AVWL I Mikro (Sommer 2008) 1 1-1 Prof. Dr. M. Kocher Gewinnmaximierung Grundannahme ökonomischer Modelle: Unternehmen produzieren stets so, dass ihr Gewinn maximal ist. Rechtfertigung? • Positiv – maximieren Firmen ihren Gewinn? • Normativ – sollten Firmen ihren Gewinn maximieren? Was nützen uns Modelle, die auf dieser Annahme aufbauen? 1.1 Ein einfaches Modell der Firma Das Unternehmen ist beschrieben durch eine Kostenfunktion, die zu jeder Produktionsmenge q die notwendigen Produktionskosten c(q) angibt. Diese Kostenfunktion ist durch die Technologie der Firma festgelegt. Der Markt, auf dem das Unternehmen operiert, ist beschrieben durch eine fallende Nachfragekurve, die das erwartete Verhalten aller anderen Marktteilnehmer repräsentiert, sowohl das der Konsumenten (von ihren Präferenzen bestimmt) als auch das etwaiger Konkurrenten. c Sven Rady und Monika Schnitzer 2008 AVWL I Mikro (Sommer 2008) 1-2 Prof. Dr. M. Kocher Zur Beschreibung der Nachfragekurve verwenden wir wahlweise die Nachfragefunktion q = D(p) oder die inverse Nachfragefunktion p = PD (q). Das Unternehmen kann einen Punkt auf der Nachfragekurve frei wählen: • wenn es eine bestimmte Menge wählt, ist über die inverse Nachfragefunktion der Preis, zu dem diese Menge abgesetzt werden kann, bestimmt; • wenn es einen bestimmten Preis wählt, ist über die Nachfragefunktion die Absatzmenge bestimmt. Wir können also wahlweise q oder p als die Entscheidungsvariable betrachten. Das Unternehmen wählt denjenigen Punkt auf der Nachfragekurve, der zum höchsten Gewinn führt. 1.2 Gewinnmaximierung Gewinn = Erlös − Kosten: π(q) = p(q) q − c(q) Bedingung erster Ordnung für Gewinnmaximum: dπ dp dc = p+ q− = 0 dq dq dq AVWL I Mikro (Sommer 2008) 1-3 bzw. p+ Prof. Dr. M. Kocher dp dc q = dq dq Grenzerlös (MR) = Grenzkosten (MC) Interpretation des Grenzerlöses: • Für die letzte verkaufte Einheit erhält die Firma zunächst den Preis p. • Gleichzeitig verringert jedoch die Erhöhung der Menge um eine Einheit den Marktpreis um dp < 0. dq • Dies senkt den Erlös um p dp q. dq rrrr rrrrrrr rr rr rr rr rrr rrrr rrrrr rr rr rr rrr rr rrrr rr rrrr rr rrrr rr rrrr rr rrrr rr rrrr rr rrrr rr rrrr rr rrrr rr rrrr rr rrrr rrrr rr rrrrr rr rrrrr rr rrrrr rr rrrrr rr rrrrr rr rrrrr rr rrrrr rr rrrrr rr rrrrr rr rrrrrr rr rrrrrr rr rrrrrr rr rrrrrr rr rrrrrr rr rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr r q Figur 1.1: Grenzerlös AVWL I Mikro (Sommer 2008) 1-4 Prof. Dr. M. Kocher Beispiel: Lineare Nachfragekurve p = a − bq R = pq = aq − bq 2 M R = p + pq = a − 2bq Beachten Sie: Die Grenzerlöskurve geht durch den selben Ordinatenabschnitt (a) und ist doppelt so steil wie die Nachfragekurve. p rr rrrrrrrr rr rr rr rr rrr rrrrrr rrrrrrrr rr rrrrrrr rr rr rrrrr rr rr rrrr rr rr rrrr rr rrr rrrr rr rr rrrrr rr rrrr rr rr rr rrrr rr rr rrrr rr rrrr rr rr rrrr rr rr rrrr rr rr rrrr rr rr rrrr rr rr rrrr rr rr rrrr rr rr rrrr rr rr rrrr rr rr rrrr rr rr rrrr rr rr rrrr rr rr rrrr rr rr rrrr rr rr rrrr rr rr rr rrrr rr rr rrrr rr rr rrrr rr r rr rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr rr rrrr rr a a rrrr 2b rrrr b q Figur 1.2: Grenzerlöskurve bei linearer Nachfrage AVWL I Mikro (Sommer 2008) 1-5 Prof. Dr. M. Kocher 1.3 Die Preiselastizität der Nachfrage Es ist fraglich, ob eine Firma wirklich ihre gesamte Nachfragekurve kennt. Viel wahrscheinlicher ist, dass das Unternehmen “lokal” experimentiert hat und daher z.B. weiß, wie empfindlich die Nachfrage auf eine kleine Veränderung des Preises reagiert. Eine Maßzahl dafür ist die Preiselastizität der Nachfrage, definiert als das Verhältnis der prozentualen Nachfrageänderung zur prozentualen Preisänderung: = Δq q Δp p Beispiel: = −1, 5 bedeutet, dass eine einprozentige Preiserhöhung zu einem Nachfragerückgang um 1,5% führt. Bemerkungen: 1) Die Preiselastizität setzt prozentuale Veränderungen in Beziehung zueinander. Darum ist sie unabhängig von den Einheiten, in denen die Nachfrage bzw. der Preis gemessen wird. 2) Die Preiselastizität ist typischerweise negativ. AVWL I Mikro (Sommer 2008) 1-6 Prof. Dr. M. Kocher 3) Andere Schreibweisen für die Elastizität sind p Δq = q Δp bzw. p dq . = q dp 4) Beachten Sie, dass die Steigung der Nachfragekurve ein lokales Maß ist. Darum sollte die Elastizität nur für kleine prozentuale Preisänderungen verwendet werden. 5) Man nennt die Nachfrage – elastisch, wenn || > 1; – unelastisch, wenn || < 1. 1.4 Grenzerlös und Preiselastizität Der Grenzerlös an einem gegebenen Punkt auf der Nachfragekurve hängt unmittelbar von der Preiselastizität ab: ⎡ ⎤ ⎡ ⎤ dp q dp 1⎥ ⎢ ⎥ ⎢ ⎢ ⎥ ⎦ M R = p + q = p · ⎣1 + ⎦ = p · ⎣1 + dq dq p Typischerweise ist die Elastizität negativ. Daher: ⎡ ⎤ 1 ⎢ ⎥ M R = p · ⎢⎣1 − ⎥⎦ || AVWL I Mikro (Sommer 2008) 1-7 Prof. Dr. M. Kocher Beachte: • Der Grenzerlös ist positiv genau dann, wenn || > 1 ist, d.h., genau im elastischen Teil der Nachfragekurve. • Je elastischer die Nachfrage (d.h., je höher ||), desto höher ist der Grenzerlös. Was ist die Intuition für diese Ergebnisse? Graphisch: p rrrr rrrrrrr rr rr rr rr rrr rrrr rrrrr rr rr rr rrr rr rrrr rr rrrr rr rrrr rr rrrr rr rrrr rr rrrr rr rrrr rr rrrr rr rrrr rr rrrr rr rrrr rrrr rr rrrr rr rrrr rr rrrrr rr rrrrr rr rrrrr rr rrrrr rr rrrrr rr rrrrr rr rrrrr rr rrrrrr rr rrrrrr rr rrrrrr rr rrrrrr rr rrrrrr rr rr rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr r q Figur 1.3: Grenzerlös und Preiselastizität AVWL I Mikro (Sommer 2008) 1-8 Prof. Dr. M. Kocher 1.5 Der Preisaufschlag über Grenzkosten Gewinnmaximierung impliziert einen einfachen Zusammenhang zwischen Preis, Grenzkosten, und Preiselastizität der Nachfrage. Am Gewinnmaximum haben wir M C = M R. Nach der Formel für den Grenzerlös gilt daher: ⎡ ⎤ 1 ⎢ ⎥ M C = p · ⎢⎣1 − ⎥⎦ || Die Differenz zwischen Preis und Grenzkosten ist dann: 1 p − MC = p · || Dividieren und Vereinfachen ergibt nun: 1 p − MC = MC || − 1 D.h., der prozentuale Preisaufschlag über den Grenzkosten (die Gewinnmarge) ist umgekehrt proportional zum um 1 verminderten Absolutwert der Preiselastizität. Beispiele: • Diskontmärkte (Lebensmittel): Sehr niedrige Aufschläge (2-3%) • High Tech: Sehr hohe Aufschläge möglich AVWL I Mikro (Sommer 2008) 1-9 Prof. Dr. M. Kocher 1.6 GM und die Truck Coupons Diese Fallstudie soll zweierlei verdeutlichen: • die Anwendung der obigen Konzepte; • Gebrauch und Nutzen einfacher ökonomischer Modelle. 1.6.1 Die Ereignisse Von 1973 bis 1987 verkauft General Motors (GM) 4,7 Millionen Pickup Trucks (Kleinlastwagen) mit an der Seite aufmontiertem Tank. Wegen Sicherheitsbedenken erwägt die Regierung, einen Rückruf der Fahrzeuge anzuordnen, wogegen GM sich vehement wehrt. Gleichzeitig geht bei GM eine Sammelklage ein, in der Fahrzeugeigentümer Kompensation für Wertverlust und teure Nachrüstung verlangen. GM und die Anwälte einigen sich im Juli 1993 auf ein Kompensationsschema. Danach soll jeder registrierte Fahrzeugbesitzer einen Gutschein erhalten, der beim Kauf eines neuen GM-Kleinlastwagens eingelöst werden kann. Dieser Vorschlag liegt nun dem vorsitzenden Richter zur Begutachtung vor. AVWL I Mikro (Sommer 2008) 1-10 Prof. Dr. M. Kocher 1.6.2 Die Gutscheine Der vorgeschlagene Gutschein sah so aus: (a) Der Gutschein gewährt dem registrierten Eigentümer eines GM-Kleinlastwagens mit an der Seite montiertem Tank oder einem Mitglied seiner unmittelbaren Familie einen Preisnachlass von $E beim Kauf eines neuen Kleinlastwagens von GM. (b) Der Gutschein ist einmal übertragbar. Von einer Person außerhalb der unter (a) genannten Gruppe vorgelegt, gewährt der Gutschein einen Preisnachlass von $N beim Kauf eines neuen Kleinlastwagens von GM. (c) Der Gutschein gilt 15 Monate nach Ausgabe. Die tatsächlichen Summen waren E = 1000 und N = 500. Dies ergibt mögliche Kosten von 4,7 Milliarden US$! Wir (in der Rolle des Richters) wollen fragen: • Wie gut ist dieses Angebot? • Was sind die tatsächlichen Kosten? • Wie hängt dies von der Ausgestaltung der Gutscheine ab? AVWL I Mikro (Sommer 2008) 1-11 Prof. Dr. M. Kocher Plausible Hypothesen: (1) Steigen beide Nennwerte des Gutscheins um denselben Betrag, erhöhen sich die Kosten für GM. Wären z.B. E = 2000 und N = 1500, sollten sich die Kosten also mehr als verdoppeln. (2) Bei gegebenem Nennwert für registrierte Eigentümer sind die Kosten für GM und die Vorteile für die Eigentümer umso höher, je höher der Nennwert nach Übertragung des Gutscheins ist. Gäbe es bei E = 1000 z.B. die Wahl zwischen N = 200 und N = 500, würde GM also ersteres, und ein Eigentümer letzteres vorziehen. (3) GM möchte die Übertragung von Gutscheinen so schwer wie möglich machen, da jeder übertragene und eingelöste Gutschein das Unternehmen Geld kostet. Wir wollen das einfache Modell der gewinnmaximierenden Firma mit fallender Nachfragekurve benutzen, um die Gültigkeit dieser Hypothesen zu prüfen. AVWL I Mikro (Sommer 2008) 1-12 Prof. Dr. M. Kocher 1.6.3 Modellannahmen • GM stellt nur einen Typ von Kleinlastwagen her. • GM verkaufte dieses Fahrzeug bisher für $20.000. • Die Herstellung eines Fahrzeugs kostet $15.000. • Während der Laufzeit der Gutscheine würde GM zum bisherigen Preis 2 Millionen Fahrzeuge verkaufen. • GM kann den Preis seiner Fahrzeuge frei bestimmen, und wählt den gewinnmaximierenden Preis. Wie realistisch sind diese Annahmen? Was bedeuten diese Annahmen für die Elastizität der Nachfrage, der sich GM bei einem Preis von $20.000 und einer Menge von 2 Millionen (über 15 Monate) gegenübersieht? Antwort: = −4 (Frage: Warum?) AVWL I Mikro (Sommer 2008) 1-13 Prof. Dr. M. Kocher 1.6.4 Ein hypothetischer Fall Angenommen, GM gäbe 4,7 Millionen Gutscheine mit Nennwerten E = N = 1000 (!) aus, und die Übertragung eines Gutscheines verursachte keinerlei Kosten, was wäre dann die Vorhersage unseres Modells? • Preis? • Menge? • Kosten für GM? • Vorteil für Eigentümer? Was heißt das für unsere Hypothesen? Wie könnte das vom Modell vorhergesagte Verhalten in der Realität aussehen? AVWL I Mikro (Sommer 2008) 1-14 Prof. Dr. M. Kocher 1.6.5 Zurück zum tatsächlichen Fall Es gibt im Prinzip drei Gruppen von Verbrauchern, die von den Gutscheinen betroffen sind: Eigentümer Ja Nein Ja Kauft Fahrzeug Nein Figur 1.4: Betroffene Verbrauchergruppen Der Richter hat nur den Nutzen der Gutscheine für registrierte Eigentümer im Auge. Dabei muss er unterscheiden zwischen • denjenigen, die in den nächsten 15 Monaten eine neues Fahrzeug kaufen wollen; • denjenigen, die das nicht wollen. Betrachten wir zunächst diese zweite Gruppe. AVWL I Mikro (Sommer 2008) 1-15 Prof. Dr. M. Kocher Was ist der Marktwert, zu dem registrierte Eigentümer einen nicht benötigten Coupon verkaufen können? Antwort: Null! (Warum?) Das bedeutet: • Eigentümer, die nicht zu kaufen beabsichtigen, haben keinerlei Nutzen von ihrem Gutschein. • Jeder Käufer eines neuen GM-Kleinlastwagens wird einen Gutschein vorlegen. Bleibt die Frage: Welchen Vorteil bringt der Gutschein einem Eigentümer, der tatsächlich ein neues Fahrzeug kauft? Dies hängt natürlich vom Preis ab, den GM setzt. Dabei wird das Unternehmen zwei Gruppen von Käufern unterscheiden: • bisherige Eigentümer; • neue Kunden (alle mit Gutschein). AVWL I Mikro (Sommer 2008) 1-16 Prof. Dr. M. Kocher Um hier mit unserer Analyse weiterzukommen, machen wir folgende zusätzliche Annahmen: • Bei einem Preis von $20.000 ist die Elastizität der Nachfrage in beiden Käufergruppen gleich −4. • Bei einem Preis von $20.000 würde GM 600.000 Fahrzeuge (30%) an bisherige Eigentümer, 1,4 Millionen Fahrzeuge (70%) an neue Kunden verkaufen. • Beide Gruppen haben eine lineare Nachfragekurve. Wie realistisch sind diese Annahmen? AVWL I Mikro (Sommer 2008) 1-17 Prof. Dr. M. Kocher Da wir nun jeweils einen Punkt auf der Nachfragekurve und (über die Elastizität) auch die dortige Steigung kennen, können wir die Nachfragefunktionen der beiden Gruppen berechnen. Bisherige Eigentümer: qE = αE − βE · p E = p p dqE = − βE qE dp qE Bei p = 20.000 ist qE = 600.000 und E = −4. Daher: 20.000 βE ⇒ βE = 120 4= 600.000 600.000 = αE − 120 · 20.000 ⇒ αE = 3.000.000 Ergebnis: qE = 3.000.000 − 120 · p Genauso für die neuen Käufer: qN = 7.000.000 − 280 · p Beachte: In diesen Nachfragefunktionen steht p für den tatsächlich bezahlten Preis. Er wird für jede Gruppe aus dem von GM gesetzten Preis P und den mit dem Gutschein verbundenen Rabatten und Kosten berechnet. AVWL I Mikro (Sommer 2008) 1-18 Prof. Dr. M. Kocher 1.6.6 Gewinnmaximierung Wenn GM den Preis P setzt, dann ist der tatsächlich zu bezahlende Preis p gleich P − 1000 für bisherige Eigentümer, P − 500 für neue Käufer. Dementsprechend verkauft GM qE = 3.120.000 − 120P Fahrzeuge an bisherige Eigentümer, qN = 7.140.000 − 280P Fahrzeuge an neue Kunden. Pro verkauftem Fahrzeug verdient GM P − 1000 − 15.000 an bisherigen Eigentümern, P − 500 − 15.000 an neuen Kunden. Die Gewinnfunktion ist also: π = (P − 16.000)(3.120.000 − 120P ) +(P − 15.500)(7.140.000 − 280P ) Die Bedingung erster Ordnung für das Maximum ist: 0 = 3.120.000 − 120P − 120P + 1.920.000 +7.140.000 − 280P − 280P + 4.340.000 = 16.520.000 − 800P AVWL I Mikro (Sommer 2008) 1-19 Prof. Dr. M. Kocher Der optimale Preis ist daher: P ∗ = 20.650 Dieser Preis führt zu einem Gewinn von: π ∗ = 9, 979 Milliarden 1.6.7 Die Kosten des Programms Ohne die Gutscheine hätte GM 2 Millionen Fahrzeuge mit einem Gewinn von $5000 pro Einheit verkauft, also einen Gesamtgewinn von π 0 = 10 Milliarden erzielt. Die Kosten des Gutscheinprogramms für GM sind daher: π 0 − π ∗ = 21 Millionen Dies ist viel weniger als die befürchteten 4,7 Milliarden US$! AVWL I Mikro (Sommer 2008) 1-20 Prof. Dr. M. Kocher 1.6.8 Bemerkungen (A) GM entstehen also Kosten in Höhe von 21 Millionen US$. Frage: Was verursacht diese Kosten? Antwort: Der Zwang zum Kompromiss! Wenn GM von bisherigen Eigentümern $21.000 pro Fahrzeug verlangen könnte, von neuen Kunden dagegen $20.500, dann würde dies das Gutscheinprogramm völlig neutralisieren – jeder Kunde würde effektiv wieder $20.000 bezahlen! Da diese Form der Preisdiskriminierung politisch und rechtlich aber nicht opportun ist, sieht sich GM gezwungen, einen “Kompromisspreis” zwischen $20.500 und $21.000 zu wählen. Dies schmälert den Gewinn. Im Spezialfall linearer Nachfragekurven und konstanter Grenzkosten ist der beste Preis das gewichtete Mittel der beiden “Idealpreise”: 20.650 = 0, 3 · 21.000 + 0, 7 · 20.500 (B) Hypothese (2) ist falsch, weil eine größere Differenz zwischen den Rabatten E und N einen weiteren “Spagat” zwischen den beiden Käufergruppen erfordert – der “Kompromisspreis” entfernt sich immer mehr von den bei- AVWL I Mikro (Sommer 2008) 1-21 Prof. Dr. M. Kocher den “Idealpreisen”, und der Gewinn sinkt. Bei E = 1000 und variablem N hat man z.B.: N Kosten für GM 1000 0 500 21 Millionen 200 54 Millionen 0 84 Millionen (C) Hypothese (1) ist falsch, da jede gemeinsame Erhöhung der Rabatte E und N um einen bestimmten Betrag durch eine Erhöhung des Preises um denselben Betrag neutralisiert werden kann. (D) Man kann zeigen, dass GM allen Anreiz hat, den Transfer von Gutscheinen so einfach wie möglich zu machen! Das Gegenteil von Hypothese (3) ist also wahr. Angenommen, den neuen Kunden entstehen bei der Beschaffung eines Coupons Kosten in Höhe von $T . Dann belaufen sich die Kosten des Gutscheinprogramms für GM auf beispielsweise: T Kosten für GM 0 21 Millionen 20 50 Millionen 50 93 Millionen AVWL I Mikro (Sommer 2008) 1-22 Prof. Dr. M. Kocher Intuition: Die Transaktionskosten T wirken wie eine Steuer auf Verkäufe an neue Kunden. Einen Teil davon muss auch der Anbieter tragen, und zwar in Form eines niedrigeren Preises und geringeren Gewinns. 1.6.9 Gewinner und Verlierer Unser Modell besagt, dass GM seine Pickup Trucks zum Preis von $20.650 verkaufen wird. Wir haben schon gesehen, dass registrierte Eigentümer, die kein neues Fahrzeug kaufen, keinerlei Vorteil von ihren Gutscheinen haben. Diejenigen Eigentümer, die ein neues Fahrzeug kaufen, zahlen nun einen effektiven Preis von 20.650 − 1000 = 19.650. Gegenüber dem ursprünglichen Preis von $20.000 bringt ihnen der Gutschein also einen Nettorabat von $350. Bei einem effektiven Preis von $19.650 ist die Nachfrage der registrierten Eigentümer gleich qE = 3.000.000 − 120 · 19.650 = 642.000. Insgesamt gewährt GM dieser Gruppe also einen Nettorabatt von 642.000 · 350 = 224, 7 Millionen. AVWL I Mikro (Sommer 2008) 1-23 Prof. Dr. M. Kocher Dennoch entstehen GM nur Kosten in Höhe von 21 Millionen. Frage: Wer bezahlt den Rest des Rabattes? Antwort: Die neuen Kunden. Für diese Gruppe ist der effektive Preis nun 20.650 − 500 = 20.150, also um $150 höher als bisher. Neue Kunden kaufen qN = 7.000.000 − 280 · 20.150 = 1.358.000 Fahrzeuge, was GM Mehreinnahmen von 1.358.000 · 150 = 203, 7 Millionen einbringt – genau 21 Millionen weniger als der Nettorabatt an bisherige Eigentümer. 1.6.10 Diskussion Würden Sie als Richter das Gutscheinprogramm absegnen?