ionen Paul Drude (1863-1906) Drude-Modell N = Dichte [m mikroskopisches Modell: !j = N q !v −3 Driftgeschwindigkeiten ] Elektronen bewegen sich in einem Gitter positiver Ionen mit thermischer Geschwindigkeit vth ≈ 105 m/s Ohne äußeres Feld haben die Elektronen keine gerichtete Driftgeschwindigkeit !v" = 0. !j = N − q − !v − + N + q + !v + z.B. in einem Elektrolyten 1 3 m v2 = k T 2 2 Diffusion: !v 2 " = # 0 Driftgeschwindigkeit Leitfähigkeit ! # ! ! !j = N q!!v " = N q 2 τ E/m = σE Drude-Modell ! $ ! " τ : mittlere Zeit zwischen Stößen mit dem Ionengitter äußeres Feld beschleunigt während dieser Zeit die Elektronen I = σA homogener Leiter U U = L R ! % mit I = j · A und E = U/L ! !a = F! /m = q E/m R= Definition: Widerstand mittlere Driftgeschwindigkeit: !!v " = τ F! /m, (typisch < 1 mm/s ) L L = ρs · σA A spezifischer Widerstand Dimension von R: ! ! !j = N q!!v " = N q τ E/m = σE ! A σ= V ·m 2 [V /A] = [Ω] Leitfähigkeit Ohmsches Gesetz " ρs = [Ω m] Potentialgefälle und Strom lineares Potentialgefälle $ () (! % (*(! ' & U (x) = φ1 − φx = R · I R= U I U R I= U R ! ! # I ! $ % U =R·I ! " % # $ & U1 = U0 x L U2 = U0 L−x L & Potentialdifferenzen entlang einem Spannungsteiler x L Joule’sche Wärme Kontinuitätsgleichung Energiegewinn, wenn eine Ladung Q eine Potentialdifferenz U durchläuft. Ladungsträgerfluß durch eine Fläche S pro Zeiteinheit ! !=−dQ=−d !j · dS dt dt S Arbeit : W = Q U Leistung : P = dW dt =U dQ dt = U I = I2 R = " ! ρ dV V U2 R Dimension [W att] = [V · A] Die in einem Stromkreis erzeugte Wärme ist proportional zur Leistung des Stromkreises Kontinuitätsgleichung !j ! Arbeit, die notwendig ist um eine Ladung Q gegen die Potentialdifferenz U zu verschieben. ! · !j = − ∂ρ ∇ ∂t Gauß’scher Satz ! " != ! · !j) dV !j · dS (∇ S V Ladungserhaltung Kirchhoff’sche Regeln gelten in stationären elektrischen Stromkreisen ! · !j = − ∂ρ ∇ ∂t 1) bei Verzweigung mehrerer Leiter gilt als Folge der Kontinuitätsgleichung stationärer Strom ! ! Ii = 0 ! " ! ! # i ! · !j = 0 ∇ ! ! % $ Kirchhoff’sche Regeln Reihenschaltung von R gelten in stationären elektrischen Stromkreisen ! # " Rges = ! ! ! 2) Die Generatorspannung verteilt sich auf die Elemente eines Schaltkreises. ! & Ri & & " # $ i ! " ! $ ! $ % Ui = U0 ! i ! % ! # Parallelschaltung von R Brückenschaltung der Strom am Amperemeter ist Null, wenn Iges = ! i ! ! U Ii = Ri i " ! ! R2 R1 = Rx R3 " ! ! " ' % ' ! # # % # ! 1 1 = Rges Ri i U1 = U2 ! ! ! $ # $ % % & Ampere-, Volt-, Ohm-Meter # # # # # Messgeräte % ! $ # ! ! " & ' # " $ " ( ' Ampere-Meter ! $ ) ' Volt-Meter Ohm-Meter Ri ! R ! Rv magnetisierte Weicheisenstücke stossen sich ab http://leifi.physik.uni-muenchen.de/web_ph10/versuche/02_dreheiseninst Messgeräte ungewöhnlicher Spannungsteiler Blitz http://leifi.physik.uni-muenchen.de/web_ph10/versuche/02_dreheiseninst Äquipotential linien Spannungsteiler 2D Spannungsteiler eines ortsempfindlichen Detektors ! " Gleichstromquellen Messung der abfliessenden Ladungen ' ! elektromotorische Kraft EMK Der Innenwiderstand begrezt den maximalen Stromfluss Imax < $ % ( )* EM K Ri ) * + ,,+ , -&. / 0 ! 12 $3 14 ! 1 ! " ! Klemmenspannung = UKL = EM K : 2 ; < 5 " 6 2 7 " 6 1 ' +! ! 9 x ∝ ' # ( # ' ( ) * ' ' ' ( & % ! /8 ' ' ' /* ' ' ' " ! $ ! " # & (Q1 + Q2 ) − (Q3 + Q4 ) Ra Ra + Ri $ % $ Q +Q +Q +Q 1 2 3 4 > 9 A + Q ) − (Q + Q ) " # = . $ > ? > 9 > " # @ . $ > ? (Q 2 3 1 4 y ∝ Q1 + Q2 + Q3 + Q4 Aufgrund der EMK ist die Quelle in der Lage elektrische Arbeit zu leisten. Potentialgefälle und EMK Elektrochemische Spannungsreihe Verträglichkeit von ? ! ×E ! =0 ∇ mit stationärem Stromfluss in einem Elektromagneten Ein Redoxpaar: Cu ↔ Cu2+ + 2e− Redoxpotential: Maß für die Bereitschaft der Ionen Elektronen aufzunehmen ! EMK trägt die Elektronen gegen das Feld nach oben Gradient des elektrischen Potentials treibt die Elektronen nach unten Cu/Cu2+ -Paar +0, 35 V Zn/Zn2+ -Paar −0, 76 V " # $ } 1, 11 V ! = edlere Metalle nehmen Elektronen bereitwilliger auf Galvanisches Element Galvanische Korrosion 1.11 V Elektrochemie : spontane chemische Reaktion bewirkt elektrischen Stromfluss Akkus Spezifizierung von Akkus Blei Bleioxid H2SO4 Battery specifications Ladevorgang: P bSO4 + 2 OH − P bSO4 + 2H + → P bO2 + H2 SO4 + 2e → P b + H2 SO4 − 2e Anode Kathode Entladevorgang: P bO2 + 3H + + HSO4− + 2e → P b + SO4−− → Galvanic corrosion is an electrochemical action of two dissimilar metals in the presence of an electrolyte and an electron conductive path. It occurs when dissimilar metals are in contact. P bSO4 + 2H2 O P bSO4 + 2e Anode Kathode Energy/weight Energy/size 30-40 Wh/kg 60-75 Wh/L Power/weight Charge/discharge efficiency 180 W/kg 70%-92% Self-discharge rate Time durability 3%-20%/month 6 months Cycle durability Nominal Cell Voltage 500-800 cycles 2.0 Volt Strom in Flüssigkeiten Dissoziation von Molekülen in flüssiger Umgebung Debye’sche Abschirmlänge Faraday Konstante: + - + + -- + - + - + -+ - + ++ + - + + + - + - - - -+- + + - + - + -- + - - - + +- - - -+ + - + - - +- + - + - - - - -+ + F = 96486 C / mol CuSO4 → Cu2+ + SO42− Ladung von 1 Mol ! Elektronen # " " ! Elektrophorese Beweglichkeit masseabhängig ! Elektrode D= ! !0 k T 2e2 n∞ n+ = n− = n∞ Elektrolyt quasineutral Abschirmung durch Bereich negativer Raumladung !" # $ # %& " # ' ( Kontaktspannung Kontaktspannung ! "# $ %& ' ( # ( ! ( # & ) *# ' ) * + + # %, ""-. 0 # &1 * ! ! φ" ! + # %, ""-/ # $ %& ''(" φ) φ" ,' ! ! kT = 0 ! ! "& ! φ" " ! " φ) ! # $ %& ''() * + , %& - % Besetzung ! # $ %& ''(" ! "% φ) φ" " ! " # $ %& ''() * + , %& - % ! "# 3 ' ( %, 3 % ! "# $ %& ' ( # ( ! ( # & ) *# # 2 ! " 2 " # ! 3 ' ( %, 3 % 1000K ) * + 500K ) * + ,$ ! "$ 0 # &1 * $ 100K ) * + ,' ! % ! " " # ! $ ! % ! + # %, ""-. + # %, ""-/ & '( Thermo-Spannung ! ' $ ( Energie ! " Aufweichung der Fermi-Kante & '( Thermo-Spannung φ) Temperaturabhängigkeit von Widerständen Strom durch Gase # $ %%& $ ' ( ) * + , - ./0 1 ' %2 -) * 5! ( ) * + ! " # $%&' ( ) # * + %, # ) - ! ! ( ) $" ! , -.' ' ' " ! " " ! " ! ! / ) 0) ! 1 ! " " ! ! " ! ! 2) ! .3 1 4.) ! 3 & 1 ' ' + 0 " ! # $ $ % # $ % Gitterschwingungen ( Phononen ) # & % -) * 56 # Temperaturabhängigkeit von Widerständen Temperaturabhängigkeit von Widerständen ∆E !" # ! ! ! ! ( ) # $ ! $ Dotierung 01 ./ ' ( ' ) * + &, ' ( ' - * + &, * + ,- . % & $ ∆E ' & & $ / 0) / 1" 2 % " Korrelationsenergie eines Cooper-Paares Halbleiter Supraleiter &'