Mikroökonomie 1 Produktion 25.01.2007 1 Allgemeines Gleichgewicht ohne und mit Produktion ohne Produktion (nur Tausch) O exogene Grössen · Präferenzen · Ausstattung mit Konsumgütern O Welche Grössen werden endogen bestimmt? mit Produktion O exogene Grössen · Präferenzen · Produktionstechniken · Ausstattung mit Produktionsfaktoren O Welche Grössen werden endogen bestimmt? 2 1 Robinson Crusoe-Wirtschaft O O Robinson ist Konsument und Produzent Exogen vorgegeben sind: · Präferenzen bei Wahl zwischen Kokosnüssen und Freizeit · Technologie zur „Produktion“ von Kokosnüssen 3 Robinsons Präferenzen Kokosnüsse maximal mögliche Arbeitszeit L C Arbeitsstunden L Freizeit 4 2 Robinsons Präferenzen Kokosnüsse Kokosnüsse C C Arbeitsstunden L Arbeitsstunden L Freizeit L Arbeit 5 Robinsons Präferenzen Kokosnüsse C L Arbeit 6 3 Robinsons Produktionsfunktion Kokosnüsse Steigung = Grenzprodukt der Arbeit in der Kokosnussproduktion Wieso sinkt das Grenzprodukt? C(L) C L Arbeit 7 Robinsons Entscheidung Kokosnüsse Im Punkt der nutzenmaximierenden Entscheidung muss das Grenzprodukt der Arbeit gleich der GRS zwischen Freizeit und Kokosnüssen sein. C(L) C L Arbeit 8 4 Robinson AG O O Robinson hat eine gespaltene Persönlichkeit und ist jeweils einen Tag Produzent und einen Tag Konsument · Arbeitsmarkt (bestimmt Stundenlohn) · Kokosnussmarkt · Währung = Kokosnüsse Wie ist die Einkommensverteilung zwischen Robinson Unternehmer und Robinson Arbeiter? 9 Robinson AG Angebot bei gegebenem Lohn Kokosnüsse Wie gross sind die ausgezahlten Gewinne und Löhne? C(L) C* π = C − wL L* Arbeit 10 5 Robinson Haushalt Kokosnüsse Wie gross sind die ausgezahlten Gewinne und Löhne? Budgetrestriktion C = π + wL C* Freizeit L* L Arbeit 11 Robinson AG & Robinson Haushalt Kokosnüsse C = π + wL C(L) C* π = C − wL Freizeit L* L Arbeit 12 6 Preise und Einkommensverteilung Verteilung im Marktsystem Preis = Grenzkosten = Grenznutzen Gütermärkte Haushalte Güterpreise Präferenzen Unternehmen bestehende Produktionstechniken Ausstattung mit Produktionsfaktoren Einkommensverteilung Faktormärkte Faktorpreise Faktorpreis = Wert des Grenzprodukts 13 Konstante Skalenerträge Wieso ist der Gewinn gleich Null? Kokosnüsse C(L) C* π = C − wL L* L Arbeit 14 7 Steigende Skalenerträge Welchen Gewinn würde das Unternehmen beim Lohn = Wert des Grenzprodukts erwirtschaften? Kokosnüsse C(L) C* L* L Arbeit 15 Produktion von 2 Gütern Fischproduktion = F = 10 L f Kokosnussproduktion = C = 10 Lc L = Lc + Lv Kokosnüsse Bei konstanten Grenzkosten in beiden Produktionen. Indifferenzkurve Transformationskurve Fisch 16 8 Produktion von 2 Gütern Kokosnüsse Transformationskurve Mit steigenden Grenzkosten in mindestens einer der beiden Produktionen. Fisch 17 Robinson und Freitag: gemeinsame Transformationskurve Kokosnüsse Kokosnüsse 60 60 50 50 40 40 30 30 maximale Gesamtproduktion 20 20 10 0 Robinson 10 Freitag 0 2 4 Transformationskurve Freitag + Robinson 6 Fisch 8 10 0 0 2 4 6 Fisch 8 10 18 9 Gesamtproduktion und Handel Wer produziert was? Wie kann gehandelt werden? Kokosnüsse 60 50 40 30 Transformationskurve Freitag + Robinson 20 10 0 2 0 4 6 8 Fisch 10 19 Produktion und Handel 60 50 2 0 4 6 Fisch Freitag 10 Robinson 20 30 20 30 10 40 4 6 Fisch 8 10 60 2 Kokosnüsse 0 50 0 0 40 20 10 8 10 Produktion und Handel Kokosnüsse Freitag gemeinsame Transformationskurve Steigung = MRT Robinson Steigung = MRS Fisch 21 Robinson & Freitag AG Gewinnmaximierung: max pC C + pF F − wC LC − wF LF C , F , LF , LC Nehmen wir an, wir haben die optimalen Arbeitsmengen gefunden: L* = wC L*C + wF L*F C= π +L * pC − pF F pC Kokosnüsse C= π + L* pC − pF F = Isogewinnlinie pC MRT = − pF pC Fisch 22 11