Metallkatalyse mit NHC-Komplexen

Werbung
Katalyse mit NHCs –
Metallkatalyse und
Organokatalyse
MC II Seminar Vortrag am 16.12.2010
von Roxana Lorenz, Tamara
Wittmann und Florian Koschitzki
Gliederung
1. Einführung
2.
Kreuzkupplungsreaktionen
3.
Goldkomplexe in der Katalyse
4.
Metathese
5.
Organokatalyse
Vergleich von NHCs mit tertiären
Phosphanen als Liganden
Gemeinsamkeiten:
• Starker, neutrale σ-Elektronen Donoren
• Geringe π-Rückbindung von Metall zu Ligand -> hohe
Elektonendichte
Unterschiede:
• P-C Bindung dissoziiert bei hohen Temperaturen – NHCs
sind thermisch stabiler
• Phosphane sind oxidationsempfindlich
• Topologie: Phosphansubstituenten zeigen vom
Metallzentrum weg („Kegel“) – NHC-Substituenten
formen eine „Tasche“ um das Metallatom -> größerer
Einfluss der Substituenten auf das Metallzentrum
• NHCs haben stärkere Donor-Eigenschaften
[1] E. A. B. Kantchev, C. J. O'Brien, M. G. Organ Angew. Chem. Int. Ed. 2007, 46, 2768-2813
Bindungsdissoziationsenergien
[3] N. M. Scott, S. P. Nolan Eur. J. Inorg. Chem. 2005, 1815-1828
Katalytischen Aktivität von NHC
Liganden
• Sterische und elektronische Effekte können prinzipiell getrennt
voneinander beeinflusst werden
• Sterisch anspruchsvolle Substituenten am Stickstoff - Elektronendichte des
Carben-Kohlenstoff-Atoms wird nur gering beeinflusst
• Der heterozyklische Ring ist für die elektronischen Eigenschaften
verantwortlich
• Die elektronischen Unterschiede zwischen verschiedenen NHCs sind sehr
gering
[1] E. A. B. Kantchev, C. J. O'Brien, M. G. Organ Angew. Chem. Int. Ed. 2007, 46, 2768-2813
Gliederung
1.
Einführung
2. Kreuzkupplungsreaktionen
3.
Goldkomplexe in der Katalyse
4.
Metathese
5.
Organokatalyse
Katalysezyklus
1. Oxidative Addition
–
–
[1] E. A. B. Kantchev, C. J. O'Brien, M. G. Organ Angew. Chem. Int. Ed. 2007, 46, 2768-2813
RX addiert sich an Pd
Pd0 -> PdII
Katalysezyklus
1. Oxidative Addition
2. Transmetallierung
–
[1] E. A. B. Kantchev, C. J. O'Brien, M. G. Organ Angew. Chem. Int. Ed. 2007, 46, 2768-2813
Ligandenaustausch zw.
R2 und X
Katalysezyklus
1. Oxidative Addition
2. Transmetallierung
3. Reduktive Eliminierung
–
–
[1] E. A. B. Kantchev, C. J. O'Brien, M. G. Organ Angew. Chem. Int. Ed. 2007, 46, 2768-2813
Bindungsbildung der
Liganden
PdII -> Pd0
Vorteile von NHC-Liganden
1.
Starke s-Bindung der NHCs führt dazu, dass das Pd Zentrum zur
oxidativen Addition fähig ist – auch mit Arylchloriden oder Alkylhaliden
2.
Sterisch anspruchsvolle NHCs erleichtern die reduktive Eliminierung
3.
Die starke Pd-NHC Bindung und die begrenzten möglichen Zerfallswege
stellen sicher, dass das Metallatom in einem löslichen, katalytisch
aktiven Zustand bleibt, auch wenn nur ein NHC-Ligand koordiniert ist
[1] E. A. B. Kantchev, C. J. O'Brien, M. G. Organ Angew. Chem. Int. Ed. 2007, 46, 2768-2813
Synthese von Pd-NHC Komplexen
Freies Carben und PdII oder Pd0 Komplexe mit Alkenen, Phosphanen,
Stickstoffliganden oder Acetatliganden
Azoliumsalz, Base und Pd-Komplex
Gleichzeitige Ausbildung des Komplex und Reduktion von PdII zu Pd0
[1] E. A. B. Kantchev, C. J. O'Brien, M. G. Organ Angew. Chem. Int. Ed. 2007, 46, 2768-2813
Suzuki-Miyaura Reaktion
•Große Anzahl stabiler Borverbindungen verfügbar
•Ungiftige Nebenprodukte
•Läuft in einer großen Auswahl von Lösungsmitteln ab
•Aryliodide und –bromide sind reaktiv, Arylchloride eher unreaktiv
Bindung
Mittlere Bindungsenergie
C-Cl
327 kJ/mol
C-Br
272 kJ/mol
C-I
214 kJ/mol
[1] E. A. B. Kantchev, C. J. O'Brien, M. G. Organ Angew. Chem. Int. Ed. 2007, 46, 2768-2813
Katalysatoren
Reaktion mit Arylchloriden gut durchführbar
Synthese von [(IPr)Pd(π-allyl)Cl]
•Über freies Carben -> schwer zu handhaben
•Über Imidazolsalz wird Carben in situ gebildet -> Überschuss des Salzes ist
notwendig
[1] E. A. B. Kantchev, C. J. O'Brien, M. G. Organ Angew. Chem. Int. Ed. 2007, 46, 2768-2813
Aktivierung
a)
b)
a) Chlorid/Alkoxid Ligandenaustausch und anschließende reduktive
Eliminierung
b) Nucleophiler Angriff am Allylliganden
[4] N. Marion, S. P. Nolan Acc. Chem. Res. 2008, 41(11), 1440-1449
Suzuki-Miyaura Reaktion
•Günstiges Lösungsmittel – Isopropanol
•Weniger als 1.05 Äquivalente der Boronsäure bei RT benötigt
•KOtBu starke, wasserempfindliche Base – nicht jede funktionelle
Gruppe ist kompatibel
[1] E. A. B. Kantchev, C. J. O'Brien, M. G. Organ Angew. Chem. Int. Ed. 2007, 46, 2768-2813
Synthese von PEPPSI-IPr
•Sehr hohe Ausbeute: 97%
•Keine wasserfreien Reaktionsbedingungen notwendig
[1] E. A. B. Kantchev, C. J. O'Brien, M. G. Organ Angew. Chem. Int. Ed. 2007, 46, 2768-2813
Aktivierung
1. Reduktion von PdII zu Pd0
2. Transmetallierung und reduktive Eliminierung des Organometallsubstrats
[5] E. A. B. Kantchev, C. J. O'Brien, M. G. Organ Chem. Eur. J. 2010, 16, 10844-10853
Suzuki-Miyaura Reaktion
•Verwendung einer milden Base – verträgt sich mit baseempfindlichen
Substraten
[1] E. A. B. Kantchev, C. J. O'Brien, M. G. Organ Angew. Chem. Int. Ed. 2007, 46, 2768-2813
Weitere Reaktionen
[1] E. A. B. Kantchev, C. J. O'Brien, M. G. Organ Angew. Chem. Int. Ed. 2007, 46, 2768-2813
[6] Jan Wenz, Thomas Kothe OC-Seminar Vortrag vom 4.11.2010, Universität Heidelberg
Gliederung
1.
Einführung
2.
Kreuzkupplungsreaktionen
3. Goldkomplexe in der Katalyse
4.
Metathese
5.
Organokatalyse
Synthese und Aktivierung
•Imidazolsalz , Silberoxid (-> NHC wird in situ gebildet) und Au-Komplex
•Freies Carben und Au-Komplex
→Ligandenaustauschreaktion
[2] Steven P. Nolan Acc. Chem. Res. 2010
Katalysierte Reaktionen
Hydratisierung von Alkinen
Cycloisomerisation von Propagyl Estern
[2] Steven P. Nolan Acc. Chem. Res. 2010
Vorteile von NHC-Liganden in Au
katalysierten Reaktionen
• Führen teilweise zu anderen Reaktivitäten/Selektivitäten als
Phosphanliganden
• Komplexe sind thermisch stabiler -> extreme Reaktionsbedingungen sind
unproblematisch
• Ganz neue Komplexe können synthetisiert werden, deren
Phosphananaloga bis jetzt nicht synthetisiert werden konnten
[2] Steven P. Nolan Acc. Chem. Res. 2010
Gliederung
1.
Einführung
2.
Kreuzkupplungsreaktionen
3.
Goldkomplexe in der Katalyse
4. Metathese
5.
Organokatalyse
Metathese
• griechisch meta = Wechsel, thesis = Position
• Methode zur Neuknüpfung von C-C-Bindungen durch Austausch
von Reste verschiedener Moleküle (Bsp. Alkenmetathese)
[7] G. C. Voulioukalakis, R. H. Grubbs Chem. Rev. 2010, 110, 1746-1787; [8] Advanced information on the Nobel Prize in Chemistry
2005, 2005, Kungl. Vetenskaakademien
Geschichte der Olefin-Metathese
• 1950: Ziegler => Polymerisation von Ethylen
Weitere Berichte folgten, aber Mechanismus immer unbekannt
• 1963: Banks und Bailey => „Olefindisproportionierung“
• 1967: N. Calderon : Polymerisation anderer Cycloolefine
• Calderon: Polymerisation von cyclischen Alkenen und die
Disproportionierung acyclische Alkene gleicher Typ von Reaktion =>
„Olefinmetathese“
• 1970: Mechanismus von Chauvin und Herisson
• 2005: Nobelpreis Für Chauvin, Grubbs und Schrock für die
Entwicklung neuer Katalysatoren
[7] G. C. Voulioukalakis, R. H. Grubbs Chem. Rev. 2010, 110, 1746-1787
Mechanismus der Olefinmetathese
• Austausch von Alkyl-Gruppen von Alkenen über eine
[2+2]Cycloaddition/-reversion mit einem Metall-Carben-Komplex
als Katalysator und einem Metallcyclobutan-Intermediat
• Un-/symmetrisch substituierte Alkene führen zu einem
Produktgemisch ( E/Z-Isomere)
• 1. Schritt: Initiierung des aktiven Metall-Carben-Komplexes
1. Cycloaddition 2. Cycloreversion
[9] T. Laue, A. Plagens John Wiley, 2005, 0-470-01040-1
Mechanismus der Olefinmetathese
Katalysezyklus einer Kreuzmetathese ( unterschiedliche Olefine als
Edukte) nach Chauvin
[9] T. Laue, A. Plagens John Wiley, 2005, 0-470-01040-1
Mechanismus der Olefinmetathese
• Katalysezyklus vereinfacht:
– die Ringöffnung in der Gegenrichtung wird nicht berücksichtigt
– Neben-/Produkte können auch weiter reagieren (E/Z-Isomere)
• Schritte im Zyklus sind reversibel -> Olefin-Produktgemisch;
Ausbeute bestimmt durch thermodynamisches Gleichgewicht
• Ausbeute der gewünschten Produkte kann durch bestimmte
Katalysatoren verbessert werden
• Entfernen von Reaktionsprodukten aus dem Reaktionsgemisch
beeinträchtig Gleichgewicht (z.B. Entfernen von Ethylen -> Rückrk
wird unterdrückt)
[9] T. Laue, A. Plagens John Wiley, 2005, 0-470-01040-1
Katalysatoren
• Früher: Multikomponenten Systeme
• Beanspruchten zu spezielle Reaktionsbedingungen und eine lange
Aktivierungsdauer
• Moderne Katalysatoren Ruthenium- und Molybdänbasiert (stabile
Metall-Carben-Komplexe & direkte WW mit der Doppelbindung des
Substrates)
[10] C. Eischenbroich: Organonetallchemie Teubner, 1990, 3-519-23501-3
Schrock-Katalysatoren
• Metall-Kohlenstoff-Doppelbindungen führen zu Metall-CarbenKomplexe
• Schrock-Carben: Triplett-Carben
σ-Hinbindung und π-Rückbindung jeweils durch ein Elektron des
Metalls & Liganden
• Nucleophilie: starke M-π-C(Carben)-Rückbindung und Abwesenheit
von –I-Substituenten am C-Atom
[10] C. Eischenbroich: Organonetallchemie Teubner, 1990, 3-519-23501-3
Schrock-Katalysatoren
•
•
•
•
Hohe katalytische Aktivität
Eingeschränkte Toleranz gegenüber funktionellen Gruppen
Hohe Sensibilität gegenüber Sauerstoff und Luftfeuchtigkeit
Effizient bei sterisch-gehinderten anspruchsvollen Edukten
[7] G. C. Voulioukalakis, R. H. Grubbs Chem. Rev. 2010, 110, 1746-1787 [2]
Grubbs-Katalysatoren
• Erste metatheseaktive Rutheniumalkylidkomplexe = GrubbsKatalysatoren 1. Generation
•
•
•
•
Geringere Aktivität
Einfachere Herstellung und Handhabung
Stabiler gegenüber Sauerstoff und Luftfeuchtigkeit
Toleriert größere Anzahl an funktionellen Gruppen
[11] L.S. Hegedus: Transition metals in the synthesis of complex organic molecules-2nd ed., 1999, 1-891389-04-1
Grubbs-Katalysatoren
• 1999: PCy3-Rest durch N-heterocyclisches Carben ersetzt = GrubbsKatalysator 2.Generation
• Thermisch stabiler
• Größere Toleranz gegenüber funktionelle Gruppen
• Höhere Aktivität
Grund: größere Affinität des NHC-substituierten Ruthenium zu πaziden Olefinen als zu σ-Donor Phosphanen
[7] G. C. Voulioukalakis, R. H. Grubbs Chem. Rev. 2010, 110, 1746-1787
Grubbs-Katalysatoren
• Neueste Katalysatoren: zweiter PCy3-Rest wird ersetzt = HoveydaGrubbs-Katalysator
• Hohe Aktivität gegenüber elektronenarmen Substraten
• Höhere thermische Stabilität
• Zusätzliche Koordination zum Ruthenium-Zentrum durch den
Sauerstoff eines Arylethers
[7] G. C. Voulioukalakis, R. H. Grubbs Chem. Rev. 2010, 110, 1746-1787
Ringöffnungs-Metathese
(ring opening metathesis, ROM)
• Cyclische Alkene zu offenkettige Produkte
•
•
•
•
Treibende Kraft = Ringöffnung
Irreversibel wegen thermodynamischer Barriere
Beisein eines Überschuss von endständigen Olefine (z.B. Ethen)
Mögliche Polymerisation im Anschluss = ROMP
[7] G. C. Voulioukalakis, R. H. Grubbs Chem. Rev. 2010, 110, 1746-1787
Ringschluss-Metathese
(ring closing metathesis, RCM)
• Acyclische Diene zu cyclische Alkene
• Irreversible, intramolekulare Reaktion
• Treibende Kraft = Entropie
• Bei endständigen Olefine -> Abspaltung von Ethen -> erhöht
Selektivität
• Fünf- bis siebengliedrige Ringe am besten geeignet ( geringe
Ringspannung)
[7] G. C. Voulioukalakis, R. H. Grubbs Chem. Rev. 2010, 110, 1746-1787
Acyclische-Dien-Metathese-Polymerisation
(acyclic diene metathesis polymerisation,
ADMET)
• Konkurrenzreaktion zur RCM
• Terminale Diene
• Irreversible Reaktion (durch Entfernen der gasförmigen Produkte
gefördert)
RCM oder ADMET?
Ringgröße, Verdünnung, Substrat und Katalysator
[9] T. Laue, A. Plagens John Wiley, 2005, 0-470-01040-1
Kreuz-Metathese
(cross metathesis, CM)
• Acyclische Alkene
• Nachteil: Produktgemisch ( E/Z-Isomere)
• Terminale Olefine: Nebenprodukt Ethen
• Aufgrund der stabilen Intermediat-Komplexe können DominoReaktionen auftreten (z.B. 3,5-bis-allyloxy-Cyclopenten; RCM-ROMRCM; treibende Kraft = Ausbildung eines zweiten 5-gliedrigen
Ringes)
[9] T. Laue, A. Plagens John Wiley, 2005, 0-470-01040-1
Anwendungen der Olefinmetathese
• Bildung von Ringsysteme
• Produktion von Schlüssel-Chemikalien für Polymer- und
Petrochemie
• Zubereitung spezieller Polymere von Cycloalkanen durch ROMP
• Naturstoffchemie
[10] C. Eischenbroich: Organonetallchemie Teubner, 1990, 3-519-23501-3
N-heterocyclische Carbene in
der Organokatalyse
Florian Koschitzki
16.12.2010
Inhaltsverzeichnis
•
•
•
•
•
•
Allgemein
Benzoin-Kondensation
Stetter-Reaktion
Morita-Baylis-Hillman Reaktion
Fazit
Quellen
Allgemein
Was ist Organokatalyse?
Allgemein
• Definition: Katalyse org. Reaktionen durch rein org. Moleküle
→ komplett metallfrei
• „Chemische Antwort auf das Vorbild der Natur“
• Bereits 1859 von Justus von Liebig entdeckt
• 1912 erste asym. org.kat. Reaktion von Bredig und Fiske
• Jedoch hervorragende Ergebnisse in der Metall-Katalyse
→ Organokatalyse vorerst in Schatten gestellt
Allgemein
Vorteile:
– Feuchtigkeits- und sauerstoffunempfindlich
– Bei Normalatmosphäre/ RT druchführbar
– Kostengünstig und leichterhältlich
– Geringere Toxizität, da metallfrei
→ relevant für Pharmaindustrie
Nachteil:
– Prozentual viel Kat. notwendig
Allgemein
Aldolreaktion katalysiert durch Prolin
Benzoin-Kondensation
• Selbst-Kondensation Benzaldehyd → Benzoin
Benzoin-Kondensation
Mechanismus
Benzoin-Kondensation
• C-C knüpfende Reaktion → Katalyse von hohem Interesse
• Stereozentrum wird kreiert
Nachteile:
– Enatiomerengemisch
– Toxizität des Cyanids
– Nur mit arom. Aldehyden
→ Katalyse durch NHCs
Benzoin-Kondensation
• Natürlich vorkommendes Thiamin katalysiert (Ugai et al.)
• 1958 Breslow-Mechanismus
• Maßstab für kommende NHC-Katalysatoren
N. Marion S.Diez-Gonzales, S. P. Nolan, Angew. Chem. Int. Ed, 2007, 46, 2988-3000
Benzoin-Kondensation
Breslow-Mechanismus
N. Marion S.Diez-Gonzales, S. P. Nolan, Angew. Chem. Int. Ed, 2007, 46, 2988-3000
Benzoin-Kondensation
→ Verbesserte Ausbeuten
→ Stereoselektivität durch asymmetrische NHCs
→ Auch mit aliphatischen Aldehyden
Intramolekulare Kreuz-Kondensation
N. Marion S.Diez-Gonzales, S. P. Nolan, Angew. Chem. Int. Ed, 2007, 46, 2988-3000
Stetter-Reaktion
Reaktion
N. Marion S.Diez-Gonzales, S. P. Nolan, Angew. Chem. Int. Ed, 2007, 46, 2988-3000
Stetter-Reaktion
Mechanismus
Stetter-Reaktion
• Präparative Darstellung von:
1,4-Diketonen, 4-Ketoestern und 4-Ketonitrilen
• Durch Cyanid katalysiert
• Nur aromatische Reste möglich
• Keine Stereoselektivität
→ NHCs
Stetter-Reaktion
Mechanismus der NHC-Katalyse
Stetter-Reaktion
Erste asym. intramolekulare Stetter-Reaktion
Neue hoch enatioselektive Stetter-Reaktion
D. Enders, K. Breuer, J. Runsink, Helv. Chim. Acta, 1996, 79, 1899-1902
Stetter-Paal-Knorr-Reaktion
„Eintopf-Reaktion“
N. Marion S.Diez-Gonzales, S. P. Nolan, Angew. Chem. Int. Ed, 2007, 46, 2988-3000
Morita-Baylis-Hillman
Reaktion
Mechanismus
Morita-Baylis-Hillman
• Lineare Enone durch Phosphine oder Amine katalysiert
→ hohe Enantioselektivität
• Schlechte Enantioselektivität bei cyclischen Enonen → NHCs
G. Masson, C. Housseman, J. Zhu, Angew. Chem., 2007, 119, 4698-4712
Bandbreite
NHCs sind geeignet für:
•
•
•
•
•
Kondensations-Reaktionen
Generierung von Homoenolaten
Ring öffnende Polymerisationen
a3 zu d3 Umpolungen
Transesterifizierung
Fazit
• Durch starke σ-Bindung elektronenreiches Metallatom
• Thermische Stabilität
• NHCs so variabel, dass es für die jeweilige Reaktion passt
-> Phosphankomplexe werden verdrängt
•
•
•
•
•
•
Ökologisch und ökonomische Vorteile gegenüber Metall-Katalyse
Rasante Entwicklung in den letzten 20 Jahren
Große Vielseitigkeit an Reaktionen
Verbesserung der Ausbeute und Stereoselektivität
Durch Modifikation der NHCs gewünschte Produkte erhaltbar
Vorher schwerzugängliche Produkte durch NHCs möglich
Quellen
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
E. A. B. Kantchev, C. J. O'Brien, M. G. Organ Angew. Chem. Int. Ed. 2007, 46, 2768-2813
Steven P. Nolan Acc. Chem. Res. 2010
N. M. Scott, S. P. Nolan Eur. J. Inorg. Chem. 2005, 1815-1828
N. Marion, S. P. Nolan Acc. Chem. Res. 2008, 41, 1440-1449
E. A. B. Kantchev, C. J. O'Brien, M. G. Organ Chem. Eur. J. 2010, 16, 10844-10853
Jan Wenz, Thomas Kothe OC-Seminar Vortrag vom 4.11.2010, Universität Heidelberg
G. C. Voulioukalakis, R. H. Grubbs Chem. Rev. 2010, 110, 1746-1787
Advanced information on the Nobel Prize in Chemistry 2005, 2005, Kungl.
Vetenskaakademien
[9] T. Laue, A. Plagens John Wiley, 2005, 0-470-01040-1
[10]C. Eischenbroich: Organonetallchemie Teubner, 1990, 3-519-23501-3
[11]L.S. Hegedus: Transition metals in the synthesis of complex organic molecules-2nd ed., 1999,
1-891389-04-1
Quellen
•
•
•
•
•
•
•
•
•
N. Marion S.Diez-Gonzales, S. P. Nolan, Angew. Chem. Int. Ed, 2007, 46, 2988-3000
H. Takikawa, Y. Haschisu, J. W. Bode, K. Suzuki, Angew. Chem. Int. Ed, 2006, 45,
3492-3494
J. Pesch, K. Harms, T. Bach, Eur. J. Org. Chem, 2004, 2025-2035
D. Enders, O. Niemeier, T. Balensiefer, Angew. Chem., 2006, 1491-1495
D. Enders, K. Breuer, J. Runsink, Helv. Chim. Acta, 1996, 79, 1899-1902
J. Read de Alaniz, T. Rovis, J. Am. Chem. Soc., 2005, 127, 6284-6289
G. Masson, C. Housseman, J. Zhu, Angew. Chem., 2007, 119, 4698-4712
L. He, Y.-R. Zhang, X.-L. Huang, S. Ye, Synthesis, 2008, 17, 2825-2829
L. He, T.-Y. Jian, S. Ye, J. Org. Chem., 2007, 72, 7466–7468
Herunterladen