STEP 6 Tutorium: Sportberichterstattung; Patricia Astor (0548454), Stephanie Kannt (0600273) Zusammenfassung der Vorlesung vom 03.05.2007: Statistik und die Auswertung von Fragebögen Bei quantitativen Forschungsmethoden ist die Vorbereitung zeitaufwendig (Theorierecherche, Operationalisierung, Hypothesen). Die Erhebung ist zeitintensiv, wohingegen die Auswertung dank der Vorbereitungen schnell zu bewältigen ist. Auswertung: Datenmatrix: automatisiertes Auswerten; jeder Wert, jede Antwortmöglichkeit bspw. eines Fragebogens wird beziffert und kann dann quantifiziert berechnet und einfacher ausgewertet werden. Statistik: 1. Deskription: Ergebnisse werden durch statistische Kennwerte beschrieben 2. Hypothesenprüfen (Inferenzstatistik) Ergebnisse verifizieren oder falsifizieren 3. multivariable Verfahren 1. Deskriptivstatistik: die gesamte Verteilung der Ergebnisse wird durch Lagemaße repräsentiert. Sie dienen der Überschaubarkeit.. Modalwert (Mo), häufigster Wert, nominalskalierte Daten (Reihenfolge beliebig veränderbar) Median (Md), mittlerer Wert, teilt die Gesamtverteilung; Nominalskala und Ordinalsklala (Reihenfolge ergibt Sinn) Arithmetisches Mittel, Durchschnitt. Summe der Einzelwerte dividiert durch die Anzahl der Fälle; nur bei Intervallskala und Verhältnisskala (Korrelation berechenbar) Bei Berechnung zu beachten: - Variable (Merkmal): möglichen Ausprägungen - Realisationen: die tatsächlich gefundenen Fälle Streuungsmaße - beschreiben die Verteilung der Ergebnisse - beachte: bei nominalskalierter Daten gibt es keine Streuung 1.1. Variationsbreite (range) größter – kleinster Wert = range 1.2. Standardabweichung(s): Maß für die Streuung der Werte einer (Zufalls)Variablen um ihren Mittelwert, - genauer als range. - je homogener die Streuung um den Mittelwert desto genauer das Ergebnis - Mittelwert – Realisation = s Durch quadrieren der Standardabweichung werden mögliche „Ausreißer“ (einzelne Daten, die sich stark von den anderen Ausprägungen unterscheiden und somit das Ergebnis beinflussen) deutlicher gemacht man spricht von der (1.3.) Varianz (s²). - nur für intervallskalierte Daten berechenbar o Quadrierung wird anschließend, für Betrachtung der Standardabweichung, rückgängig gemacht. STEP 6 Tutorium: Sportberichterstattung; Patricia Astor (0548454), Stephanie Kannt (0600273) 2. Inferenzstatistik (analytische Statistik): Aus kleinen Stichproben werden allgemeingültige Aussagen getroffen - Vorgehensweise wie bei repräsentativen Stichproben (Theoriengestützt, Hypothesen, Erhebung,...) - Anschließender Vergleich der statistischen Kennwerte bestimmter Variablen von Subgruppen Irrtumswahrscheinlichkeit: - Alternativhypothese (H1): entspricht Arbeitshypothese, beschreibt eigentlich interessierende Annahme - Nullhypothese (H0): Annahme über Grundgesamtheit, die man wiederlegen möchte (genauer spezifizierbar als Alternativ-/Arbeitshypothese) Es bleibt immer ein Restfehler: Fehler 1. Ordnung α – Fehler: H0 wird irrtümlich verworfen, trotz Richtigkeit (Alternativhypothese verifiziert) Fehler 2. Ordnung β – Fehler: H0 wird beibehalten, obwohl sie falsch ist (Alternativhypothese wird fälschlicherweise falsifiziert) Irrtumswahrscheinlichkeit = Signifikanzniveau = p (Ausprägung von 0 bis 1) 1% p ≤ 0,01 Verteilung hoch signifikant 5% p ≤ 0,05 Verteilung signifikant 0,1% p ≤ 0,001 Verteilung höchst signifikant Korrelationskoeffizient (r): gibt an wie hoch der Zusammenhang zwischen 2 Variablen ist - Zusammenhang kann direkt oder undirekt proportional sein - Intensität des Zusammenhang ausgedrückt durch Wert zwischen –1(indirekt) und +1(direkt) Zusammenhang von 2 Variablen: r = (-) 0,9 bis 1 sehr hoch r = (-) 0,7 bis 0,9 hoch r = (-) 0,5 bis 0,7 mittelmäßig r < (-) 0,5 nicht interpretierbar 2.1. Inferenzstatistische Verfahren: 1. Kreuztabellen Statt statistischem Kennwert Zusammenhänge von Variablen vereinfacht darstellen 2. 4 - Felder – Chi- Quadrat Theorie: Gleichverteilung der Variablen wird erwartet (Nullhypothese) beobachtete Werte sind anders Darstellung für bivariate Häufigkeitsverteilung Residuum: zusätzlicher Erklärungswert, zufällige Abweichung der empirischen Werte von den erwarteten Werten; gibt Größenunterschied zwischen erwarteten und tatsächlichen Ergebnissen und ferner auch die Signifikanz der Ergebnisse an. STEP 6 Tutorium: Sportberichterstattung; Patricia Astor (0548454), Stephanie Kannt (0600273) 3. T – Test (Hypothesentest) Klassisches Einsatzgebiet: Einstellungsmessung - Ausschließlich Metrische Daten werden verglichen, immer nur 2 Gruppen - Alternativhypothese bei metrischen Daten: zwei definierte (Sub)Gruppen unterschiedlich Mittelwerte bei gleicher Streuung. o Voraussetzung für T-Test: Normalverteilung der Daten (glockenförmige Kurve dicht um Mittelwert: Streuung bzw. Standardabweichung rechts und links vom Mittelwert entspricht 68% der Fälle einer Stichprobe, wird die Standardabweichung doppelt aufgetragen, entspricht dies 95,5% der Fälle) o Regelung: lokaler Grenzwertsatz: Anzahl Stichproben > 50 entspricht Annährung an Normalverteilung, je mehr desto besser - dem T – Test wird der F – Test vorangeschoben. - F – Test stellt fest, ob die Varianzen homogen oder heterogen sind Wie komme ich zu meinen zwei Vergleichsgruppen? Bsp: Frage „Wie interessiert an Sportsendungen“? Intervall: 1 (sehr) – 7 (überhaupt nicht) 1. In der Mitte teilen: 1-3 = interessiert, 4-7 = weniger interessiert 2. Extremgruppen: nur 1 – 2 und 6 – 7; Breite Masse in der Mitte weniger aussagekräftig - entstandene Gruppen nun anhand von anderen Variablen vergleichen- Bsp. Fernsehstunden Abhängige vs. Unabhängige Daten: - Abhängig: sehr selten = nur bei Ehe-/Tanzpaaren usw. - Unabhängig: zufällige Zusammensetzung der Vergleichsgruppen 3. Multivariable Verfahren Zwei Unterschiede zu bisherigen Verfahren: 1. - - Strukturprüfende Verfahren: Vermutung, dass mehrere Variablem kausal zueinander in Beziehung stehen Vermutung, welche Variablen abhängig/ unabhängig sind (können mehrere sein) theoriengestützt: Wissen - welche Variablen zueinander in Beziehung, sich beeinflussen, das diese vollständig erfasst sind (d.h. keine intervenierende variablen vergessen) wissen ob Kausalzusammenhänge existieren 2. strukturentdeckende oder taxometrische Verfahren - Zusammenhänge explorativ entdecken - numerische Taxonomie,: a. Faktorenanalyse: versucht Variablen zu bündeln, die systematisch gleichzeitig vorkommen: Bsp. Wenn jemand das eine mag, mag er auch das andere usw. b. Clusteranalyse: das gleiche mit Personen: Personen mit ähnlichen Eigenschaften SPSS: (ähnlich Exel) Elektronische, Automatische Datenauswertung Eingabemaske :2 Datenblätter übereinander: eins definiert die Variablen , anderes repräsentiert die Datenmatrix 1. Erhebungsinstrumente durchnummerieren (Welche Zeile entspricht welchem Fragebogen) STEP 6 Tutorium: Sportberichterstattung; Patricia Astor (0548454), Stephanie Kannt (0600273) 2. Variablen müssen benannt/ definiert werden (max.8 Zeichen) Ergebnisse in eigenem Dokument abgespeichert (.spo)