3.3.2 Anwendungen des Tangens 137 3.3.3 Verschiedene

Werbung
3.3.2
3.3.3
3.4
3.4.1
Anwendungen des Tangens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Verschiedene Aufgabentypen bei der Berechnung rechtwinkeliger Dreiecke . . . . . . . . . . . . . . . . . . . . . . . . 140
Berechnungen im gleichschenkeligen Dreieck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Anwendungen von Sinus, Cosinus und Tangens im gleichschenkeligen Dreieck
und in Figuren, in denen gleichschenkelige Dreiecke vorkommen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
3.4.2 Berechnen von Sinus, Cosinus und Tangens für spezielle Winkelgrößen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.5 Berechnungen in beliebigen Dreiecken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.5.1 Berechnen eines Dreiecks aus einer Seite und zwei Winkeln
sowie aus zwei Seiten und dem einer Seite gegenüberliegenden Winkel -- der Sinussatz . . . . . . . . . . 147
3.5.2 Berechnen eines Dreiecks aus zwei Seiten und dem eingeschlossenen Winkel
sowie aus drei Seiten -- der Cosinussatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
3.6 Vermessungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.7 Polarkoordinaten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.7.1 Polarkoordinaten und kartesische Koordinaten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.8 Vermischte Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Schularbeitstraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4
Lineare Gleichungssysteme in zwei Variablen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.1 Eine lineare Gleichung in zwei Variablen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
4.2 Grafisches Lösen linearer Gleichungssysteme in zwei Variablen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.3 Rechnerische Verfahren zum Lösen linearer Gleichungssysteme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.4 Text- und Sachaufgaben zu linearen Gleichungssystemen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Schularbeitstraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5
Analytische Geometrie der Ebene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.1 Das ebene kartesische Koordinatensystem -- Wiederholung und Vertiefung . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.2 Punkte, Pfeile, Vektoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.3 Schiebungen -- Addieren und Subtrahieren von Vektoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
5.4 Parameterdarstellungen von Geraden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.5 Geraden in der Ebene -- Darstellungsformen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.6 Lageaufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
5.6.1 Punkt und Gerade in Parameterform (Punktprobe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
5.6.2 Gegenseitige Lage zweier Geraden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.7 Vermischte Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.8 Länge eines Vektors -- Abstand zweier Punkte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
5.9 Orthogonalität -- Skalarprodukt von Vektoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
5.10 Geometrische Bedeutung des Skalarprodukts -- Winkelberechnung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Schularbeitstraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Exkurs: Geschichte der linearen Algebra und analytischen Geometrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Anhang I
Moderne Rechenhilfsmittel
............................................................................
244
I.1
Grundlagen des TR Voyage 200 (TI-92 plus, TI-89) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
I.2
Excel-Anwendungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
I.3
Grundlegendes zum Computeralgebrasystem Derive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Anhang II Lösungen zum Schularbeitstraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Anhang III Mathematische Zeichen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Anhang IV Englische Bezeichnungen
Anhang V
..............................................................................
275
Formelsammlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Stichwortverzeichnis
.....................................................................................................
282
Bildquellenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Herunterladen