Parabel - von T. Staib

Werbung
Zurück Quadratische Funktion und Parabel: Darstellungsformen
Kleine Vorübungen, die Sie zum Einstieg durchführen sollten: 2
Erste Übung: Zeichnen Sie die Normalparabel y = x in ein Koordinatensystem ein. Verschieben Sie
diese Parabel dann 3 Einheiten nach rechts auf der x­Achse und schreiben Sie den neuen Funktionsterm
auf. Verschieben Sie das Ergebnis wieder um 2 Einheiten nach oben auf der y­Achse und schreiben Sie
wieder den zugehörigen Funktionsterm auf. Zweite Übung: Zeichnen Sie in ein Koordinatensystem wieder die Normalparabel f(x)
daraus abgeleiteten Parabeln
g(x) = −2x
2
2
h(x) = (x − 2) ,
2
(x + 1)
= x
2
und die
− 3
Überlegen Sie sich wie diese Parabeln mit der Normalparabel zusammenhängen. Sie müssen nicht
jedesmal eine Wertetabelle anlegen, wenn Sie kurz nachdenken.
Hier können Sie die Wirkung der Parameter a,b,c im Plot testen! Normalform mit Formparametern a, b, c.
y = f(x) = ax
2
+ bx + c
Scheitelpunktform: (xs , ys ) Scheitelpunkt.
2
y = f(x) = a(x − xs )
+ ys
Nullstellenform (sofern Nullstellen vorhanden
sind).
y = f(x) = a(x − x1 )(x − x2 )
Jede Darstellung enthält eine spezielle Information
über die Parabel. Siehe nebenstehende Abbildung
mit Scheitelpunkt, Nullstellen, y­Achsenabschnitt c.
Von der Normalform zur Scheitelpunktform, gegebenenfalls auch
Nullstellen bestimmen.
Dies kann mit einem kleinen algebraischen Algorithmus bewerkstelligt werden, den man quadratische
Ergänzung nennt. Er beruht lediglich auf einer binomischen Formel. Führt man ihn mit allgemeinen
Parametern a, b, c durch, erhält man nebenbei auch die explizite Darstellung der Nullstellen aus den
Parametern, die sogenannten Lösungsformeln. Im folgenden am Zahlenbeispiel und daneben allgemein
ausgeführt. Quadratische Ergänzung für
Quadratische Ergänzung für Scheitelpunktform
Berechnung Scheitelpunktform am
allgemein: Beispiel:
Zunächst Ausklammern von a, dann Erzeugung eines
2x
2
+ 8x + 6 = 2(x
= 2(x
= 2(x
2
2
2
binomischen Terms durch quadratische Ergänzung.
+ 4x) + 6
f(x) = ax
+ 4x + 4 − 4) + 6
= a (x
= 2(x + 2)
+ bx + c = a(x
2
b
+
x) + c
a
+ 4x + 4) − 8 + 6 |mboxBinominderKlamme!
2
2
2
− 8 + 6 = 2(x + 2)
2
a
− 2
Scheitelpunkt: Derjenige x Wert, für den
die Klammer zu Null wird, weil damit das
Quadrat minimal wird! Die Klammer ist ein
x + (
+
= a (x
2
2a
b
b
x + (
+
2
b
b
a
Quadrat also immer ≥ 0 :
2a
)
2a
− (
) ) + c
) ) − a ⋅ (
2
)
2
b
b
2a
2
+ c −
4a
xs = −2, ys = f(xs ) = −2
Daraus kann man dann weiter auch die
Nullstellen berechnen wenn für die
2a
2
b
= a(x +
2
b
Der nichtnegative quadratische Term
2
)
+ c
Diskriminante gilt:
a(x +
D = b
2
b
2
2a
)
− 4ac ≥ 0
­und damit auch f , weil der restliche Term konstant
ist, nimmt sein Minimum Null, falls a > 0 (bzw. sein
. Maximum, falls a
Dies ist in unserem Beispiel der Fall:
2x
2
2
+ 8x + 6 = 2(x + 2)
2
⇔ (x + 2)
< 0
) genau am Scheitelpunkt an
für
− 2 = 0
b
xs = −
= 1
2a
weil damit der Term zu Null wird. ⇔ (x + 2) = ±1
Der zugehörige Funktionswert am Scheitelpunkt ist
damit
⇔ x1 = −3, x2 = −1
b
Beispiel mit doppelter Nullstelle,
quadratische Ergänzung wie oben
ys = f(xs ) = c −
2
4a
durchgeführt:
Nullstellenberechnung: 2x
2
2
+ 8x + 8 = 2(x + 2)
2
− 8 + 8 = 2(x + 2)
Um die Nullstellen zu berechnen lösen wir auf:
= 0
⇔ (x + 2) = 0,
0 = f(x) = a(x +
also x1,2
= 2
. Beispiel ohne reelle Nullstellen:
2x
2
2
+ 8x + 9 = 2(x + 2)
2
b
2
2
− 8 + 9 = 2(x + 2)
)
+ c −
2
4a
2
b
⇒ 4a (x +
2a
b
2a
)
= b
2
− 4ac = D
= −1
Falls die Diskriminante D die Ungleichung
Auf dieser Stufe ist keine weitere
D = b
2
− 4ac ≥ 0
Rechnung möglich weil die Wurzel aus
einer negativen Zahl nicht definiert ist. erfüllt, erhalten wir daraus weiter durch Wurzelziehen
Wenn also schon die Scheitelpunktform
vorliegt, kann man ohne Benutzung der
und Umformen der Gleichung die explizite
Darstellung der Nullstellen von f nach den
Parametern:
Lösungsformel auch gleich die Nullstellen
ermitteln, vorausgesetzt die
Diskriminanten ist nicht negativ.
Ausmultiplizieren der Scheitelpunktform
und anschließendes Einsetzen in die
−
−−
−−
−−
2
−b ± √b − 4ac
D ≥ 0 ⇒ x1,2 =
Für D
= 0
2a
gibt es eine doppelte Nullstelle
Lösungsformel ist überflüssige und
fehlerträchtige Rechnerei!
b
D = 0 ⇒ x1,2 = −
2a
.
In diesem Fall sind Nullstelle und Scheitelpunkt
identisch. Falls D
gibt es zwei verschiedene Nullstellen x1 < x2 (siehe oben) und die
Scheitelpunktsabszisse liegt dann genau in der Mitte
> 0
zwischen diesen Nullstellen:
1
+
2
xs =
x1 + x2
2
Für D < 0 gibt es keine reellen Nullstellen da
Quadratwurzel nicht berechenbar. Das Bild zeigt die drei grundsätzlichen
Möglichkeiten: D > 0 : Zwei reelle Nullstellen , : Eine doppelte reelle Nullstelle,
zugleich Scheitelpunkt, D = 0
: und keine reelle Nullstelle. Die Parabel ist nach oben geöffnet, wenn
der Koeffizient von x2 positiv ist. D < 0
Wurzelsatz von Vieta Ganzzahlige Lösungen quadratischer Gleichungen kann man oft leicht durch Lösung eines kleinen
Gleichungssystems ermitteln. Zum Beispiel sind die Lösungen von
x
genau x
= 17
und x
= 2
denn 17 + 2
2
− 19x + 34 = 0
= 19
und 17 ⋅ 2
= 34.
Überraschend? Nur auf den ersten Blick.
Nehmen wir die Nullstellenform und rechnen nach.
(x − 17)(x − 2) = x
2
− (17 + 2)x + 17 ⋅ 2 = x
2
− 19x + 34
Hinter diesem kleinen Trick steht ein einfacher Koeffizientenvergleich.
(x − x1 )(x − x2 ) = x
2
− (x1 + x2 )x + x1 x2 = x
2
+ bx + c ⇒ b = −(x1 + x2 ), c = x1 ⋅ x2
Wenn die Nullstellen Primzahlen sind, geht das Verfahren besonders schnell und einfach.
Versteckte quadratische Gleichungen Viele Gleichungen, insbesondere solche, die Quadratwurzeln enthalten, kann man mit mehr oder weniger
geschickten algebraischen Manipulationen auf quadratische Gleichungen in einer der oben dargestellten
Formen zurückführen und dann wie gewohnt lösen. Einige Beispiele: 1. Bestimme die Lösungsmenge der Gleichung
1
1
+
√x + 1
x
√x − 1
=
x − 1
Man darf sich hier ­ und auch sonst ­ nicht von der Wurzel ins Bockshorn jagen lassen. Wenn man wenig
Übung mit solchen Gleichungen hat, führt man für die Wurzel einfach eine neue Variable, sagen wir 2
u = √x ≥ 0, x = u ein (Substitution) und schreibt die Gleichung damit um.
1
1
+
u + 1
Die Terme u + 1 , u − 1 und u2
u
u − 1
=
− 1 = (u + 1)(u − 1)
u
2
2
− 1
weisen einem nun die Richtung. Nämlich die 3.
Binomische Formel per Brucherweiterung zwecks Hauptnennerbildung ins Spiel zu bringen. Ausführlich
geschrieben und vorausgesetzt, dass u ≠ ±1 ist, was aber schon durch die Aufgabenstellung
ausgeschlossen ist, erhalten wir:
u − 1
u + 1
u
+
(u + 1)(u − 1)
2
=
(u − 1)(u + 1)
(u + 1)(u − 1)
Da die drei Brüche alle denselben Nenner haben, können wir sie zusammenfassen zur Gleichung
u − 1 + u + 1 − u
u
2
2
= 0
− 1
Da der Nenner für die Nullstellenberechnung keine Rolle spielt , also
2u − u
2
= u ⋅ (2 − u) = 0
Ein Produkt ist bekanntlich dann Null, wenn einer der Faktoren Null ist. Also haben wir die Lösungen 2
u1 = 0 und u2 = 2 und mit x = u dann x1 = 0 und x2 = 4 . Durch Einsetzen in die
Ausgangsgleichung für x verfizieren wir dann, dass beide Zahlen tatsächlich die Gleichung lösen. 2. Bestimme die Lösungsmenge der Gleichung
x − 5√x + 4 = 0
Auch hier Substitutionsversuch u
= √x ≥ 0
. Die Vorzeichenbedingung ist wichtig, die Wurzel ist nie
negativ. Sollten wir eine negative Lösung u errechnen, hätte die Gleichung in x keine reelle Lösung. Hier
ergibt sich nach Einsetzen und Anwendung der Lösungsformel:
u
2
− 5u + 4 = 0 ⇒ u1 = 1, u2 = 4 ⇒ x1 = 1, x2 = 2
Bei der ähnlich aussehenden Gleichung
x + 5√x + 4 = 0
hätten wir zwar auch eine Substitution u
= u = √x
durchführen können, die in der neuen Variablen u
geschriebene Gleichung u − 5u + 4 = 0 hat dann jedoch die negativen Lösungen u1
Das bedeutet: Die Gleichung in x hat in den reellen Zahlen keine Lösung. 2
3. Exponentialgleichung Bestimme die Lösungsmenge der Gleichung
2x
− 5 ⋅
x
+ 4 = 0
= −1, u2 = −4.
2x
x
2
− 5 ⋅ 2
+ 4 = 0
Das sieht auf den ersten Blick gar nicht nach dem gewohnten Gleichungstyp aus. Als erster Term steht
jedoch ein Quadrat des zweiten 22x
x
2
= (2 )
. Damit erhält man mit der Substitution u
u
Diese besitzt nach 2. die Lösungen u1
x1
2
= 4
dann x2
= 2
2
x
= 2
die Gleichung
− 5u + 4 = 0
= 1, u2 = 4
x1
. Aus u1
= 1 = 2
ergibt sich x1
= 0
, analog aus . 4. Auch die biquadratische Gleichung
x
löst man am besten mit einer Substitution u
4
= x
u
Lösungen wie oben berechnet u1
− 5x
2
= 1, u2 = 4
2
2
+ 4 = 0
. Dann wird daraus
− 5u + 4 = 0
und damit
−−
−−
−−
−−
x1 = −√u1 = −1, x2 = √u1 = 1, x3 = −√u2 = −2, x4 = √u2 = 2
Faktorisierung nach Nullstellen
x
4
− 5x
2
+ 4 = 0 = (x + 1)(x − 1)(x + 2)(x − 2)
Quadratische Modellfunktionen in der Physik: Konstante Beschleunigung Wir stellen uns einen Körper im freien Fall in einem konstanten Kraftfeld oder ein Fahrzeug vor, das mit
konstanter Kraft beschleunigt wird und vernachlässigen dabei die Reibungskräfte. Zu den Modellen mit
Reibungskräften siehe Ingenieurmathematik. Betrachtet man die Weg­Zeit Abhängigkeit eines Körper, der mit konstanter Kraft beschleunigt wird, so
erhält man einen quadratischen Zusammenhang. Die Bewegung soll längs einer Geraden stattfinden. ist die bereits zurückgelegte Weg zum Zeitpunkt Null­ dem Anfangszeitpunkt der Betrachtung. v0 ist die Anfangsgeschwindigkeit zum Zeitpunkt Null. a sei die konstante Beschleunigung x0
bezeichne den zurückgelegten Weg zum Zeitpunkt t
Weg­Zeit Gesetz quadratisch:
s(t)
≥ 0
. 1
s(t) = x0 + v0 t +
2
at
2
Geschwindigkeits­Zeit Gesetz linear.
v(t) = v0 + at
Die Beschleunigung durch das Schwerkraftfeld der Erde bei einem Fall senkrecht zur Erdoberfläche wird in
Erdnähe näherungsweise durch eine Konstante beschrieben, die sogenannte Erdbeschleunigung Ein genaueres Modell ist die quadratische Abnahme der Erdanziehungskraft mit dem
Abstand zur Erdoberfläche bzw ­ Mittelpunkt. Dies ist für den Fall aus größeren Höhen anzuwenden. Man kann mit diesen einfachen Formeln schon vieles aus der Alltagsphysik näherungsweise berechnen. Beispiele: 2
g = 9, 8m/s .
Jemand springt vom Sprungturm (Höhe 3m, 5m, 10m). Mit welcher Geschwindigkeit trifft er auf der
Wasseroberfläche und wie lange dauert der Flug? Ein Sportwagen hat einen Bremsweg von etwa 30m aus 100km/h. Wie lange ist der Bremsweg bei 150km/h
und 200km/h? Welche Beschleunigung bezogen auf die Erbeschleunigung tritt dabei auf? Eine Familienvan hat auf trockener Straße eine Bremsweg von ca 40m aus einer Geschwindigkeit von
100km/h. Bremsweg bei 50km/h und bei 150km/h Geschwindigkeit? Der aktuelle Beschleunigungsrekord (Stichtag 30.7.2015) für Elektrofahrzeuge wird von einem
Studententeam der Uni Stuttgart gehalten. Der nur 160kg schwere Wagen (plus Fahrer) beschleunigt dabei
in knapp 1,78 s von 0 auf 100km/h. Welche Strecke legt er dabei zurück und welche Kräfte treten auf den
Körper auf (Beschleunigung bezogen auf g)? Bericht hier 
Herunterladen