g64_6 6 In einem Kreis mit Radius r = 3.6cm ist ein - SOS

Werbung
6
In einem Kreis mit Radius r = 3.6 cm ist ein Sektor
mit dem Mittelpunktswinkel = 120° gegeben.
Berechnen Sie exakt:
a)
die Bogenlänge
b)
die Fläche des Sektors
c)
die Fläche des gemusterten Segments.
Der Winkel ist ein Drittel des vollen Winkels, also ist die Bogenlänge
ein Drittel des Kreisumfangs und die Sektorfläche ein Drittel der
Kreisfläche.
a)
die Bogenlänge b:
b=
2 r 7.2 =
= 2.4 3
3
b)
die Sektorfläche A:
A=
r 2 12.96 =
= 4.32 3
3
c)
die Segmentfläche A berehnet man als Differenz von Sektorfläche und Dreiecksfläche.
Das Dreieck lässt sich halbieren und zu einem gleichseitigen
zusammensetzen:
A = 4.32 g64_6
r2 3
= 4.32 3.24 3 7.96 cm2
4
Herunterladen