Kapitel 20 MehrgleichungsModelle: Konzepte Mehrgleichungs-Modelle Modellierung von ökonomischen Prozessen, die simultan mehrere endogene Variable betreffen Beispiele: Darstellung des Marktes für ein Produkt: Modell muss Entwicklung von Menge und Preis repräsentieren Wirtschaftsraum umfasst Gütermarkt, Finanzmarkt, Arbeitsmarkt, etc., die in Wechselwirkung stehen © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 2 CAP-Modell CAP-Modell (capital asset pricing model) Ri: Erlös des i-ten Vermögenswertes Ri - Rf = bi(E{Rm} – Rf) + ui mit Rf: Erlös eines risikolosen Vermögenswertes E{Rm}: erwarteter Erlös des optimalen Portfolios Analyse von mehreren Werten: ui repräsentieren gemeinsame Faktoren, haben gemeinsame Abhängigkeitsstruktur Effiziente Nutzung der Information: gemeinsame Analyse © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 3 Investitionsmodell Grunfeld & Griliches (1958) I = b1 + b2F + b3C + u mit I: Investitionen (gross investment) F: Marktwert des Unternehmens am Ende der Vorperiode C: Anlagenwert des Unternehmens am Ende der Vorperiode Daten für fünf Unternehmen, 1935-1954 © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 4 Marktmodell für ein Produkt, z.B. Schweinefleisch Qd = a1 + a2P + a3Y + u1 (Nachfragefunktion) Qs = b1 + b2P + b3Z + u2 (Angebotsfunktion) Qd = Q s mit Qd: Nachfragemenge, Qs: Angebotsmenge, P: Preis des Produktes, Y: Einkommen, Z: Kosten der Produktion oder Q = a1 + a2P + a3Y + u1 Q = b 1 + b 2 P + b 3 Z + u2 Modell bestimmt Q und P für gegebene Werte von Y und Z Endogene Variable: Q, P; exogene Variable: Y, Z © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 5 Klein‘s Modell 1 Ct = a1 + a2Pt + a3Pt-1 + a4(Wtp+ Wtg) + ut1 (Konsum) It = b1 + b2Pt + b3Pt-1 + b4Kt-1 + ut2 (Investitionen) Wtp = g1 + g2Xt + g3Xt-1 + g4t + ut3 (Private Löhne und Gehälter) Xt = Ct + It + Gt Kt = It + Kt-1 Pt = Xt – Wtp – Tt C (Konsumausgaben), P (Gewinne), Wp (Private Löhne und Gehälter), Wg (Öffentliche Löhne und Gehälter), I (Investitionen), K-1 (Kapitalbestand des Vorjahres), X (Produktion), G (Ausgaben der Öffentlichen Hand ohne Löhne und Gehälter), T (Steuern) und t [Zeit (Trend)] Endogen: C, I, Wp, X, P, K; exogene: 1, Wg, G, T, t, P-1, K-1, X-1 © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 6 Typen von MehrgleichungsModellen 1. Mehrgleichungsmodelle mit (gemeinsamen) fixen Regressoren (multivariates Regressionsmodell) Nachfrage nach Gütern durch Haushalte capital asset pricing model Modell für Investitionen von Unternehmen von GrunfeldGriliches 2. Mehrgleichungsmodelle mit stochastischen (endogenen) Regressoren (simultaneous equation model, interdependente Modelle) Marktmodell Klein’s Modell Kontemporär korrelierte Störgrößen © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 7 Typen von Gleichungen Reaktions- oder Verhaltensgleichungen: beschreiben das Verhalten einer abhängigen Variablen als Funktion von erklärenden Variablen Definitorische Identitäten: definieren eine Variable als Summe anderer Variabler Gleichgewichts-Bedingungen: postulieren Beziehungen, die als Gleichgewicht interpretiert werden können Definitorische Identitäten und Gleichgewichts-Bedingungen enthalten keine Störgrößen! © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 8 Schätzprobleme Bei Mehrgleichungs-Modellen muss gerechnet werden mit Stochastischen Regressoren: abhängige Variable werden als Regressoren verwendet Kontemporär korrelierten Störgrößen: die einzelnen Gleichungen sind nicht voneinander unabhängig Konsequenzen: OLS-Schätzer der Koeffizienten sind nicht konsistent, nicht erwartungstreu! © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 9 Zweigleichungs-Modell Zwei abhängige Variable Y1 und Y2 Y1 = a1 + a2Y2 + a3X1 + u1 (Gleichung A) Y2 = b1 + b2Y1 + b3X2 + u2 (Gleichung B) 1. Verletzung der Annahme 4 (Exogenität der Regressoren): Effekt eines positiven Wertes u1: Wert von Y1 wird vergrößert (siehe Gleichung A) Aus Gleichung B folgt, dass dann der Wert von Y2 größer wird Daraus folgt: u1 und Y2 sind korrelierte Variablen 2. Verzerrte OLS-Schätzer: Überdurchschnittlich große Werte von Y1 werden oft (als Folge positiver u1) gemeinsam mit großen Werten von Y2 beobachtet a2 wird überschätzt! © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 10 Marktmodell: Eine Simulation Mit a2 = – 1, b2 = 1, a3 = 1, b3 = 1 ergeben sich (siehe oben): Q = – P + Y + u1 (Nachfrage) Q = P + Z + u2 (Angebot) Generieren der Daten in EViews: Y = 20 + 10*nrnd Z = 10 + 10*rnd u1 ~ N(0,4), u2 ~ N(0,9) Q = (Y + Z + u1 + u2 )/2, P = (Y – Z + u1 – u2)/2 OLS-Schätzung der beiden Gleichungen: Q = 2.98 – 0.58*P + 0.80*Y; p(tP) = 0.037, p(tY) = 0.000, R2 = 0.84 Q = 3.52 + 0.77*P + 0.86*Z; p(tP) = 0.000, p(tY) = 0.000, R2 = 0.83 © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 11 Marktmodell, Forts. Nachfragefunktion Q = a1 + a2P + a3Y + u1 = x‘a + u1 mit x = (1, P, Y)‘, a = (a1, a2, a3)‘ Achtung! Endogene Variable P ist erklärende Variable: plim (X'X)-1 X'u ≠ 0 Reduzierte Form: Q = p11 + p12Y + p13Z + v1 P = p21 + p22Y + p23Z + v2 mit p11 = (a1 b2 – a2 b1)/(b2 – a2), v1 = (b2 u1 – a2 u2)/(b2 – a2), etc. Die pij können konsistent geschätzt werden! Kann man aus Schätzern für pij auf Schätzer der ai und bi schließen? © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 12 Schätzprobleme, Forts. Zwei Fragestellungen: Identifizierbarkeit: Können – bei gegebener Struktur des Modells und gegebenen Daten – die Parameter (konsistent) geschätzt werden? Schätzverfahren: Welche – (neue?) – Schätzmethoden können bei Mehrgleichungs-Modellen angewendet werden, sodass gewünschte Eigenschaften der Schätzer sichergestellt sind? © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 13 Typen von Variablen Endogene Variable: Werden durch das Modell bestimmt Vollständiges Modell: Anzahl der Gleichungen ist so groß, wie die Anzahl der endogenen Variablen Exogene Variable: Sind von außerhalb des Modells bestimmt Können auch verzögerte endogene („vorherbestimmte“, predetermined) Variable sein Wir unterscheiden: Strikt exogene Variable: unkorreliert mit historischen, aktuellen und künftigen Störgrößen vorherbestimmte Variable: unkorreliert mit aktuellen und künftigen Störgrößen © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 14 Marktmodell, Forts. Zwei Gleichungen: Q = a1 + a2P + a3Y + u1 (Nachfragefunktion) Q = b1 + b2P + b3Z + u2 (Angebotsfunktion) bestimmen Q und P (endogene Variable) außerhalb des Systems bestimmt: Y, Z Offene Fragen: Rückkoppelung zwischen Q und Y? Z unabhängig von Q? © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 15 SUR-Modell seemingly unrelated regression allgemeiner Fall des multivariaten Regressionsmodells m Gleichungen Yt1 = x‘t1b1 + ut1 … Ytm = x‘tmbm + utm mit Var{uti} = si2 für i = 1,…,m; Cov{uti,utj} = sij ≠ 0 für i ≠ j , i,j = 1,…,m (kontemporär korrelierte Störgrößen) Regressoren können für die Gleichungen unterschiedlich sein Mehrgleichungs-Modell mit gemeinsamen Regressoren: xti = xt für i = 1,…,m Vereinfachung des SUR-Modells (vergl. das CAP-Modell) © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 16 Investitionsmodell, Forts. I = b1 + b2 F + b3 C + u I: Investitionen F: Marktwert des Unternehmens am Ende der Vorperiode C: Anlagenwert des Unternehmens am Ende der Vorperiode General Motors: I = -149.78 + 0.119*F + 0.371*C, R2 = 0.92, se = 91.78 Chrysler: I = -6.19 + 0.078*F + 0.316*C, R2 = 0.91, se = 13.28 General Electric: I = -9.96 + 0.027*F + 0.152*C, R2 = 0.71, se = 27.88 Investitionen sind auch bestimmt von allgemeiner Konjunktur! © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 17 SUR-Modell, Notation m=2 mit n-Vektoren yi, ui, (nxki)-Matrix Xi: yi = Xi bi + ui, i = 1, 2 Var{uti} = si2, Cov{ut1,ut2} = s12, t = 1,…,n mit 2n-Vektoren y1 X1 y y2 0 oder 0 b1 u1 X 2 b2 u2 s12 y X b u mit V Var{u } I n s12 © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie s12 In 2 s2 18 Kronecker-Produkt a11 A a n1 Definition: a11 B A B a B n1 b11 a1m , B bp1 anm b1q bpq a1m B a11b11 anm B an1bp1 a1mb1q anmb pq Ordnung: npxmq © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 19 Interdependente Mehrgleichungs-Modelle Strukturform: Darstellung der Beziehung zwischen endogenen Variablen einerseits und exogenen und vorherbestimmten Variablen andererseits entsprechend der ökonomischen Theorie. Reduzierte Form: Darstellung der Abhängigkeit der endogenen von den vorherbestimmten Variablen Koeffizienten der Strukturform: Interpretation als Strukturparameter im Sinn der ökonomischen Theorie Reduzierten Form: Interpretation als impact multiplicator; geben Effekt der Änderung der vorherbestimmten Variablen auf abhängige Variable an © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 20 Marktmodell, Forts. Strukturform Qt = a1 + a2Pt + a3Yt + ut1 (Nachfragefunktion) Qt = b1 + b2Pt + b3Zt + ut2 (Angebotsfunktion) ut = (ut1,ut2)‘: bivariates Weißes Rauschen s12 Var{ut } s12 s12 2 s2 Matrixnotation: A yt = G zt + ut mit yt = (Qt, Pt)‘, zt = (1, Yt, Zt)‘ a1 a3 0 1 a2 A , G 1 b2 b1 0 b3 © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 21 Marktmodell, Forts. Reduzierte Form yt = A-1G zt + A-1ut = P zt + vt mit a3b2 a1b2 a 2b1 b a b2 a 2 2 2 P a1 b1 a3 b2 a 2 b2 a 2 a 2b3 b2 a 2 b3 b2 a 2 In Langform: Qt = p11 + p12Yt + p13Zt + vt1 Pt = p21 + p21Yt + p23Zt + vt2 © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 22 Strukturform m abhängige Variable (und Gleichungen), K Regressoren: Ayt = Gzt + ut mit m-Vektoren yt und ut, K-Vektor zt, (mxm)-Matrix A, und (mxK)Matrix G Struktur des Mehrgleichungs-Modells: (A, G, ) Strukturparameter: Elemente von A und G Normalisierte Matrix A: aii = 1 für alle i Vollständiges Mehrgleichungs-Modell: A ist quadratisch und invertierbar Rekursives Mehrgleichungs-Modell: A hat Dreiecksform; die endogenen Variablen beeinflussen sich nur in einer Richtung © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 23 Identifizierbarkeit Fragestellung: Können aus den Schätzern der Parameter der reduzierten Form konsistente Schätzer der Strukturparameter abgeleitet werden? Können mit den exogenen und vorherbestimmten Variablen als Instrumente Instrumentvariable für die erklärenden endogenen Variablen bestimmt werden? © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 24 Marktmodell, Forts. Aus p13 = – a2b3/(b2 – a2) und p23 = – b3/(b2 – a2) ergibt sich a2 = p13/p23 als Schätzer für a2 aus den OLS-Schätzern p13 und p23 für p13 und p23 b2 = p12/p22 für b2 aus p12 und p22 für p12 und p22 Weiters ergeben sich a3 = p22(b2 – a2), a1 = p11 – p21a2; die Koeffizienten der Nachfragefunktion lassen sich in eindeutiger Weise aus den konsistenten Schätzern der pij bestimmen; die Nachfragefunktion ist identifizierbar Analog ergibt sich für die Koeffizienten der Angebotsfunktion b3 = – p23(b2 – a2), b1 = p11 – p21b2; auch die Angebotsfunktion ist identifizierbar © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 25 Modifiziertes Marktmodell Qt = a1 + a2Pt + a3Yt + ut1 (Nachfragefunktion) Qt = b1 + b2Pt + ut2 (Angebotsfunktion) Koeffizienten der reduzierten Form: p11 = (a1b2 – a2b1)/(b2 – a2), p12 = a3b2/(b2 – a2) p21 = (a1 – b1)/(b2 – a2), p22 = a3/(b2 – a2) 1. 2. Angebotsfunktion: b2 = p12/p22, b1 = p11 – p21b2 die Angebotsfunktion ist identifizierbar Nachfragefunktion: für drei Koeffizienten gibt es nur zwei Gleichungen a1 = p11 – p21a2, a3 = p22(b2 – a2) es existiert keine eindeutige Lösung. Die Funktion ist nicht identifizierbar; sie ist unteridentifiziert © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 26 Noch ein Marktmodell Qt = a1 + a2Pt + a3Yt + a3Zt + ut1 (Nachfragefunktion) Qt = b1 + b2Pt + ut2 (Angebotsfunktion) 1. 2. Angebotsfunktion: b2 = p12/p22, b2 = p13/p23 für beide Lösungen ergibt sich b1 = p11 – p21b2 die Angebotsfunktion ist identifizierbar; man sagt, die Angebotsfunktion ist überidentifiziert Die Nachfragefunktion ist unteridentifiziert © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 27 Identifizierbarkeit: Kriterien Identifizierbarkeit einer Gleichung bedeutet, dass eine Anzahl von Modell-Variablen aus der Gleichung ausgeschlossen sind („ Nullrestriktionen“) oder eine andere Restriktion zutrifft Punktrestriktion: ein Koeffizient hat einen bestimmten Wert, z.B. den Wert Null Gleichungen in den Koeffizienten, linear oder nicht-linear Restriktion für Elemente von Überprüfen der Nullrestriktionen Abzähl- oder Ordnungs-Bedingung Rang-Bedingung © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 28 Ordnungs-Bedingung Modell mit m abhängigen Variablen, K Regressoren : Ayt = Gzt + ut mit (mxm)-Matrix A, (mxK)-Matrix G i-te Gleichung: mi: Anzahl der erklärenden endogenen Variablen mi*: Anzahl der durch Nullrestriktionen ausgeschlossenen endogenen Variablen (mi* = m – mi – 1) Ki*: Anzahl der durch Nullrestriktionen ausgeschlossenen vorherbestimmte Variablen (Ki* = K – Ki) Ordnungs-Bedingung: Die Gleichung ist identifizierbar, wenn Ki* + mi* ≥ m – 1 oder Ki* ≥ mi © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 29 Ordnungs-Bedingung: Interpretation Ordnungs-Bedingung: Die Gleichung ist identifizierbar, wenn Ki* + mi* ≥ m – 1 oder Ki* ≥ mi d.h., wenn die Anzahl der ausgeschlossenen Variablen (Ki* + mi*) mindestens so groß ist wie die um Eins verminderte Anzahl der endogenen Variablen (m – 1) die Anzahl der ausgeschlossenen vorherbestimmten Variablen (Ki*) mindestens so groß ist wie die Anzahl der erklärenden endogenen Variablen (mi) Achtung! Die Ordnungs-Bedingung ist eine notwendige, aber keine hinreichende Bedingung für die Identifizierbarkeit einer Gleichung © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 30 Modifiziertes Marktmodell, Forts. Qt = a1 + a2Pt + a3Yt + ut1 (Nachfragefunktion) Qt = b1 + b2Pt + ut2 (Angebotsfunktion) m = 2 (Q, P), K = 2 (1, Y); 1. 2. Nachfragefunktion (i = 1): m1* = 0, m1 = 1, K1* = 0, K1 = 2 die Ordnungs-Bedingung ist nicht erfüllt: K1* = 0 < m1 = 1 (oder K1* + m1* = 0 < m – 1 = 1); die Nachfragefunktion ist nicht identifiziert Angebotsfunktion (i = 2): m2* = 0, m2 = 1, K2* = 1, K2 = 1 die Ordnungs-Bedingung ist erfüllt: K2* = 1 = m2 = 1 (oder K2* + m2* = 1 = m – 1 = 1); die Angebotsfunktion ist identifizierbar © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 31 Rang-Bedingung Modell mit m abhängigen Variablen, K Regressoren : Ayt = Gzt + ut mit (mxm)-Matrix A, (mxK)-Matrix G i-te Gleichung: Streichen der i-ten Zeile ergibt A*: durch Streichen aller Spalten in A, die in i-ter Zeile einen von Null verschiedenen Koeffizienten haben G*: durch Streichen aller Spalten in G, die in i-ter Zeile einen von Null verschiedenen Koeffizienten haben Rang-Bedingung: Die Gleichung ist identifizierbar, wenn r(A*|G*) ≥ m – 1 © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 32 IS-LM-Modell Ct = g11 – a14Yt + ut1 It = g21 – a23Rt + ut2 Rt = – a34Yt + g32Mt + ut3 Yt = Ct + It + Zt C: Konsum; I: Investitionen, R: Zinssatz, Y: Einkommen, M: Geldmenge, Z: autonome Ausgaben endogen: C, I, R, Y; exogen: 1, M, Z Erste Gleichung: Ordnungs-Bedingung: K1 = 2 = m1 = 2; Rang-Bedingung: die folgende Matrix hat den Rang 3 = m -1 1 a 23 0 0 A* G* 0 1 g32 0 1 0 0 1 Beide Bedingungen sind erfüllt; die 1. Gleichung ist identifizierbar © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 33 Praxis der Idenfizierbarkeitsprüfung 1. 2. 3. 4. 5. Ein Mehrgleichungs-Modell ist identifizierbar, wenn jede seiner Gleichungen identifizierbar ist Gleichungen, die die Ordnungs-Bedingung erfüllen, erfüllen meist auch die Rang-Bedingung Kleine Modelle sind meist leicht nach beiden Kriterien prüfbar; bei umfangreichen Modellen ist die Identifizierbarkeit der Gleichungen meist kein Problem (Modell enthält viele vorherbestimmten Variable) Soll ein Regressor eliminiert werden? Bei Eliminieren ist Gleichung eher identifizierbar Nicht Eliminieren kann fälschliche Identifizierbarkeit anderer Gleichungen zur Folge haben Weitere Gleichung in identifizierbarem Modell: das neue Modell ist identifizierbar, wenn mindestens eine neue Variable verwendet wird © 2005 Verlag Pearson Studium © Peter Hackl: Einführung in die Ökonometrie 34