Colloquium 2004 bei Sahm Skript von A.Voßkühler Experimentalphysikcolloquium WS 2004/2005 1 1.1 1.2 1.3 1.4 1.5 Termin 21.10.2004: Spektrometer Prismenspektrometer: Auflösungsvermögen Gitterspektrometer Spiegelgitter Blazegitter 2 2.1 2.2 2.3 2.4 2.4.1 2.4.2 2.4.3 2.4.4 Termin 28.10.2004: hochauflösende Interferometrie, Nachweisgeräte Fabry- Perot- Interferometer Michelson Interferometer Fourierspektroskopie Nachweisgeräte Photomultiplier CCD –Zeilen/direkter indirekter Halbleiter Photodiode pn-Übergang 7 7 8 8 9 9 10 12 12 3 3.1 3.1.1 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3 Termin 4.11.2004: Lichtquellenspektren Spektrallinien Fraunhofersche Linien Linienbreite Dopplereffekt Dopplerfreie Spektroskopie Molekülstrahlspektroskopie Sättigungsspektroskopie 2-Photonen Spektroskopie 13 13 13 14 15 16 16 16 17 4 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.5 4.6 4.7 4.8 4.9 Termin 11/18.11.2004: Laser Wirkungsprinzip Eigenschaften von Laserlicht Schwingungsmoden des Lasers Gaslaser He-Ne-Laser Kohlendioxidlaser (CO2-Laser) Excimerlaser Weitere Gaslaser Farbstoff/Flüssigkeitslaser Festkörperlaser Halbleiterlaser Freie-Elektronen-Laser (FEL) Durchstimmen 18 18 19 19 20 20 20 20 21 21 22 22 22 23 Seite 1 4 5 5 6 6 6 Colloquium 2004 bei Sahm Skript von A.Voßkühler 4.10 Erzeugung kurzer Pulse 4.10.1 Gütemodulation (Q- Switch) 4.10.2 Pulskompression 4.11 Modenkopplung 4.11.1 aktive Modenkopplung 4.11.2 passive Modenkopplung 24 24 24 24 25 25 5 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 Termin 25.11.2004: Schwarzkörper/ Synchroton/ Röntgenstrahlung Strahlungsgesetze der Schwarzkörperstrahlung Röntgenstrahlung Erzeugung Wechselwirkung mit Materie Biologische Wirkung Nachweis Anwendungen Natürliche Röntgenstrahlung Entdeckungsgeschichte Fragen 26 26 27 27 27 28 28 28 29 29 29 5.3 Synchrotronstrahlung 31 5.4 5.4.1 5.4.2 5.4.3 Strukturanalyse Debye-Scherrer Verfahren von Laue Verfahren Fragen 31 31 32 32 6 6.1 6.1.1 6.1.2 6.2 6.3 Termin 2.12.2004: Magnetismus Qualitativ Richtungsquantelung Kurzfassung Quantitativ Fragen 33 33 34 35 35 36 7 7.1 7.1.1 7.2 7.3 7.4 7.4.1 7.5 Termin 9.12.2004: Messung magnetischer Flussdichten Induktion Ballistisches Galvanometer Halleffekt Quantenhalleffekt Kernspinresonanz & (-tomographie) NMR (Nuclear Magnetic Resonance) Fragen 38 38 38 38 39 39 39 40 8 8.1 8.2 8.3 8.4 8.5 8.6 Termin 16.12.2004: Supraleitung Theorie Meißner-Ochsenfeld-Effekt Supraleiter 1. Art Supraleiter 2. Art Josephson-Effekt Josephsonkontakt 42 42 43 43 44 44 45 Seite 2 Colloquium 2004 bei Sahm Skript von A.Voßkühler 8.7 8.8 SQUID Fragen 9 9.1 9.2 9.3 9.4 9.5 9.7 9.8 9.9 9.10 9.10.1 9.10.2 9.10.3 9.10.4 9.10.5 9.11 Termine 6/13.01.2005: Erzeugung und Messung tiefster Temperaturen 49 ideale und reale Gase 49 Adiabatische Expansion 50 Joule- Thompson Effekt 50 Lindeverfahren 50 Abpumpen von 3He 51 3He-4He-Gemisch 52 Pomerantchuk Effekt 52 adiabatische Entmagnetisierung 52 adiabatische Kernentmagnetisierung 53 Thermometer 53 Gasthermometer 53 Dampfdruckthermometer 53 elektrische Thermometer 53 magnetische Thermometer 53 Kernspinthermometer 53 Fragen 54 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 Termin 20.01.2005: Moderne Mikroskopie Lichtmikroskopie Nahfeldmikroskopie Röntgenmikroskopie Elektronenmikroskop Rastertunnelmikroskop (RTM/STM) Rasterkraftmikroskop (RKM/AFM) Fragen 55 55 55 55 56 57 58 59 11 11.1 11.1.1 11.1.2 11.1.3 11.1.4 11.1.5 11.1.6 11.1.7 11.2 11.3 11.4 11.5 Termin 27.01.2005: Radioaktivität Zerfallsmodi Alphazerfall Betazerfall Gammazerfall Elektroneneinfang Innere Konversion Spontane Nukleonenemission Weitere Geschichte Strahlenbelastung und biologische Wirkung Medizinische Anwendung Fragen 61 62 63 63 63 64 64 64 64 64 64 65 65 9.6 45 46 Seite 3 Colloquium 2004 bei Sahm 1 Skript von A.Voßkühler Termin 21.10.2004: Spektrometer Prinzipieller Aufbau: A: Lichtquelle B: Spalt C: Linse D: dispersives Element E: Schirm Was wird abgebildet ? Der Eintrittsspalt Welche Wellenlängen werden stärker gebrochen ? Die kurzwelligen Wo steht der Spalt ? Im Brennpunkt der Linse Wie heißt der Effekt, den man ausnutzt ? Dispersion Was ist Dispersion ? Die Abhängigkeit der Brechzahl von der Wellenlänge oder allgemeiner, die Abhängigkeit der Phasengeschwindigkeit von der Wellenlänge Wie ist diese definiert ? Dispersion = dn dλ n (λ) = c vPh (λ) ( ) dn dn ≤ 0 ) und anormale >0 dλ dλ Exemplarische Dispersionskurve (beachte: n über f, nicht über λ ) Welche Arten von Dispersion gibt es ? normale ( A: Bereiche anormaler Dispersion entsprechen Molekülresonanzen im Material, dort gibt es Absorption, das Material ist nicht durchsichtig (z. Bsp. Glas im UV) Seite 4 Colloquium 2004 bei Sahm Skript von A.Voßkühler Beachte: Bei Brechzahl n<1 folgt aus n (λ) = c vPh (λ) für Phasengeschwindigkeit ein Wert größer als Vakuumlichtgeschwindigkeit. Das ist erlaubt, weil Information nur mit Gruppengeschwindigkeit (Geschwindigkeit des Wellenpakets) transportiert wird. Anwendung: Vor allem bei Röntgenstrahlung ist n<1 für fast alle Stoffe, d.h. für Röntgenstrahlung aus der Luft ist das Eindringen in Materialien sehr leicht, weil dies einen Übergang in ein optisch dünneres Medium bedeutet, also (fast?) keine Reflexionen auftreten. Dafür gibt es hier aber den Effekt der Totalreflexion, den man sich für „Röntgenlinsen“ zunutze macht. 1.1 Prismenspektrometer: Was sieht man auf dem Schirm ? Ein Beugungsbild des Spalts. 1.2 Auflösungsvermögen spektrales Auflösungsvermögen allgemein: λ ( ∆λ : kleinste auflösbare Wellenlängendifferenz) ∆λ λ dn Prismenspektrometer: ≈ b ≈ 103 −104 (Basislänge b und Dispersion) ∆λ dλ λ Gitterspektrometer: = m (N −1) ≈ 106 (N: Gitterstriche, m-te Ordnung) ∆λ Je höher das Auflösungsvermögen, desto schärfer sind auch die Beugungsmaxima: Seite 5 Colloquium 2004 bei Sahm 1.3 Skript von A.Voßkühler Gitterspektrometer Beispiel siehe Grafik. PM: Fotomultiplier. Gitterspiegel ist drehbar. Durch Drehung wird Spektrum durchgefahren. Oft verwendet: 1.4 Spiegelgitter Ein Spiegelgitter besteht aus einem Planspiegel, in den Gitterlinien eingeritzt sind. Die verbleibenden Spiegelflächenabmessungen liegen im Bereich der Wellenlänge des einfallenden Lichts (z.Bsp. 1000 Striche/mm = 1µm) und sind daher Ausgangspunkte Huygenscher Elementarwellen und die Überlagerung liefert ein Beugungsbild mit Maxima unter der Gitterbedingung 1.5 sin α = mλ . g Blazegitter Beschreibung: Das Auflösungsvermögen ist proportional zur beobachteten Ordnung, die Ausleuchtung ist normalerweise aber in der 0.Ordnung am größten. Abhilfe schafft ein Winkel der reflektierenden Gitterebenen. Jede Gitterschräge ist weiterhin Ausgangspunkt einer Elementarwelle, da die Abmessung im Bereich der Wellenlänge liegt, das Beugungsbild ändert sich nicht im Vergleich zu einem normalen Spiegelgitter. Durch die Schrägstellung der „Gitterlinien“ entsteht aber eine Intensitätskeule in Richtung des Ausfallswinkels bezogen auf den Blazewinkel, die je nach Ausführung ihre Hauptintensität in Richtung der ersten oder zweiten Ordnung des Beugungsbildes hat. Die Herstellung der Blazegitter erfolgt mechanisch mittels entsprechend geformten Diamanten oder per holografischer Belichtung, Entwicklung, Ätzung und Beschichtung des entsprechenden Tiefenprofils. Seite 6 Colloquium 2004 bei Sahm Skript von A.Voßkühler 2 Termin 28.10.2004: hochauflösende Interferometrie, Nachweisgeräte 2.1 Fabry- Perot- Interferometer Auflösungsvermögen: λ = m (N −1) ∼ d ⋅ N ≈ 106 −1012 (N: Teilstrahlen, m: Ordnung des Gangunterschieds) ∆λ Erhöhung des Auflösungsvermögens durch großen Spiegelabstand Reflexionsgrad. Auflösungsvermögen wird auch definiert über die Finesse: F= π R 1− r und hohen λ ν ν⋅F = = ∆λ ∆ν δν Beschreibung: Das wesentliche Element sind zwei dielektrische Spiegel mit R=99% T=1%, deren verspiegelte Seiten parallel gegenüber liegen. Die transmittierten Strahlen interferieren bei einem Gangunterschied von 2d ⋅ n2 − sin 2 α = m⋅λ . Wegen der Vielstrahlinterferenz sind die Maxima sehr scharfe Linien. Bsp.: ein Gangunterschied bei einer Reflexion von λ /100 ist bei 50 Reflexionen schon λ / 2 und ergibt damit eine Auslöschung. Die Außenseiten der FPI-Platten sind oft keilförmig, um die dortigen Reflexe zu unterdrücken. Statt 2 verspiegelten Platten kann man auch Etalons nehmen. Fragen: Was ist der freie Spektralbereich ? Der Bereich innerhalb dessen keine Überlappung verschiedener Ordnungen vorkommt. δν = Wie groß ist das Auflösungsvermögen c 2nd eines Gitters: λ = m (N −1) ≈ 106 ∆λ In welcher Größenordnung liegt m ? 20000 Wieso sieht man bei Fabry- Perot ein Ringsystem ? Weil der Gangunterschied winkelsymmetrisch ist. Welche Ordnungen sieht man im Ringsystem ? Bild Was ist N in der Formel des Auflösungsvermögens ? Eine effektive Anzahl von Teilstrahlen, da die Intensität der interferierenden Teilstrahlen mit der Höhe der Reflexionen sinkt ist die Wirksamkeit der „späten“ Teilbündel begrenzt und nicht wie beim Gitter die genaue Angabe der Teilbündel. Seite 7 Colloquium 2004 bei Sahm 2.2 Skript von A.Voßkühler Michelson Interferometer Auflösungsvermögen: λ ∆L ∼m ∆λ λ (m: Ordnung, ∆L Wegunterschied beider Teilstrahlen) Erhöhung des Auflösungsvermögens durch großen Spiegelabstand und hohen Reflexionsgrad. Kompensationsplatte P’ damit beide Strahlen denselben Weg durch Glas haben. Spiegel S1 verschiebbar zur Einstellung des Gangunterschieds ∆L . Fragen: Welche Strecke muß man den Spiegel bewegen um von Maximum zu Maximum zu kommen ? λ 2 2.3 Fourierspektroskopie Nimmt man im MichelsonInterferometer die Intensität einer polychromatischen Lichtquelle mit einem Photomultiplier auf, dann gibt es eine von der Weglängendifferenz also Spiegelstellung abhängige Intensitätsverteilung, da sich die verschiedenen Wellenlängen nur bei gleich langen Armen des ∆L = 0 Interferometers also konstruktiv überlagern. Die Grafik zeigt die Überlagerung für drei verschiedene Wellenlängen exemplarisch. Überlagert man alle Wellenlängen, so sieht die Intensitätsverteilung etwa so aus wie das zweite Bild: Eigentlich müsste es symmetrisch sein, aber Fertigung usw. Nach der Fouriertransformation erhält man die Intensitätsverteilung der verschiedenen Wellenlängen, wo man die Charakteristik der Lichtquelle ablesen kann. Zur Untersuchung von Proben, wird das Referenzspektrum ohne Probe vom Probenspektrum nach der Fouriertransformation abgezogen und man erhält charakteristische Absorptionsbanden. (Bild rechts.) Seite 8 Colloquium 2004 bei Sahm Skript von A.Voßkühler Das Auflösungsvermögen der Fourierspektroskopie steigt mit der Größe des Bereichs in dem der Spiegel verschoben wird, da dadurch der transformierte Wellenzug länger ist und damit die Analyse schärfer. Für Mikrowellen wird ein Lamellengitter als Strahlteilers verwendet. 2.4 Nachweisgeräte 2.4.1 Photomultiplier Beschreibung; Ein Photon löst aus der Fotokathode per äußerem lichtelektrischem Effekt ein Elektron, welches dann im Sekundärelektronenvervielfacher potenzgesetzartig vervielfältigt wird. Es wird durch Hochspannung auf Metalldynoden gejagt und schlägt dort weitere Elektronen heraus, die wiederum bis zur nächsten Dynode beschleunigt werden usw. An einem Messwiderstand wird dann der erzeugte Strom gemessen, der proportional zur Anzahl der einfallenden Photonen ist. Wird auch in Szintillationszählern verwendet (zur Detektion von Gammastrahlung) Prinzip reale Ausführung Seite 9 Colloquium 2004 bei Sahm Skript von A.Voßkühler Äußerer lichtelektrischer Effekt: Austreten von Elektronen aus festen Körpern bei Bestrahlung mit Photonen. >Mindestfrequenz erforderlich > kinetische Energie der Elektronen steigt mit Frequenz der Photonen. D.h. (Einstein 1905) Aus de Broglie folgt Äquivalenz von Photonenergie und Austrittsarbeit (Differenz zwischen Fermienergie im Metall und Ruheenergie Ekin = 0 in Luft, bei Metallen bei einigen eV) Die „Restenergie“ des Photons bekommt das Elektron als kinetische Energie mit auf den Weg. Wichtig für eine genügend guten Messtrom sind außerdem kurze Messzeiten. (wg. I=Q/t) Zwei wichtige charakterisierende Größen: 1) Eindringtiefe in Dynoden (nicht zu hoch, also Spannung nicht zu hoch, d.h. guter Sekundärelektronenemissionsfaktor) und 2) gute Fotokathode. Verstärkungsfaktor 105 −106 . Fragen: Was macht das Elektron in der Dynode ? Ionisationen Wieso darf die Spannung nicht zu hoch sein ? Damit die Elektronen nicht zu schnell werden, d.h. zu tief eindringen bzw. zu geringe Wirkungsquerschnitte haben) 2.4.2 CCD –Zeilen/direkter indirekter Halbleiter CCD= charge coupled devices (Ladungsgekoppelte Geräte) Beschreibung: (Aufbau ähnlich MOS-FET: Metal Oxide Semiconductor – Feld Effekt Transistor) Durch eine positive Vorspannung am Gate, werde die Defektelektronen (Löcher) im P-dotierten Siliziumsubtsrat unter dem Gate zurückgedrängt und es entsteht eine Dotierungsarme Siliziumwanne (hellrot). Fällt Licht auf das Gate, werden in der Wanne Ladungsträgerpaare erzeugt, von denen die Elektronen sich am Gate sammeln (das Siliziumoxid ist eine sehr wirksame Isolationsschicht) und die Löcher in das Substrat wandern. Auf diese Weise entsteht eine dem Lichteinfall proportionale Ladungsträgeranzahl von Minoritätsladungsträgern am Gate. Beim CCD- Chip sind etliche solcher Zellen (Pixel) in Reihen angeordnet. Die Information wird dann Zeilen und Spaltenweise ausgelesen, indem die Ladungen in MOS- Kondensatoren zwischengespeichert und dann zeilenweise verschoben werden. Das Auslesen erfolgt über einen gesperrten PN-Übergang (nur für Minoritätsladungsträger durchlässig). CCD Zeilen (Reihen von Pixeln) können auch als empfindliche Spektrometer verwendet werden. Wenn die Zeile auf ein brechendes Objekt geeicht wird, können die Spektren verschiedener Lichtquellen komplett aufgezeichnet werden. Jedem Pixel ist dann ein schmaler Wellenlängenbereich zugeordnet. Fragen : Wie dick sind die Siliziumschichten ? 300µm, da sonst die Wechselwirkungswahrscheinlichkeit zur Ladungsträgerpaarerzeugung zu gering ist. Bei einer solchen Dicke muss das Material aber auch besonders sauber sein, da die Rekombination an Störstellen die gespeicherten Minoritätsladungsträger zerstört. Seite 10 Colloquium 2004 bei Sahm Skript von A.Voßkühler Die Wechselwirkungswahrscheinlichkeit ist sehr gering, da Silizium ein indirekter Halbleiter ist. Was heißt das ? Im Energie-Impuls Diagramm (siehe unten) sieht man die Unterkante des Leitungsbandes und die Oberkante des Valenzbandes, die einen Abstand haben (die Bandlücke des Halbleiters) Beim direkten Halbleiter (links) liegen Maximum und Minimum übereinander, so dass für ein Anheben nur Energiezufuhr nötig ist, beim indirekten Halbleiter (rechts) ist das Minimum des Leitungsbandes verschoben, so dass ein Elektron zusätzlich zur Energie auch noch einen Impuls bekommen muss, um die Bandlücke zu überwinden. Da das Photon, welches die Paarbildung erzeugt, praktisch keinen Impuls besitzt (im Vergleich zum Elektron) , braucht es beim indirekten Halbleiter noch einen Impulsübertrag durch z. Bsp. Phononen, damit ein Übergang stattfinden kann. Das passt viel seltener zusammen, Intensitätsverlauf in den so dass das Silizium (als indirekter Halbleiter) sehr verschiedenen Halbleitertypen dick sein muss, damit genügend Paarbildungen zustande kommen. ↑E k= 2π λ p= k E= ω →k direkter Halbleiter Wie detektiert man Farben mit CCD Chips ? Z. Bsp. 4 Pixel zusammenschließen und je Pixel eine Grundfarbe (aufgrund der Empfindlichkeitsstruktur des Auges 2 grün, 1 blau, 1 rot) Welchen Farbbereich kann man damit darstellen ? Die Fläche, die von den Grundfarbenpunkten im Farbempfindlichkeitsdiagramm eingeschlossen wird. 4 Farben (z. Bsp. CMYKFarbsystem) umschließen größere Fläche. In der Mitte liegt der Weißpunkt. Seite 11 indirekter Halbleiter Colloquium 2004 bei Sahm Skript von A.Voßkühler 2.4.3 Photodiode In einem pn- Übergang in Sperrpolung (n + , p - ) entstehen durch Lichteinfall in der Raumladungszone Ladungsträgerpaare, die als Minoritätsladungsträger (bei n: Löcher, bei p: Elektronen) einen Sperrstrom hervorrufen, der dem Lichteinfall proportional ist. (In Sperrpolung können Majoritätsladungsträger den Übergang nicht passieren). Der Strom in einer gesperrten Fotodiode ist proportional zur Bestrahlungsstärke. Auch ohne Sperrpolung fließen die Ladungsträgerpaare ab, wenn p und n über einen Widerstand leiten d verbunden werden. (Prinzip Solarzelle) Hier wächst der Strom aber nur logarithmisch. 2.4.4 pn-Übergang Im Bändermodell ist die Energie der Elektronen nach oben aufgetragen ! Fragen: Zeichnen Sie die Kennlinie eines pn- Übergangs im Sperrbereich: siehe Grafik rechts. (nach unten: wachsende Bestrahlungsstärke) Was ist der Unterschied zwischen Beleuchtungsstärke und Bestrahlungsstärke ? In allen Begriffen, in denen „Licht“ oder „Leucht“ vorkommt ist die Messgröße mit einer Bewertung bezogen auf das menschliche Auge versehen, bei „Bestrahlung“ ist die rein physikalische Messgröße gemeint. Seite 12 Colloquium 2004 bei Sahm Skript von A.Voßkühler 3 Termin 4.11.2004: Lichtquellenspektren 3.1 Spektrallinien Als Spektrallinie bezeichnet man das von einem Atom oder Molekül aufgrund eines quantenmechanischen Übergangs abgegebene oder absorbierte Licht einer genau definierten Frequenz. Die Frequenz einer Spektrallinie wird durch die Energie des emittierten oder absorbierten Photons bestimmt, die gerade den Unterschied zwischen den Energien der quantenmechanischen Zustände bestimmt. Die optischen Auswahlregeln erlauben nur Übergänge bei denen die Elektronenkonfiguration den Spin1 des Photons abgibt. Eine Emissionslinie ergibt sich durch Übergang von einem höheren auf ein tieferes Energieniveau. Hierbei wird ein Photon ausgesendet. Dies kann entweder spontan geschehen (spontane Emission), oder, wie beispielsweise beim Laser, durch Licht passender Frequenz angeregt werden (stimulierte Emission). Sie zeigt sich im Spektrum als helle Linie. Eine Absorptionslinie ergibt sich durch Absorption eines passenden Photons des eintreffenden Lichts, wodurch ein Übergang von einem niedrigeren in ein höheres Energieniveau induziert wird. Sie zeigt sich als dunkle Linie im kontinuierlichen Spektrum des einfallenden Lichtes. Die Spektrallinien waren einer der Effekte, die zur Entwicklung der Quantenmechanik beitrugen. Ein klassisches Elektron kann elektromagnetische Wellen beliebiger Frequenzen abgeben, die Existenz von diskreten Linien war klassisch nicht erklärbar. Die Entdeckung, dass die Frequenzen der Spektrallinien des Wasserstoffatoms proportional zu einem Ausdruck der Form (1/n2 - 1/m2) mit ganzen Zahlen m und n sind, führte zum Konzept der Quantenzahl und brachte Niels Bohr schließlich auf sein Bohrsches Atommodell, das erste (heute überholte) quantenmechanische Atommodell. Die moderne Quantenmechanik kann die Spektrallinien der Atome mit sehr hoher Genauigkeit vorhersagen. Linienspektren werden durch freie Atome erzeugt. Bandenspektren werden durch Moleküle erzeugt. Kontinuierliche Spektren entstehen bei Flüssigkeiten, Plasmen. 3.1.1 Fraunhofersche Linien Erstmals entdeckt wurden Absorptionslinien 1802 durch William Hyde Wollaston und 1813, unabhängig von ihm, durch Joseph von Fraunhofer im Spektrum der Sonne. Diese dunklen Linien im Sonnenspektrum werden Fraunhofersche Linien genannt. Die Abbildung zeigt das Sonnenspektrum mit dem Namenszug Fraunhofers auf einer Briefmarke. Bemerkungen: - Aus der Intensität der Linien kann auf die Elementhäufigkeit geschlossen werden. - Bei Molekülspektren werden durch die Komplexität der Elektronenkonfigurationen und Schwingungszustände ganze Spektralbereich emittiert, sogenannte Spektralbanden. Genauso bei der Absorption in unserer Atmosphäre, wo man von Wasserstoff, Sauerstoff, CO2 Absorptionsbanden spricht. Seite 13 Colloquium 2004 bei Sahm Skript von A.Voßkühler - Die dunklen Linien kommen dadurch zustande, dass die diese Wellenlängen absorbierenden Moleküle an der kühlsten Stelle des Strahlers, also in der Sonnenatmosphäre hauptsächlich anzutreffen sind und wegen der geringeren Temperatur kaum (nach Planck) wieder in diesem Spektralbereich emittieren. 3.2 Linienbreite Das Licht einer Spektrallinie enthält nicht eine Frequenz, sondern einen (schmalen) Frequenzbereich. Die Breite dieses Bereiches nennt man Linienbreite. Die Linienbreite einer Emissionslinie setzt sich aus mehreren Beiträgen zusammen: A) Die natürliche Linienbreite ergibt sich aus der Lebensdauer des Ausgangszustands durch die Heisenbergsche Unschärferelation. Diese hat die Form einer Lorenzkurve. Es ist nicht möglich, diese zu verringern. ∆E∆t ≥ 2 ⇒ ∆E ⋅ τ ≥ 2 ( τ : Lebensdauer des angeregten Zustandes) Maßgebend bei freien Atomen (interstellarer Raum, Außenhülle) Bei 10ns Lebensdauer ca. 100 MHz Linienbreite. B) Aufgrund der thermischen Bewegung der Atome entsteht ein Dopplereffekt, der das Licht eines einzelnen Atoms oder Moleküls je nach Bewegungsrichtung rot- oder blauverschiebt. Aufgrund der statistischen Bewegung ergibt sich insgesamt eine breitere Frequenzverteilung. Diesen Effekt nennt man Dopplerverbreiterung. Sie hat die Form einer Gaußkurve und ist temperaturabhängig. Meist dominiert sie deutlich über die natürliche Linienbreite. Die Relativgeschwindigkeit von Sternen zu unserem Bezugssystem kann durch die Linienverschiebung bekannter Emissions- oder Absorptionslinien mit dem Dopplereffekt ausgemessen werden. ∆ν 3kT ← thermische Energie = ν mc 2 ← relativistische Masse (m 0 + Ekin ) C) Stoßverbreiterung: (Klassische Erklärung)Durch Stoß wird die Emissionszeit verkürzt und daher die Linienbreite nach der Unschärferelation vergrößert. Das entspricht einer Änderung der Übergangswahrscheinlichkeiten (abhängig von Einsteinkoeffizienten τ = Seite 14 1 ) A Colloquium 2004 bei Sahm Skript von A.Voßkühler (Heutige Erklärung) Es gibt zwei Sorten von Stößen, elastische und inelastische. Beim elastischen Stoß führt das Annähern zu einer Verschiebung der Energieniveaus und damit zu einer Verschiebung der Frequenz (die Niveus rücken näher zusammen) und einer Verbreiterung der Linie (die Verschiebung der Niveaus ist vom Stoß abhängig). Beim inelastischen Stoß tritt nur Verbreiterung auf. D) Zeemann- Effekt (Magnetfeldaufspaltung der Spektrallinien) E) Stark- Effekt (Aufspaltung der Spektrallinien im elektrischen Feld) Fragen: Wodurch werden die Linienbreiten bestimmt ? natürliche Linienbreite, Stoßverbreiterung, Druckverbreiterung, Dopplerverbreiterung. Wo misst man die Breite eines Linienbreitenpeaks ? Halbwertsbreite auf der Hälfte der Intensität. Was steht in der Unschärferelation ? ∆E ⋅ ∆t ≥ 2 Was ist eine Energieunschärfe ? Das obere, angeregte Niveau ist verbreitert, da dort die Lebensdauer die Energieunschärfe hervorruft. Können Sie sich ein Experiment vorstellen, mit dem man die Lebensdauer messen könnte ? Material mit Hilfe von Laser so „voll pumpen“, dass sich alle Atome im angeregten Zustand befinden, dann abschalten und − t den Intensitätsabfall beobachten, Zusammenhang zur Lebensdauer τ ist dann: I = I 0 ⋅ e τ . Einmal einen Übergang messen ist Unsinn, wegen statistischer Verteilung der Lebensdauer, also Übergangswahrscheinlichkeiten. Aber: (Versuch in Garching) ein Atom einsperren und immer wieder anregen und dann messen geht. Was ist die Dopplerverbreiterung ? siehe oben. Wie ist die Verteilung ? natürliche Linienbreite ist Lorentzkurve, Dopplerverbreiterung ist Gaußverteilung, wg. statistischer Geschwindigkeitsfluktuation, Lorentzkurve gefaltet mit Gaußkurve heißt Voigtprofil. Wie ist die Größenordnung der Verbreiterung ? Dopplerverbreiterung ca. 100 fach größer als natürliche Linienbreite. Druckverbreiterung ca. 10 fach größer als natürliche Linienbreite. Was ist die Stoß-/Druckverbreiterung ? siehe oben. 3.3 Dopplereffekt c f (+: hinter der Quelle, -: vor der Quelle) = λ ' 1± v c c+ f v Wenn sich der Beobachter bewegt gilt: f ' = = f 1± (+: nähern, -: entfernen) λ c Wenn sich die Quelle bewegt gilt: f ' = ( ) Beide Formeln beschreiben denselben Vorgang aus verschiedenen Bezugssystemen ( f → f ' ). Wechsel mittels Galileotransformation. Seite 15 Colloquium 2004 bei Sahm Skript von A.Voßkühler 3.4 Dopplerfreie Spektroskopie 3.4.1 Molekülstrahlspektroskopie Hierbei wird durch eine sehr scharfe Blende nur nahezu eine Geschwindigkeitsklasse von Molekülen in den Beobachtungsraum geleitet, außerdem wird das Molekülgas durch starke Expansion extrem abgekühlt was die Sache zusätzlich verbessert. Durch senkrechte Beobachtung einer Geschwindigkeitsklasse gibt es also keine Dopplerverbreiterung. 3.4.2 Sättigungsspektroskopie Durch einen durchstimmbaren Laser wird eine bestimmte Geschwindigkeitsklasse des Gases angeregt und dadurch bei Beobachtung eines Abfragelaserstrahls nahezu keine Absorption in diesem schmalen Frequenzbereich detektiert. Im Untergrund der dopplerverbreiterten Spektrallinien erscheinen sogenannte Lambdips, die eine dopplerfreie Lorentzkurve zeigen und die natürliche Linienbreite darstellen. Seite 16 Colloquium 2004 bei Sahm 3.4.3 Skript von A.Voßkühler 2-Photonen Spektroskopie Ein Gas wird senkrecht von einem Laserstrahl durchstrahlt an einem Spiegel reflektiert und läuft senkrecht wiederzurück durch die Probe. Treffen zeitgleich ein Photon des Lasers aus dem hinführenden Strahl und ein Photo aus dem zurücklaufenden Strahl auf ein Gasatom, dann können sie zusammen eine Anregung des Atoms bewirken, indem sich ihre Energie addiert. Ein solcher Übergang muss den Spin 0 oder 2 aufnehmen und gehört damit zu den normalerweise verbotenen Übergängen. Der Dopplereffekt wird dadurch eliminiert, dass beide Photonen jeweils komplementäre Bewegungsrichtungen sehen. ?? Der (Bild-)Zwischenzustand hat nur eine extrem kurze Lebensdauer, in der das zweite Photon eintreffen darf, deswegen benötigt man sehr intensive Laserstrahlung. Seite 17 Colloquium 2004 bei Sahm 4 Skript von A.Voßkühler Termin 11/18.11.2004: Laser Ein Laser Light Amplification by Stimulated Emission of Radiation (Lichtverstärkung durch stimulierte Emission von Strahlung) ist eine Lichtquelle, die Licht durch stimulierte Emission erzeugt. Gute räumlichen und zeitliche Kohärenz sorgen für extrem monochromatisches Lichtbündel. Der Vorläufer, der Maser, funktioniert gleich, sendet aber Mikrowellenstrahlung aus. Der erste Laser wurde 1960 von Theodore Maiman gebaut. 4.1 Wirkungsprinzip Bei herkömmlichen Lichtquellen erfolgt der Üb ergang durch spontane Emission, das heißt sowohl der Zeitpunkt als auch die Richtung, in die das Photon ausgesendet wird, sind zufällig. Beim Laser hingegen erfolgt dieser Übergang durch stimulierte Emission. D. h. ein Lichtteilchen stimuliert diesen Übergang, und dadurch entsteht ein zweites Lichtteilchen, dessen Eigenschaften (Frequenz, Phase, Polarisation und Ausbreitungsrichtung) mit dem des ersten identisch sind: Lichtverstärkung. Der Grund für die Gleichartigkeit des ausgesandten Photons mit dem einfallenden ist der folgende: das angeregte Atom hat eine hantelförmige Ladungsverteilung, die bei spontaner Emission in beliebiger Raumrichtung in Dipolcharakteristik in den kugelsymmetrische Grundzustand zurückfällt. Bei induzierter Emission dagegen wird die hantelförmige Ladungsverteilung vom Photon deformiert und der Dipol dadurch senkrecht zum einfallenden Photon polarisiert. Die Wahrscheinlichkeit, dass ein Photon durch Absorption ein Elektron auf ein höheres Niveau anhebt, ist genauso hoch wie die Wahrscheinlichkeit, dass es eine stimulierte Emission auslöst. Für Verstärkung ist daher Besetzungsinversion nötig. Nach Kirchhoff gilt Absorption = Emission: N1 ⋅ ρ ⋅ B = N 2 ⋅ A + Absorption spontane N2 ⋅ ρ ⋅ B induzierte Emission N1, N 2 : Anzahl der Atome Im Zustand Ni A, B : Einsteinkoeffizienten, ρ : spektrale Energiedichte des Strahlungsfeldes Die Energiedichte ρ (ν , x) am Ort x wird durch Absorption geschwächt und durch induzierte Emission verstärkt: (spontane Emission wird hier vernachlässigt...) dρ hν = (N 2 − N1)⋅ ρ ⋅ B ⋅ 12 , ∆ν : Linienbreite. ∆ν dt Diese DGL gibt als Absorptionsfunktion am Ort x: ρ (ν , x) −(N1−N 2 )σ(ν)⋅x ( ) , σ ν : Wirkungsquerschnitt, =e ρ0 (ν) d.h. Für N1 > N 2 : Absorptionsgesetz, für N1 = N 2 : Durchgang ohne das was passiert N 2 > N1 : Verstärkung durch induzierte Emission. Die Verteilung der Atome auf Grundzustand N1 und angeregten Zustand N 2 gehorcht im thermischen Gleichgewicht der Boltzmannverteilung: hν N2 − 21 = e kT , bei Zimmertemperatur N1 sind praktisch alle Atome im Grundzustand. Bei unendlich hoher Strahlungsdichte sind beide Zustände gleichbesetzt N 2 = N1 . Im Gleichgewicht existiert also keine Überbesetzung ! In einem technischen Laser wird das Licht durch eine Anordnung zweier Spiegel immer wieder durch den Resonator geleitet, bis der Leistungszuwachs innerhalb des Systems durch Seite 18 Colloquium 2004 bei Sahm Skript von A.Voßkühler die Abnahme der Besetzungsinversion und die immer stärker ansteigenden Verluste ausgeglichen wird. Einer der beiden Spiegel ist teilweise (im Prozentbereich) durchlässig, um Licht aus dem Laser auszukoppeln, so dass das Laserlicht austritt. Die Leistung innerhalb des Resonators ist dadurch viel höher als die ausgekoppelte Leistung. Die 1. Laserbedingung lautet: G ⋅ R ⋅V = 1 ( G : Verstärkung, R : Reflexion, V : Verluste) Die 2. Laserbedingung lautet: Besetzungsinversion erzeugen. Ausgangsleistungen von typischen Lasersystemen reichen von wenigen Mikrowatt (µW) bei Diodenlasern bis zu einigen Terawatt (TW) bei gepulsten Femto- oder Attosekunden Lasern mit externer Verstärkung. Die Diodenlaser gibt es mittlerweile auch schon in kW-Bereich. 4.2 Eigenschaften von Laserlicht Laserlicht kann extrem stark gebündelt werden, da es sich um räumlich kohärentes Licht handelt. Die Polarisation von Laserstrahlen ist meist geordnet und üblicherweise linear. Laserlicht von Dauerstrich-Lasern (englisch: continuous-wave lasers, cw-lasers) ist meist monochrom Außerdem ist Dauerstrich-Laserlicht zeitlich beziehungsweise longitudinal kohärent, was bedeutet, dass die beteiligten Wellen nicht nur mit der gleichen Frequenz schwingen, sondern auch alle im gleichen Takt. Diese Eigenschaft ermöglicht erst die Holographie. Ebenso ist eine Stabilisierung der absoluten Phase (Phase hat einen bestimmten Wert und ist relativ stabil) möglich. 4.3 Schwingungsmoden des Lasers Die transversalen Moden bezeichnen die Intensitätsverteilung der Laserstrahlung in einer Ebene senkrecht zur Ausbreitungsrichtung. Sie werden mit TEMxy bezeichnet, wobei x,y die Anzahl der Nullstellen in der entsprechenden Raumrichtung angeben. Die Beugungsverluste bei Reflexion am Spiegel können durch ein Blendensystem angenähert werden. Die Transversalmoden nehmen dadurch Gaußglocken an, das ist die Funktion die nach Beugung am Spalt dahinter noch übrigbleibt. „Nur Gaußglocken wandern verlustfrei durch das Spiegelsystem hin und her“. Seite 19 Colloquium 2004 bei Sahm 4.4 Gaslaser 4.4.1 He-Ne-Laser Skript von A.Voßkühler Monochromatische Wellenlänge bei 632,8 nm (rot). Hier wird das 10-fach häufiger im Gasgemisch vorhandene Helium durch Hochfrequenzspannung (also Elektronenstöße) auf metastabile Zustände gepumpt, in diesem angeregten Zustand stößt es Neon Atome, deren Laserniveus dadurch zur Inversion gelangen. Das Neon ist das eigentliche Lasermaterial. Die Enden der ca. 1m langen Gasröhre sind Brewsterfenster, damit dort keine Verluste (für eine Komponente) durch Reflexion auftreten. Das Laserlicht ist danach linear polarisiert. 4.4.2 Kohlendioxidlaser (CO2-Laser) Emittiert um 10,6 µm (mittleres Infrarot) Besteht in der Regel aus einem Gemisch aus CO2,N2 und He. Dabei wird der Stickstoff durch elektrisches Pumpen angeregt, der seine Energie durch Stöße an das CO2 abgibt und dadurch eine Inversion erzeugt wird. Das CO2 hat zwei Laserübergänge um 10µm. Die Überschüssige Wärmeenergie der Relaxationsprozesse wird durch die Heliumatome abgeführt. Wo steckt die Wärmeenergie im Heliumatom ? In kinetischer Energie (Translationsenergie) Der Vorteil des Heliums ist seine kleine Masse, die dafür sorgt, dass nach 1 Ekin = mv 2 die Energie mit hoher Geschwindigkeit abtransportiert werden kann. 2 4.4.3 Excimerlaser z. B. KrF (248 nm), XeF (351-353 nm), ArF (193 nm), F2 (157 nm) Das Grundkonzept besteht darin, dass das zweiatomige Lasermolekül nur im angeregten Zustand stabil ist, der Grundzustand dagegen instabil, d.h. ein Molekül im Grundzustand zerfällt sofort in seine atomaren Bestandteile. Man regt durch Elektronenstöße die Atome an, die sich dann zu stabilen angeregten Molekülen verbinden. Da der Grundzustand instabil ist, hat man dann sofort eine Inversion. Die baut sich über einen breiten Fluoreszenzbereich ab. Seite 20 Colloquium 2004 bei Sahm Skript von A.Voßkühler Excimer Laser arbeiten in der Regel im UV-Bereich und werden oft als Pumpquelle für andere Laserarten verwendet. Sie laufen im Pulsbetrieb, da das Gas ausgetauscht werden muss, also neue angeregte Moleküle für weitere Lasertätigkeit benötigt werden. 4.4.4 Weitere Gaslaser Stickstofflaser (N2-Laser): im UV Argon-Ionen-Laser, mehrere Linien bei 457,9 - 514,5 nm 4.5 Farbstoff/Flüssigkeitslaser Beispiel zweiatomiges Molekül: Der mittlere Abstand beider Atome ist im Grundzustand kleiner als im angeregten Zustand. Die Aufenthaltswahrscheinlichkeiten innerhalb der Zustände sind also verschoben. Ohne Anregung befindet sich das Molekül im untersten Schwingungszustand v=0 des elektonischen Zustands S0 (unten). Von dort können Übergänge wegen der sehr kurzen Übergangsdauer nur senkrecht stattfinden (1) und dort bevorzugt vom Wahrscheinlichkeitsmaximum des Grundzustands zum Wahrscheinlichkeitsmaximum eines Schwingungs- oder Rotationsniveuas des angeregten Zustands S1 (2) (dicker Schwarzer Pfeil nach oben). (1) und (2) bezeichnen das FranckCondon Prinzip. Das Molekül geht mittels Wärmeabgabe in den tiefsten Zustand des angeregen Niveaus über und von dort (Frank-Condon rückwärts) in ein Seite 21 Colloquium 2004 bei Sahm Skript von A.Voßkühler Wahrscheinlichkeitsmaximum des Grundzustandes, von wo es ggf. anschließend in noch tiefere Zustände übergeht. Das bedeutet, das der Farbstofflaser bei höheren Energien Absorbiert, als er emittiert, das Spektrum wird verschoben zu kleineren Frequenzen. CW-Farbstofflaser, z. B. Stilben, Cumarin, Rhodamin 4.6 Festkörperlaser Werden in der Regel durch Blitzlampen gepumpt, da die optisch transparenten Materialien in der Regel Isolatoren sind. Durch die große Bandbreite der Blitzlampen geht viel Energie als Wärme verloren, was dazu führt dass wegen der Überhitzung die Festkörperlaser nur im Impulsbetrieb verwendet werden können. Dafür werden sehr hohe Leistungen erreicht bei sehr kurzen Pulsen. Das Ausgangssignal ist nicht so einheitlich wie beim Gaslaser, sondern besteht aus einer Vielzahl von Einzelimpulsen schlechterer Kohärenz. Rechts das Termschema eines Rubinlasers. erster Laser, entwickelt vom Maiman im Jahre 1960: Rubinlaser, 694,3 nm Nd:YAG-Laser, bei 1064 nm, Nd:Glas, Ti:Saphir 4.7 Halbleiterlaser Durch einen PN-Übergang werden durch eine Spannung kräftig Elektronen geschickt (also das Leitungsband vollgepumpt), die in der Raumladungszone rekombinieren. Bei genügend hoher Spannung tritt am Übergang Inversion auf. Als Spiegel dienen die Randflächen des Halbleiters, weil dieser sehr hohen Brechungsindex hat. Problem ist die Divergenz des Bündels wegen der sehr schmalen Emissionsschicht. Laserdioden (elektrisch gepumpt) Optisch gepumpte Halbleiterlaser, auch Halbleiter-Scheibenlaser 4.8 Freie-Elektronen-Laser (FEL) Bei Freie-Elektronen-Lasern fungiert ein hochenergetischer Elektronenstrahl als aktives Medium. Dieser Elektronenstrahl wird durch einen Undulator, der aus Magneten besteht, die längs der Strahlrichtung so angeordnet sind, dass das Magnetfeld seine Richtung längs des Seite 22 Colloquium 2004 bei Sahm Skript von A.Voßkühler Weges periodisch ändert (zeitlich ist es hingegen konstant), gelenkt. Dadurch schwingen die Elektronen mit einer bestimmten Frequenz, während sie den Undulator passieren, und geben elektromagnetische Strahlung ab. Die Lichtwellenlänge kann bei freien Elektronenlasern kontinuierlich verändert werden, indem Spiegelabstand und Elektronenenergie verändert werden. Fragen: Was sind die wichtigsten Bauteile eines Lasers ? 1. aktives Medium, 2. Resonator, 3. Pumpquelle Was ist der Vorteil der Molekül-/Farbstofflaser ? Die große Emissionsbandbreite der Molekülbanden, die eine Durchstimmbarkeit durch Modenselektion ermöglicht. Wann wurden die ersten Excimer-Laser entwickelt ? in den siebziger Jahren Wie misst man die Kohärenzlänge einer Lichtquelle ? Man schickt sie durch ein Michelsoninterferometer und verlängert die Arme bis die Interferenz verschwindet. 4.9 Durchstimmen Wie selektiert man nun beim Farbstofflaser bspw. die entsprechenden Frequenzen ? Mit einem Fabry-Perot Etalon, einem Prisma oder einem Gitter. Im Resonator können verschiedene Moden anschwingen, die Longitudinalmoden sind ganzzahlige Vielfache der Wellenlängen die in die Resonatorlänge hineinpassen. Nur ein bestimmter Frequenzbereich dieser möglichen Moden kann verstärkt werden, da der Laserübergang des aktiven Mediums frequenzselektiv ist. Das bezeichnet die Verstärkungskurve. Durch ein Prisma oder Gitter erreicht man je nach Auflösungsvermögen eine Auskopplung unerwünschter Moden durch Dispersion bzw. Interferenz, die unerwünschten Moden werden aus dem Resonator herausreflektiert, können nicht über die Laserschwelle gelangen und schwingen daher nicht an. Ein Farbfilter ist ungünstig, da er zu breitbandig filtert mit einer Halbwertsbreite in der Größenordnung von einigen nm. Für UV-Laser ist ein Prisma wegen der schlechten Durchlässigkeit eher schlecht. Seite 23 Colloquium 2004 bei Sahm Skript von A.Voßkühler 4.10 Erzeugung kurzer Pulse 4.10.1 Gütemodulation (Q- Switch) Der Resonator wird durch einen Schalter solange gesperrt, bis durch das Pumpen eine extreme Inversion erzeugt wurde. Die Inversion kann wegen der fehlenden Rückkopplung nicht durch induzierte sondern nur durch spontane Emission abgebaut werden. Ist die Überbesetzung dann stark angeschwollen wird der Schalter geöffnet und die Rückkopplungslawine kann sich entfalten bis die Inversion abgebaut ist. Es entstehen kurze Pulse mit hoher Intensität. Der Schalter kann eine drehende Lochscheibe (Pulse bis 10−5 s ) oder ein Drehprisma (10−6 s) sein, ein Sättigungsabsorber (10−8 s) oder eine Pockelszelle (10−9 s) in Verbindung mit einem Polarisator. Die Lochscheibe sperrt während des Umlaufs und öffnet nur für die kurze Zeit, in der das Loch den Strahlengang freigibt. Das Drehprisma reflektiert den Strahlengang nur unter einem bestimmten Winkel für kurze Zeit wieder zurück in den Resonator. Der Sättigungsabsorber ist ein Farbstoff oder gefärbtes Glas, was erst ab einer bestimmten Intensität für die Strahlung durchlässig ist. Solange sich die Inversion aufbaut ist der Resonator praktisch gesperrt und ab einer Schwellintensität der spontanen Emission ist der Sättigungsabsorber transparent und die Lawine kann starten. Der Grund dafür, dass der Sättigungsabsorber transparent wird ist, dass bei hoher Intensität die Farbstoffmoleküle so stark angeregt werden, dass eine Gleichbesetzung von Grundniveau und angeregtem Niveau eintritt. In diesem Zustand sind alle Medien strahlungsdurchlässig. Die Pockelszelle wird unter Spannung doppelbrechend und dreht damit die Polarisationsrichtung des durchgehenden Lichts. Wird der Strahlengang durch einen Polarisator ergänzt, sperrt dieser das Licht nach Drehung durch die Pockelszelle um 90°. 4.10.2 Pulskompression Läuft ein kurzer Puls durch ein Medium, so läuft er wegen der Dispersion des Mediums auseinander. Rote Wellen sind schneller als blaue. Bei hohen Intensitäten kommt noch ein nichtlinearer Term zum Brechungsindex dazu, der für eine Ausweitung des Frequenzbereichs im Puls sorgt: n (λ, I ) = n0 (λ) + n2 ⋅ I (t) . Dieser nichtlineare Vorgang heißt Chirp. Mit einem Paar paralleler optischer Gitter kann man einen solchen Puls wieder komprimieren in dem man dem blauen Licht die kürzere Wegstrecke zuteilt wie die Grafik zeigt. 4.11 Modenkopplung sind Verfahren für gepulste Laser, bei denen Transversalmoden so gekoppelt werden, dass sie in einer Phase schwingen und sich zu scharfen und intensiven Peaks aufsummieren. Das aktive Medium verstärkt in der Regel einen ganzen Frequenzbereich, in dem etliche Moden des Resonators Seite 24 Colloquium 2004 bei Sahm Skript von A.Voßkühler liegen. Ziel ist die gleichphasige Überlagerung vieler dieser Moden, da dann zu definierten kurzen Zeiten eine konstruktive Interferenz erfolgt, deren Intensität quadratisch mit der Zahl der gekoppelten Moden steigt. Es werden damit Pulse bis zu femto oder attosekunden erreicht mit Leistungen von 1020W / cm 2 . 4.11.1 aktive Modenkopplung Wie bei der Gütemodulation wird ein Schalter in den Resonator eingebracht der nun aber mit einer Modulationsfrequenz geschaltet wird, die genau dem Modenabstand Ω entspricht. Die Moden liegen ja in äquidistanten Frequenzabständen ϖn = ϖ0 ± n ⋅Ω . Das Ergebnis dieser Intensitätsmodulation der Mittenfrequenz ist eine Intensitätsabgabe an die Seitenbänder der Mittenfrequenz ϖ0 + Ω, ϖ0 −Ω . (Fourieranalyse) Diese werden beim nächsten Durchgang auch mitverstärkt und erzeugen phasengleiche Intensitäten in den nächsten Seitenbändern. Auf diese Weise koppelt man möglichst alle im Verstärkerprofil liegenden Moden des Resonators, die in der Überlagerung scharfe und sehr intensitätsreiche Pulse erzeugen, da sie phasenrichtig schwingen. Das aktive daran ist z. Bsp. die Schaltung einer Pockelszelle mit der richtigen Frequenz. Heutzutage verwendet man Quarzkristalle, die durch einen Piezokristall zu Schwingungen angeregt werden, die im Quarz ein Brechzahlgitter erzeugen und somit frequenzselektiv werden. 4.11.2 passive Modenkopplung In den Resonator wird als Schalter ein Sättigungsabsorber (Farbstofflösung oder gefärbtes Glas) gesetzt, der für die einfallende Strahlung erst ab einer bestimmten Intensität vollständig durchlässig ist. Baut sich nun durch Fluktuationen der spontanen Emission eine mit der Differenzfrequenz benachbarter Moden Ω modulierte Mode auf, so wird diese, wegen der vierfach höheren Intensität im Vergleich zu den anderen statistisch schwingenden Moden verstärkt, d.h. der Absorber moduliert im selben Takt (hohe einfallende Intensität gleich hohe Transmission und umgekehrt) und erzeugt so wie im aktiven Fall dieselben Seitenbänder phasengleicher Moden. Der Sättigungsabsorber wird so zu einem Schloß, dass aufmacht, wenn die Phasenrichtigkeit der Moden da ist. Seite 25 Colloquium 2004 bei Sahm Skript von A.Voßkühler 5 Termin 25.11.2004: Schwarzkörper/ Synchroton/ Röntgenstrahlung 5.1 Strahlungsgesetze der Schwarzkörperstrahlung Wiensches Verschiebungsgesetz: Mit wachsender Temperatur verschiebt sich das Spektrum in den kurzwelligen Bereich: λmax ⋅T = const = 2,9mm ⋅ K Plancksches Strahlungsgesetz: Energiedichte: ρ (ν , T ) = 8πhν 3 ⋅ c3 1 hν kT e −1 Rayleigh-Jeanssches Strahlungsgesetz: (langwelliger Bereich, aus Planck für Dichte der Strahlungsenergie: ρ (ν ,T ) = ρ (ν , T ) ≈ hν hν kT ⇒ekT ≈1+ ) kT 8πν 2 ⋅ kT c3 Wiensches Strahlungsgesetz: (kurzwelliger Bereich, aus Planck für Intensität der Strahlung: hν hν hν hν − kT ) kT ⇒1/(ekT−1) ≈e hν 8πhν 3 −kT e c3 Stefan-Boltzmann-Gesetz: (Integral über Planckverteilung) Strahlungsleistung pro Fläche: P = σT 4 , σ : Boltzmannkonstante A Kirchhoffsches Gesetz: (Verhältnis Emission zu Absorption eines Strahlers ist konstant) Emission = f (T , λ) Absorption Spektrum eines schwarzen Strahlers mit T=6000 K (Sonne) Bemerkungen: - D.h. anhand des Spektrums kann die Temperatur des Strahlers bestimmt werden. - Kennt man die Fläche des Strahlers kann aus der Gesamtleistung auf die Entfernung geschlossen werden. Seite 26 Colloquium 2004 bei Sahm 5.2 Skript von A.Voßkühler Röntgenstrahlung Röntgenstrahlung liegt hinter dem UV. Die Energiebereiche der Gamma- und Röntgenstrahlen überschneiden sich in einem weiten Bereich. Das Unterscheidungskriterium ist die Herkunft: Röntgenstrahlen entstehen im Gegensatz zu den Gammastrahlen nicht bei Prozessen im Atomkern sondern durch hochenergetische Elektronenprozesse. Röntgenphotonen haben eine Energie von etwa 100 eV bis 250 keV. Das entspricht einer Frequenz von etwa 3·1016 Hz bis 3·1021 Hz und einer Wellenlänge von etwa 0,1 pm -- 10 nm. 5.2.1 Erzeugung Röntgenstrahlen entstehen durch starke Beschleunigung geladener Teilchen (meistens Elektronen) oder durch hochenergetische Übergänge in den Elektronenhüllen von Atomen oder Molekülen. Beide Effekte werden in der Röntgenröhre ausgenutzt, in der Elektronen zunächst beschleunigt werden (dabei setzen sie keine Röntgenstrahlung frei, weil die Beschleunigung nicht groß genug ist) und anschließend auf einen Metallblock treffen, in dem sie stark abgebremst werden (Bremsstrahlung) und Elektronen aus den Schalen der Metallatome herausschlagen. Die Löcher in den Schalen werden durch andere Elektronen aufgefüllt, wobei Röntgenstrahlung mit einer elementspezifischen Energie entsteht (charakteristische Röntgenstrahlung). Röntgenstrahlen sind auch in der Synchrotonstrahlung enthalten. 5.2.2 Wechselwirkung mit Materie Der Brechungsindex von Materie für Röntgenstrahlen weicht nur wenig von 1 ab. Dies hat zur Folge, dass es kein Material gibt, aus dem man Linsen für Röntgenstrahlen bauen kann. Des weiteren werden Röntgenstrahlen bei senkrechen Einfall kaum reflektiert. Schwächung der Röntgenstrahlung in Materie nach dem Lambertschen Absorptionsgesetz: I (d ) = I 0 ⋅ e−µ⋅d . µ ist etwa proportional zu Z 4 , λ 3 (Z: Ordnungszahl) Die Absorption resultiert aus Photoeffekt (ab 1MeV), Compton- Streuung und Paarbildung. Bei der Photoabsorption schlägt das Photon ein Elektron aus der Elektronenhülle eines Atoms. Dafür ist eine bestimmte Mindestenergie notwendig. Betrachtet man die Absorptionswahrscheinlichkeit in Abhängigkeit von der Photonenenergie, steigt sie bei Erreichen der Mindestenergie abrupt auf einen Maximalwert an. Zu höheren Photonenenergien nimmt die Wahrscheinlichkeit dann wieder kontinuierlich ab. Wegen dieser Abhängigkeit spricht man auch von einer Absorptionskante. Das Loch in der Elektronenhülle wird wieder durch andere Elektronen aufgefüllt. Dabei entsteht niederenergetische Fluoreszenzstrahlung. Außer an stark gebundenen Elektronen wie bei der Photoabsorption kann ein Röntgen-Photon auch an ungebundenen oder schwach gebundenen Elektronen gestreut werden. Diesen Prozess nennt man Compton-Streuung. Die Photonen erfahren durch die Streuung eine vom Streuwinkel abhängige Verlängerung der Wellenlänge um einen festen Betrag und damit einen Energieverlust. Im Verhältnis zur Photoabsorption tritt die Seite 27 Colloquium 2004 bei Sahm Skript von A.Voßkühler Compton-Streuung erst bei hohen Photonen-Energie und vor allem bei leichten Atomen in den Vordergrund. Bei der Photoabsorption und der Compton-Streuung handelt es sich um inelastische Prozesse, bei denen das Photon Energie verliert und schließlich absorbiert wird. Daneben ist auch elastische Streuung (Rayleigh-Streuung) möglich. Dabei beleibt das gestreute Photon kohärent zum einfallenden und behält seine Energie. Zusätzlich zu den genannten Prozessen ist für Photonen prinzipiell auch die Paarbildung möglich. Dafür sind jedoch Energien jenseits von ca 1 MeV nötig. 5.2.3 Biologische Wirkung Röntgenstrahlung ist ionisierend, sie kann dadurch Veränderungen im lebenden Organismus bis hin zu Krebs verursachen. In erster Linie sind die DNA Zerstörungen gefährlich -> Erbschäden. 5.2.4 Nachweis Lumineszenz: Röntgenstrahlen regen bestimmte Stoffe zur Lichtabgabe an ("Fluoreszenz"). Dieser Effekt wird auch bei der radiologischen Bilderzeugung genutzt. Medizinische Röntgenfilme enthalten meistens eine fluoreszierende Folie, die bei Auftreffen eines Röntgenphotons Licht aussendet und die umliegende lichtempfindliche Fotoemulsion belichtet. Photographischer Effekt: Röntgenstrahlen können ebenso wie Licht fotografische Filme direkt schwärzen. Ohne eine fluoreszierende Folie wird allerdings eine etwa 10-20fach größere Stärke benötigt. Der Vorteil liegt in der größeren Schärfe des aufgenommenen Bildes. Filmdosimeter. Einzelne Röntgenphotonen werden im Geiger-Müller-Zählrohr durch die Ionisation eines Zählgases nachgewiesen. In Halbleiterzähler erzeugen die Röntgenphotonen Elektron-Loch-Paare in der intrinsischen Zone einer in Sperrrichtung betriebenen Diode. Dadurch wird eine kleinere Stromstärke hervorgerufen, die proportional zur Energie beziehungsweise der Stärke der einfallenden Röntgenstrahlung ist. Szintillationszähler, Nebelkammer, Ionisationskammer. 5.2.5 Anwendungen Mit Röntgenstrahlen kann der menschliche Körper durchleuchtet werden, wobei v.a. Knochen, aber bei modernen Geräten auch innere Organe sichtbar werden. Dabei wird die Tatsache ausgenutzt, dass das in den Knochen vorkommende Element Calcium mit Z=20 eine deutlich höhere Ordnungszahl hat als die Elemente, aus denen die weichen Gewebe hauptsächlich bestehen, nämlich Wasserstoff (Z=1), Kohlenstoff (Z=6), Stickstoff (Z=7) und Sauerstoff (Z=8). Neben herkömmlichen Geräten, die eine zweidimensionale Projektion produzieren, werden auch die so genannten Computertomographen eingesetzt, die eine räumliche Rekonstruktion des Körperinneren ermöglichen. In der Materialphysik, der Chemie und der Biochemie wird Streuung von Röntgenstrahlen zur Strukturaufklärung benutzt. Ein bekanntes Beispiel ist die Strukturaufklärung der DNA. Darüber hinaus kann mit Röntgenstrahlen auch die Elementzusammensetzung eines Stoffes bestimmt werden. In einer Elektronenstrahl-Mikrosonde (beziehungsweise äquivalent im Elektronenmikroskop) wird die zu analysierende Substanz mit Elektronen bestrahlt, worauf die Atome ionisiert werden und charakteristische Röntgenstrahlung abgeben. Statt mit Elektronen kann auch mit Röntgenstrahlen bestrahlt werden. Dann spricht man von Röntgenfluoreszenzanalyse (RFA). Seite 28 Colloquium 2004 bei Sahm 5.2.6 Skript von A.Voßkühler Natürliche Röntgenstrahlung Auf der Erde entstehen Röntgenstrahlen in geringer Stärke im Zuge der Absorption anderer Strahlungsarten, die von radioaktivem Zerfall und der Höhenstrahlung stammen. Röntgenstrahlen, die auf anderen Himmelskörpern entstehen, erreichen die Erdoberfläche nicht, weil sie durch die Atmosphäre abgeschirmt werden. 5.2.7 Entdeckungsgeschichte Die Entdeckung der Röntgenstrahlen wird meistens Wilhelm Conrad Röntgen zugeschrieben. Er war der erste, der die Entdeckung der von ihm X-Strahlen bezeichneten Strahlung in einer Veröffentlichung mit dem Titel "Über eine neue Art von Strahlen" bekannt gab. Das war am 28. Dezember 1895. Es gilt aber als sicher, dass schon andere vor ihm Röntgenstrahlen erzeugt haben. In von Johann Hittorf und William Crookes entwickelten Kathodenstrahlröhren, die auch Röntgen für seine Experimente verwendete, entsteht Röntgenstrahlung, die in Experimenten von Crookes und ab 1892 von Heinrich Hertz und seinem Schüler Philip Lenard durch Schwärzung von fotografischen Platten nachgewiesen wurde, ohne sich aber offenbar über die Bedeutung der Entdeckung im Klaren zu sein. Auch Nikola Tesla experimentierte ab 1887 mit Kathodenstrahlröhren und erzeugte dabei Röntgenstrahlen, veröffentlichte seine Ergebnisse aber nicht. Da die genannten Wissenschaftler ihre Kenntnisse nicht bekanntgaben, wusste auch Röntgen nichts davon. Er hat die Röntgenstrahlen unabhängig entdeckt, als er fluoreszierendes Licht beim Betrieb der Kathodenstrahlröhre beobachtete. Zu Röntgens Berühmtheit hat sicherlich auch die Röntgenaufnahme einer Hand seiner Frau beigetragen, die er in seiner ersten Veröffentlichung zur Röntgenstrahlung abbildete. Diese Berühmtheit trug ihm 1901 den ersten Nobelpreis für Physik ein, wobei das Nobelpreiskomitee die praktische Bedeutung der Entdeckung hervorhob. 1896 wurde der heutige Name erstmals eingeführt. In Deutschland hat sich die Bezeichnung Röntgenstrahlen eingebürgert, während in den meisten Sprachräumen (beispielsweise engl. x-rays) der alte Name geblieben ist. 5.2.8 Fragen Wann wurden sie entdeckt ? 1895 durch Röntgen Warum wurden sie nicht schon vorher gefunden ? natürliche Röntgenstrahlung gibt es nur im Weltall und diese wird durch die Atmosphäre absorbiert. Wie erzeugt man Röntgenstrahlung ? In der Röntgenröhre Was macht die Heizspannung an der Kathode ? liefert Elektronen für die Beschleunigung durch den glühelektrischen Effekt. Was ist der glühelektrische Effekt ? Durch Zufuhr thermischer Energie erhalten Elektronen im Leitungsband des Metalls eine Energie, die über der materialspezifischen Austrittsarbeit liegt. Zeichnen Sie dazu ein Bild im Bändermodell. siehe rechts. Bis zu welcher Energie sind die Elektronen im Metall beim absoluten Nullpunkt aufgefüllt ? Bis zur Fermieenergie. Was heißt wärmer im Metall ? Die Energie steckt in Form von Gitterschwingungen, den Phononen „Quasiteilchen“. Sie werden als Quasiteilchen bezeichnet, da sie als Repräsentanten einer Gitterschwingung weder Masse noch Impuls besitzen, aber durch diese Beschreibung der Energie- und Impulsaustausch durch den Kristall vereinfacht dargestellt und berechnet werden kann. Seite 29 E Metall Luft Austrittsarbeit Fermienergie x Colloquium 2004 bei Sahm Skript von A.Voßkühler akustischer Zweig optischer Zweig Wodurch zeichnen sich diese aus ? Durch Energie und Impuls. Wie ist den der Zusammenhang zwischen Energie und Impuls bei den Phononen ? Können Sie ein Dispersionsspektrum aufzeichnen ? im rechten Bild ist die Dispersionsrelation eines zweiatomigen Gitters aufgezeichnet, Frequenz über Impuls. Der Bereich bis π / a ist die erste Brillouinzone (K-Bereich). Welche Gruppen von Phononen gibt es ? akustischer und optischer Zweig mit jeweils longitudinaler und transversaler Schwingung. Zweiatomige Gitter können auf verschiedene Arten schwingen, miteinander und gegeneinander und das noch transversal und longitudinal. Wenn die Atome Ionenrümpfe sind, wie z.Bsp. bei NaCl, dann treten beim optischen Zweig sogar Emissionsund Absorptionsvorgänge optischer Wellenlängen auf, da hier eine Dipolschwingung vorliegt. Wie ist die Grenzfrequenz von Phononen ? Wieviele Elektronen gibt es auf der K-Schale ? Hauptquantenzahl -> 2n 2 Wieviele Energieniveaus hat die L-Schale ? 3 Stück, Drehimpulsquantenzahl-> l = 0,..., n −1 und magnetische Quantenzahl -> m = −l,..., l , d.h. für n = 1, l = 0,1 ⇒ m =−1, 0,1 Nun sieht man aber nur zwei Kα Linien bei drei Niveaus, wieso ? Der Übergang von l = 0 der LSchale in l = 0 der K-Schale ist verboten, da das Photon den Drehimpuls 1 wegträgt. Wieso sieht man nicht die L- und M- Linien im Spektrum ? Sie werden vom Glas der Röhre absorbiert. Wie lauten die Prozessgleichungen für die Paarbildung ? Energiesatz: hf = mec 2 + mec 2 + Ekin Impulssatz: k = 2 ⋅ mv Kann man mit Röntgenstrahlen Paarbildung machen ? Kaum, da die Energien bei höchstens 150keV liegen. Thema Szintillationszähler: Was macht das Photon im Kristall ? Es ionisiert über den inneren Fotoeffekt einzelne Atome. Die herausgeschleuderten Elektronen ionisieren weiter in einer Kaskade. Die Atome relaxieren dann strahlungslos oder über strahlende Übergänge (Im NaJ Kristall bei der Dotierung Thallium) usw. usw. Welche Möglichkeit hat das Photon noch ? Comptoneffekt, elastische Streuung an Elektronen. Wie ist das mit dem Streuwinkel ? Der ist korreliert mit dem Energie und Impulsübertrag vom Photon auf das Comptonelektron. Größter Streuwinkel (180°) bei größtem Energie- und Impulsübertrag. Wie strahlt der Kristall ? Es gibt durch die Dotierung quasifreie aber fest eingebaute Dotierungsatome mit diskreten Energieniveaus (Störniveaus), die zwischen Leitungs- und Valenzband liegen und strahlend sind. Wie lässt sich die Aufspaltung in Bänder erklären ? Zwei Pendel mit gleichen Eigenfrequenzen können alleine nur in einer Frequenz schwingen, gekoppelt aber in zweien: miteinander und gegeneinander. Wie kann man Röntgenlicht bündeln ? Mit Röntgenlinsen, also entweder über Totalreflexion bei streifendem Einfall oder (NEU) aus Systemen vielen hundert Einzellinsen . Seite 30 Colloquium 2004 bei Sahm 5.3 Skript von A.Voßkühler Synchrotronstrahlung (Synchrotonstrahlung ist wie der schwarze Strahler berechenbar, eine definierte Lichtquelle. aber wie ?) Alle elektrisch geladenen Teilchen senden Strahlung aus, wenn sie gebremst oder beschleunigt werden oder wenn sie ihre Flugrichtung ändern. (Beispiel Röntgenröhre: Elektron in Wolframanode erzeugt Bremsstrahlung). Ein anderer Fall ist ein Elektron auf einer Kreisbahn. Es behält zwar seine Geschwindigkeit bei, seine Richtung ändert sich aber ständig. Es strahlt deshalb andauernd elektromagnetische Wellen ab, und zwar nach vorne wie nach hinten. Die Frequenz dieser von Heinrich Hertz entdeckten Dipolstrahlung entspricht der Umlauffrequenz des Elektrons auf seiner Kreisbahn. Die Intensität ist um so größer, je enger die Bahn im Verhältnis zur Geschwindigkeit ist. Bei relativistischen Geschwindigkeiten wird der bei weitem größte Teil der Strahlung in Flugrichtung abgegeben. Den Effekt versteht man, wenn man sich auf das Bezugssystem des Elektrons setzt und dort den Dipol betrachtet. Dies ist ein Effekt, der mit der klassischen Physik allein nicht erklärt werden kann, sondern nur zusammen mit Einsteins spezieller Relativitätstheorie. Diese intensive Vorwärtsstrahlung heißt Synchrotronstrahlung, denn sie wurde 1947 zuerst in einem Teilchenbeschleuniger des gleichnamigen Typs entdeckt. Zwei Eigenschaften zeichnen die Synchrotronstrahlung aus: das breite Frequenzspektrum vom Infrarot bis in den Röntgenbereich und die hohe Intensität dieses Lichts. Keine Strahlung, die über einen breiten Frequenzbereich reicht (zum Beispiel die Sonne oder eine Glühbirne), ist heller als die Synchrotronstrahlung. Zwar kann Laserlicht noch intensiver sein, dafür handelt es sich dann aber um eine einzelne Farbe. Besonders im Röntgenbereich, in dem es (noch) keine Laser gibt, ist die Synchrotronstrahlung ungeschlagen. Die Intensität kann mehr als eine Milliarden Mal größer sein als die stärksten traditionellen Röntgenstrahler. Auf der Erde sind Teilchenbeschleuniger die typische Quelle der Synchrotronstrahlung. Um die Strahlungsintensität zu verstärken, wurden Parcours von Magneten eingebaut, die Wiggler und Undulatoren. Darin werden die Elektronen auf einen Schlingerkurs gebracht, und bei diesen vielen Richtungswechseln strahlen sie tausendmal stärker als in den Kurven des Beschleunigers. Synchrotronstrahlung gibt es auch im Weltall. Elektronen mit sehr hoher Energie umkreisen den Planeten Jupiter in dessen magnetischem Feld. Dabei geben sie Synchrotronstrahlung im Radiowellenbereich ab. Andere astronomische Objekte, die Radiowellen als Synchrotronstrahlung aussenden, sind Pulsare, sehr schnell drehende Sterne, und Quasare, die wie Sterne aussehen, aber vermutlich reine Synchrotronstrahler sind. 5.4 Strukturanalyse 5.4.1 Debye-Scherrer Verfahren Ein scharfes Bündel monochromatischen Röntgenlichts wird durch eine pulverisierte Probe geschickt, in der alle Kristallachsen statistisch verteilt sind. Für die Wellenlänge gibt es nur ganz Seite 31 Colloquium 2004 bei Sahm Skript von A.Voßkühler bestimmte, der Bragg-Bedingung gehorchende Orientierungen der Kristallkrümel, die konstruktive Interferenz erzeugen. Diese sind aber wg. der Pulverisierung vorhanden, so dass alle möglichen Gitterebenen jeweils einen Reflexkegel erzeugen, der auf einem umlaufenden Film (siehe Skizze) detektiert wird. Daraus können die Netzebenenabstände ermittelt werden und diese sind charakteristisch für die Gitterstruktur. (kubisch flächenzentriert, kubisch raumzentriert, hexagonal usw) 5.4.2 von Laue Verfahren Mit „weißem“ (polychromatischem) Röntgenlicht wird ein Einkristall durchstrahlt und es können entweder vor oder hinter dem Kristall die Reflexe der verschiedenen Netzebenen als Reflexe detektiert werden. Der Kristall ist drehbar, damit verschiedene Aufnahmen für verschiedene Orientierungen gemacht werden können, die zusammen die Kristallstruktur (mit Hilfe des Laue Atlas) eindeutig zeigen. Bragg- Bedingung: nλ = 2d ⋅ cos α Bei Debye-Scherrer ist λ, d fest, α ist der freie Parameter. Bei Laue ist d , α fest und λ ist der freie Parameter. 5.4.3 Fragen Worin unterscheiden sich die unterschiedlichen Netzebenen bei der Reflexion ? Wie unterscheiden sich die Reflexe an denselben ? Jede mehr Streuzentren (Atome) in der Netzebenen liegen desto höher die Intensität. d2 d1 d3 Wissen Sie etwas über die Leute ? Paul Scherrer , Schweizer 1890-1969, 2 Sem Botanik, dann Mathe Physik, 1916 Debye-Scherrer Verfahren, Vorgesetzter von Pauli. DAS Kernphysikinstitut der Schweiz ist nach ihm benannt. Peter Joseph Wilhelm Debye (1884 - 1966), holländischer Elektroingenieur, Chemiker und Physiker, Ab 1915 Herausgeber der "Physikalische Zeitschrift". 1920 ETH Zürich als Leiter des physikalischen Instituts. 1934 Lehrstuhl für Physik an der Universität Berlin und 1935 Direktor des Kaiser-Wilhelm-Instituts für Physik. Nobelpreis für Chemie. 1940 wg. Nazis als Professor für Chemie nach Ithaca. Seite 32 Colloquium 2004 bei Sahm Skript von A.Voßkühler 6 Termin 2.12.2004: Magnetismus 6.1 Qualitativ Das magnetische Moment eines Atoms setzt sich zusammen aus dem Beitrag der Elektronenhülle (Hüllenmoment), und dem im allgemeinen viel schwächeren Kernbeitrag (Kernmoment). Auch wenn das Kernmoment sehr klein ist, lässt es sich nicht nur nachweisen (NMR, "Nuclear Magnetic Resonance" = Kernmagnetische Resonanz), sondern auch praktisch anwenden (z.B. Kernspintomografie). Zum Hüllenmoment tragen das Bahnmoment, das mit dem Bahndrehimpuls der Elektronen verknüpft ist, und das durch den Elektronenspin bestimmte Spinmoment bei. Die Summe der magnetischen Momente der Elektronen einer voll gefüllten Schale ergibt jeweils null, sodass Atome, die keine teilgefüllten Schalen besitzen, kein permanentes Hüllenmoment aufweisen. Der Grund für dafür ist, dass die Valenzelektronen, die die magnetischen Eigenschaften der Atome bestimmen, zur chemischen Bindung beitragen. Bei der Verteilung der Elektronen auf die neuen Bindungszustände wird die gegenseitige Orientierung der Elektronen durch die Austauschwechselwirkung bestimmt. Diese ist in der Regel für eine antiparallele Ausrichtung der magnetischen Momente (also eine Kompensation der Momente) energetisch günstig. Eine Ausnahme davon stellen z.B. die Übergangsmetalle Eisen, Nickel und Kobalt dar. Solche Stoffe nennt man ferromagnetisch. Hier sind die magnetischen Momente der Elektronen in bestimmten Bereichen, den Weißschen Bezirken parallel ausgerichtet. Sie sind durch die Blochschen Wände getrennt und im Mittel ist das Ferromagnetikum wieder unmagnetisch. In einem äußeren Magnetfeld wird durch die Bewegung und den Spin der Elektronen immer ein magnetisches Moment induziert, das nach der Lenzschen Regel seiner Entstehung entgegenwirkt. Atome mit dieser Eigenschaft nennt man diamagnetisch. Atome mit teilgefüllten Schalen weisen hingegen ein permanentes Hüllenmoment auf, da sich die Bahn- und Spinmomente nicht vollständig kompensieren können. Solche Atome heißen paramagnetisch. In inhomogenen Feldern erfahren Diamagneten eine Kraft in Richtung des schwächeren Feldes, Paramagneten werden Para zum starken Feld hingezogen. Para In homogenen Felder erfahren die Magneten ein N N S S Drehmoment, welches den Diamagneten senkrecht, den Paramagneten parallel zum Dia Dia äußeren Feld dreht. Setzt man Ferromagneten einem äußeren Magnetfeld aus, so weiten sich die Weißschen Bezirke die parallel dazu sind auf Kosten der Nachbarn aus, bei größeren Feldstärken in Sprüngen (Barkhausen-Sprünge) bis alle Bezirke die Richtung des äußeren Magnetfeldes annehmen (maximale Magnetisierung). Bei Abschalten des Feldes bleibt eine Restmagnetisierung, die sogenannte Remanenz, da sich die Bezirke nicht wieder komplett Seite 33 Colloquium 2004 bei Sahm Skript von A.Voßkühler regenerieren. Durch ein entgegengesetzt gepoltes äußeres Feld mit der Größe der sogenannten Koerzitivfeldstärke kann die Remanenz kompensiert werden. Ab einer bestimmten Temperatur, der sog. Curie-Temperatur (Pierre Curie, Nobelpreis Physik 1903), überwiegt die thermische Energie die Energie der Austauschwechselwirkung, und die ferromagnetische Ordnung wird aufgebrochen. Der Ferromagnet geht dann in die paramagnetische Phase über. Das Curie-Weiss Gesetz lautet dazu: C χ= TC :Curietemperatur,χ:Suszeptibilität,C : Konstante , T −TC Beim Paramagneten wird die Möglichkeit der atomaren Momente sich unter einem äußeren Feld auszurichten kontinuierlich schlechter wenn durch thermische Bewegung die Ordnung immer wieder durcheinandergebracht wird. Das Curiesche Gesetz lautet dann C χ = , χ:Suszeptibilität,C : Konstante T Die ferromagnetische Ordnung ist ein Spezialfall der magnetischen Ordnung. Neben dem ungeordneten Zustand gibt es noch andere Formen der magnetischen Ordnung, darunter Antiferromagnetismus und Spindichtewellen. Beim Antiferromagnetismus besteht das Kristallgitter des Festkörpers aus zwei Untergittern, die entgegengesetzte Magnetisierung haben. Oberhalb der s.g. Neel-Temperatur wird das Material paramagnetisch. Beim Ferrimagnetismus sind die entgegengesetzten Magnetisierungen der Untergitter unterschiedlich groß und heben sich nicht gegenseitig auf. Es verbleibt eine makroskopische Magnetisierung. Eine graphische Darstellung des Austauschintegrals ist durch die Bethe-Slater-Kurve gegeben. In dieser graphischen Darstellung kann man erkennen, welche Stoffe ferromagnetisch, antiferromagnetisch oder paramagnetisch sind. Die Bethe-Slater-Kurve ist eine graphische Darstellung des Integrals der Austauschwechselwirkung für Übergangsmetalle. Das Austauschintegral J zwischen benachbarten Atomen in Kristallen wird dabei als Funktion des Verhältnisses ihres Abstandes R zum Durchmesser r der nichtaufgefüllten Schale aufgetragen. 6.1.1 Richtungsquantelung Hier geht es um Paramagnetismus. Nehmen wir an, die Atome habe einen resultierenden Spin, dann hat dieser gegenüber dem äußeren Feld zwei Einstellmöglichkeiten parallel und antiparallel. Die Zustände werden sich in Abhängigkeit von der Temperatur Boltzmann verteilt einstellen: µB N1 − = e kT N0 Das heißt aber, dass ausser bei extrem starken Magnetfeldern der untere Zustand der antiparallelen Spinrichtung stärker besetzt ist. Die paramagnetischen Eigenschaften bestimmt also die Zahl N 0 − N1 der antiparallel ausgerichteten Elektronenspins. Trotzdem wird das äußere Feld dadurch verstärkt und der sogenannte Paramagnetismus kommt zum Vorschein, da die magnetischen Spinmomente entgegen der Spinrichtung orientiert sind, wegen: µ 1 µs =−g s ⋅ B ⋅ S , S = s (s +1)⋅ , s = ± ⇒ S z = ± , g s ≈ 2, 0023: Landée-Faktor 2 2 Analog dazu gibt es noch das Bahnmoment: Seite 34 Colloquium 2004 bei Sahm µl =−gl ⋅ µB Skript von A.Voßkühler ⋅ L, L = l (l +1)⋅ , l = 0,.., n −1 ⇒ Lz = ±m gl ≈ 1: Landée-Faktor Die beiden koppeln über die sogenannte Spin-Bahnkopplung. (siehe Grafik) E B ↑↑ s B E0 B ↑↓ s B E0 + µs ⋅ B E0 − µs ⋅ B s1 h 2 2 s1 Richtungsquantelung 2 Einstellmöglichkeiten des Spins Spin-Bahnkopplung Im Bändermodell erkennt man, dass die Auswirkung des äußeren Feldes je nach Festkörpertyp unterschiedlich ist. In Isolatoren kann die Energieabsenkung der antiparallelen Zustände (jeweils links der E-Achse) nicht zu einem Umklappen der Spins führen, da dort eine Bandlücke ist und keine freien Zustände wie im Leiter (oben). Grafibeschreibung: links ohne äußeres Magentfeld, rechts mit. Oben Leiter, und Halbleiter/ Isolator. Jeweils links der E-Achse antiparallel, rechts parallele Spinzustände. D.h. nicht bei allen Festkörpern tritt die Spinausrichtung als Ursache für den Paramagnetismus auf. 6.1.2 o o o Kurzfassung Induktion ist Ursache für Diamagnetismus Permanente magnetische Dipolmomente sind Ursache für Paramagnetismus Aufgrund günstiger Austauschwechselwirkung parallele permanente Dipolmomente sind die Ursache des Ferromagnetismus. 6.2 Quantitativ Die quantitative Beziehung folgt aus den Maxwellschen Gleichungen in Materie: G G G B = µ0 H + M ( Seite 35 ) Colloquium 2004 bei Sahm Skript von A.Voßkühler Vs sowie der magnetischen Flussdichte Am G G G B und der magnetischen Feldstärke H und der Magnetisierung M , die das zusätzliche Feld Mit der magnetischen Feldkonstante µ0 = 4π ⋅10 −7 innerhalb der Materie beschreibt. Die Magnetisierung ist proportional zum angelegten Feld bei zeitlich und räumlich schwach variierenden Feldern. G G M = χm H wobei die Proportionalitätskonstante χm magnetische Suszeptibilität heißt und sowohl negative als auch positive Werte annehmen kann. Mit µr = 1+ χm Permeabilitätszahl µr ) ist dann 6.3 (der stoffabhängigen G G B = µ0 µr H Fragen Worin unterscheiden sich elektrostatische von magnetostatischen Feldern ? Magnetostatische Felder haben immer geschlossene Feldlinien, sind also Wirbelfelder. Es gibt außerdem im Gegensatz zu den Ladungen keine magnetischen Monopole. Wie kann man magnetische Felder herstellen ? a) Durch Ströme. Für homogene Magnetfelder muss die Spule viel länger als der Durchmesser sein. D / l 1 , ~ Faktor 10. b) Durch Permanentmagneten Wer hat als erster ein Magnetfeld ausgemessen ? Hans Christian Oersted 1819 Welche Erscheinung nutzt man bei Permanentmagneten aus ? Die remanente Magnetisierung. Wie ist die Form des magnetischen Feldes ? geschlossen, Wirbelfeld Gibt es auch elektrische Wirbelfelder ? Ja, nach dem Induktionsgesetz rot E =−B Was kann passieren, wenn Sie einen Stoff in ein Magnetfeld bringen ? Para/ Dia/ Ferro/ Antiferro/ Ferrimagnetismus. Was ist Diamagnetismus ? siehe oben. Wovon hängt die Kraft ab, die der Paramagnet im inhomogenen Magnetfeld erfährt ? Vom Gradienten der magnetischen Feldstärke und der Suszeptibilität. Wieso sind Stoffe diamagnetisch ? s.o. Was besagt die Hundsche Regel ? Die energetisch günstigsten Niveaus werden zuerst besetzt, d.h. bei noch nicht abgeschlossenen Schalen werden zuerst parallele Spins besetzt, was zum Paramagnetismus führt. Wie erhält man Boltzmannverteilung Curiegesetz ? Für ( aus µB der das kT nähert man µB N1 µB − = e kT ≈ 1− N0 kT ) und da µr ∼ N1 N0 gilt, ist µB µB C = ⇒χ= . kT kT T Welche Magnetfeldstärken erreicht man heutzutage ? In supraleitenden Spulen bis zu 30 Tesla, in implodierenden Spulen bis zu 100 Tesla. Wieso richten sich im Ferromagneten nicht alle Dipole gleich aus ? Die Ferromagneten sind bestrebt ihre Energie zu minimieren, d.h. möglichst wenig Energie in Magnetfeldlinien ausserhalb des Kristalls abzugeben. Daher richten sich die Weißschen Bezirke so aus, dass sich die Magnetfeldlinien gerade ergänzen. Das geht im Einkristall ganz gut, es sei denn Störstellen behindern die Ausrichtung und bringen Energie auf, so dass eine gewisse Remamenz nach Magnetisierung erhalten bleibt. χ = 1− µr ∼ 1− 1− Seite 36 Colloquium 2004 bei Sahm Skript von A.Voßkühler Hoch remanente Stoffe haben extrem viele Störstellen z.Bsp. verschiedene Korngrößen in den Polykristallen. Andere Erklärung: Die Austauschwechselwirkung sorgt für parallele Ausrichtung aller Spins, die Streufeldenergie für statistische Verteilung der Spins. Beides wirkt gleichzeitig, der Kompromiss ist die Domänenstruktur. Dadurch wird das Streufeld minimiert (nur an den Blochwänden Feld im Außenraum), die innere Energie wird minimiert (in den Bezirken), in den Blochwänden ist die Energie höher wegen des Wechsels der Spinrichtung. Wie entmagnetisiert man einen Ferromagneten ? Am einfachsten per Wechselstrom mit abnehmender Amplitude. Was sind Barkhausen-Sprünge ? sprunghafte Verschiebungen der Blochwände von Störstelle zu Störstelle. Wie kann man diese experimentell sichtbar machen ? Man misst über Induktion die in einem langsam sich verstärkenden Magnetfeld sprunghaft ändernde Magnetfeldstärke eines Materials, verstärkt das Signal und hört über den Lautsprecher die Impulse. Wie noch ? Der Faradayeffekt. Drehung der Polarisationsrichtung in einem Magnetfeld (Kerreffekt : im elektrischen Feld) Wie noch ? Magnetisches Pulver in Flüssigkeit an den Rändern von Ferromagneten richtet sich aus. sogenannte Bittersche Streifen. Wie heißt die stoffspezifische Größe, die die Magnetisierung charakterisiert ? Magnetische Suszeptibiltät χm . Was ist M in der Gleichung B = µ0 (H + M ) ? Die Magnetisierung, also die Anzahl der Dipolmomente pro Volumeneinheit (die Summe der Felder, die durch die Dipole verursacht werden) Zeichnen Sie den Feldlininenverlauf im Paramagneten ! Siehe oben. Erläuterung: im Material Verstärkung und außen Abschwächung. Warum machen Permeabilitätszahlen bei Ferromagneten keinen Sinn mehr ? Die Permeabilität ist nichtlinear (Hysteresekurve) Warum gibt es beim Paramagneten keine spontane Parallelausrichtung ? Es gibt eine Austauschwechselwirkung im Atomgitter durch die Elektronenbindungen, die wo die Antiparallelstellung günstiger ist, außerdem macht die Temperatur einen Strich durch die Rechnung. B Wie misst man χ ? µr = , χ = 1− µr . Messung über Induktion, zwei Spulen mit und ohne B0 Material, die magnetisiert werden, Differenz bilden. Oder Auslenkung am Faden in inhomogenen Feld. F = pm ⋅ grad B Geben Sie Beispiele für Dia/Para/Ferromagenten ! Diamagnete: Helium (χm =−1,9⋅10−9 / mol) , Bismut (χm =−280⋅10−9 / mol) Paramagnete: Natrium (χm = +16⋅10−9 / mol) , Sauerstoff (χm = +3450⋅10−9 / mol) Ferromagnete: Eisen (χm ≈ 500 −10.000 / mol) Seite 37 Colloquium 2004 bei Sahm Skript von A.Voßkühler 7 Termin 9.12.2004: Messung magnetischer Flussdichten 7.1 Induktion Ein zeitlich veränderliches Magnetfeld induziert eine Spannung: d U Ind =−N ⋅ Φ = N ⋅ ∫ B ⋅ dF , F : Fläche der Schleife dt F nach der Lenzschen Regel: induzierte Ströme erzeugen ein Magnetfeld, dass der Änderung des äußeren Feldes entgegenwirkt. Die Lorentzkraft auf einen linearen Leiter in einem homogenen Magnetfeld ist abhängig vom Strom und vom Magnetfeld. 7.1.1 Ballistisches Galvanometer ??? 7.2 Halleffekt (Edwin Hall 1879) Die Messung der magnetischen Flussdichte erfolgt z.Bsp. über den Halleffekt. In das Magnetfeld wird eine Leiter mit bekannten Abmessungen gebracht, durch den senkrecht zur Magnetfeldrichtung ein konstanter Strom geschickt wird. Auf die dort fließenden Elektronen wirkt über die Lorentzkraft eine Ablenkung, die sich in einer Ladungsverteilung senkrecht zum Strom und zum Magnetfeld bemerkbar macht, der sogenannten Hallspannung. Sie führt zu einem Gleichgewicht, indem sich Hallspannung und Ladungsverschiebung durch Lorentzkraft gerade aufheben. Aus der Lorentzkraft kann über die Hallspannung die magnetische Flussdichte bestimmt werden. FL = q ⋅ v × B FL = − qvB = qE = q UH U ⇔ vB = H b b Die Driftgeschwindigkeit v ist dabei gegeben durch I = n ⋅ q ⋅ v ⋅ A ⇔ v = Also ist die Flussdichte berechenbar durch B = UH ⋅ n ⋅ q ⋅ d . I Seite 38 I I = . n ⋅ q ⋅ A n⋅ q ⋅b ⋅ d Colloquium 2004 bei Sahm 7.3 Skript von A.Voßkühler Quantenhalleffekt (1980 Klaus von Klitzing, Nobelpreis) Beim Quanten-Hall-Effekt (QHE) besteht die Probe aus einer mikroskopisch dünnen Schicht (10 nm), in der die Elektronen sich wie in der Ebene eines Blatts Papier nur in zwei Dimensionen bewegen können. Wirkt nun ein starkes Magnetfeld senkrecht auf diese Ebene ein, kühlt man das Material auf wenige Kelvin, so zeigt die Hall-Spannung Sprünge und Plateaus. Die Plateaus dieser Quantensprünge hängen erstaunlicherweise nicht, wie der klassische HallEffekt, vom Material oder der Geometrie der Probe ab, sondern stellten sich als das Vielfache immer derselben Zahl h/e² heraus. Der Hallwiderstand ist quantisiert in Schritten von h e2 . Die Erklärung ist, dass bei tiefen Temperaturen und hohen Magnetfeldern die Energieniveaus, die zum Ladungstransport zur Verfügung stehen diskret sind (Landauniveaus) und bei steigendem Magnetfeld erst mal gefüllt werden (Anstiegsbereich), dann aber gefüllt bleiben (Plateaubereich) solange bis durch noch höheres Magnetfeld die Spins wieder so verschoben sind, dass Zustände frei werden usw. Die B-Felderhöhunh „schiebt“ die Niveaus an der Fermi- Kante vorbei, Leitung findet aber nur in Fermi- Kantennähe statt. Die Plateaus lassen sich so genau ausmessen, dass die Quantensprünge als Widerstandsnormal verwendet werden können und werden. 7.4 Kernspinresonanz & (-tomographie) Wie die Hülle hat auch der Kern aufgrund seiner Ladung ein magnetisches Moment, dass e aber wesentlich kleiner ist als das der Hülle: Mit µK = 2mP µ µI = g I ⋅ K ⋅ I , I = I (I +1)⋅ , I z = mI ⋅ g I : Kern-g-Faktor Sorgt für die Hyperfeinstruktur. Im Magnetfeld richten sich die Kernspins genauso aus nach der Boltzmannverteilung wie die Elektronenspins. Parallel und antiparallel. 7.4.1 NMR (Nuclear Magnetic Resonance) 1946 Felix Bloch, Edward Mills Purcell, Nobelpreis 1953. Die Probe, die aus vielen Atomen bzw. Molekülen bestehen kann, wird in ein externes homogenes Magnetfeld gegeben. Für die Untersuchung eignen sich alle Atomkerne, die ein Kernspin aufweisen. Liegt ein externes Magnetfeld an (in z-Richtung), richten sich die Kernspins nach diesem Magnetfeld aus, da sie dann die geringste potentielle Energie besitzen. Durch die thermische Energie der Atome sind die Kernspins nach der Maxwell- Boltzmann- Verteilung ausgerichtet, mit einer Vorzugsrichtung parallel zum Magnetfeld. Damit ergibt sich eine durchschnittliche Magnetisierung, die aufgrund der Maxwell- Boltzmann- Verteilung bei Raumtemperatur sehr klein ist. In der x/y-Ebene sind eine oder mehrere Spulen angeordnet, mit denen auf die Probe elektromagnetische Wechselfelder eingestrahlt werden (Sendespule) oder mit denen solche Felder empfangen werden (Empfangsspule). Durch die Sendespule wird ein starkes, zeitlich kurzes Magnetfeld aufgebaut, welches senkrecht zum externen Magnetfeld liegt. Die Spins richten sich an dem neuen Magnetfeld aus und kippen mit der Relaxationszeit in die x/yEbene. Die Dauer des Pulses bestimmt den Winkel, um den die Kernspins gekippt werden. Seite 39 Colloquium 2004 bei Sahm Skript von A.Voßkühler Wird die Sendespule ausgeschaltet, liegt wieder das normale Magnetfeld vor. In diesem Magnetfeld präzedieren die Spins mit der Larmorfrequenz, bis sich diese nach einer Relaxationszeit wieder nach dem Magnetfeld ausrichten. Die präzedierenden Spins induzieren in der Empfangsspule eine Wechselspannung mit der Larmorfrequenz, die dann analysiert wird. CW-Verfahren Hier wird die eingestrahlte Radiofrequenz langsam durchgestimmt und die Absorption der Strahlung gemessen. Man arbeitet in der Frequenzdomäne und erhält zunächst ein Absorptionsspektrum als Funktion der Frequenz. Die Probe wird mit einem extrem schmalen Signal angeregt. Puls-Verfahren Hierbei wird ein einzelner Radiofrequenzimpuls auf die Probe gesandt, die sich in der Spule befindet. Da der kurze Puls relativ breitbandig ist, werden mit einem Puls viele einzelne Resonanzen angeregt. Das Signal nach einem Puls oder das Spin-Echo nach zwei oder mehreren Impulsen, wird als Funktion der Zeit registriert. Mittels Fourier- Transformation wird das Zeitsignal in ein Spektrum umgewandelt. Messung: Die Larmorfrequenz des Atoms ist stark von dem lokalen Magnetfeld abhängig. Da alle Atome unterschiedliche Magnetfelder besitzen, ist die Larmorfrequenz des untersuchten Atoms stark von der chemischen Umgebung und von der Bindung abhängig. Durch die Bestimmung der daraus resultierenden chemischen Verschiebung lassen sich Rückschlüsse auf die Bindungspartner und Arten der Bindungen ziehen. Die Stärke und die Verteilung mehrerer Resonanzen erlaubt Rückschlüsse auf die Dichte des Atomes mit einer bestimmten chemischen Verschiebung in der Probe. Die Aufspaltungen der Peaks lassen Rückschlüsse über Wechselwirkungen mit benachbarten Atomgruppen zu. (Singulett s: keine Aufspaltung, 1 Peak , Duplett d: Aufspaltung in 2 Peaks usw.) Probleme Durch die Boltzmannverteilung tragen nur wenige Spins zur Magnetisierung und damit zum messbaren Signal bei. Deswegen sind konventionelle NMR-Messungen nur für Flüssigkeiten oder Festkörper ausgelegt. Für vernünftige Messungen an einer Atomsorte ist mindestens 1 mol notwendig. Noch einmal anders: E E0 + µI ⋅ B B ↑↓ I ∆E E0 B ↑↑ I B E0 − µI ⋅ B Atomen oder Molekülen. 7.5 Unter äußerem Magnetfeld spalten die Kernspins boltzmannverteilt auf. Die meisten Kernspins sitzen unten parallel zu B. Durch eine Energie in Form von Sendemagnetfeld mit Larmorfrequenz entsprechend dem ∆E = ϖL können Spins umgeklappt werden, was das magnetische Moment des Stoffes ändert und damit eine Spannung induziert. Möchte man stärkere Effekte haben, muss man die Besetzungsdifferenz erhöhen, d.h. noch tiefere Temperaturen oder größere Magnetfelder. Außerdem hilft eine möglichst große Anzahl von Fragen Wie ist der Φ = ∫ B ⋅ dA, A magnetische Fluß definiert ? Φ B = , [Φ] = Wb = Vs, [ B] = T = Vs m² A Fluss ist die „Anzahl der Feldlinien“ Was ist der Zeemann-Effekt ? Die Aufspaltung entarteter Energieniveaus wegen des mit dem Drehimpuls verknüpften magnetischen Moments in einem äußeren Magnetfeld. Gibt es für die Hülle und für den Kern. Dabei beschreibt der normale Zeemann- Effekt die Wirkung auf Seite 40 Colloquium 2004 bei Sahm Skript von A.Voßkühler Atome mit ausgeglichenem Spin und der anormale Zeemann- Effekt die Wirkung auf Atome mit resultierendem Spin (hier kommt das Spinmoment in die Betrachtung dazu). Was bedeutet g-g und u-g in Bezug zum Spin ? Bei g-g Kernen, d.h. gerade Anzahl Protonen und Neutronen, ist der Gesamtkernspin I = 0 . Bei u-g und g-u Kernen gibt es einen resultierenden Spin (die meisten Spins sättigen sich aber gegenseitig ab), der halbzahlig ist. (Hadronen haben Spin ½). Wer hat zuerst die Hyperfeinstrukturaufspaltung beobachtet ? Millikan 1891 bei Spektren durch Aufspaltung von Linien. Gesamtdrehimpuls F = I + J (Kernspin+ Hüllenspin) Was ist der Paschen-Back Effekt ? Die Entkopplung von Kernspin und Hüllenspin unter einem starken äußeren Magnetfeld. Beide präzedieren unabhängig um B. Dadurch wird das Spektrum noch einmal aufgespalten und viele Energieübergänge möglich. Wieso nimmt man für Hallsonden Halbleiter ? In Ihnen sind die Driftgeschwindigkeiten höher als bei Isolatoren und die Ladungsträgeranzahl kleiner als bei Leitern, beides erhöht die Hallspannung bei gleichem Feld. Hier ergibt die Kompensation der Löcher des p-dotierten Halbleiters die Hallspannung, bei n-Dotierung erhält man die umgekehrte Hallspannung. Was für verschiedene Messarten gibt es für magnetische Feldgrößen ? statische: Drehmoment in homogenem Feld M = pm × B , Messung z.Bsp. durch Rückstellmoment eines Torsionsfadens. Dynamische: über induzierte Spannungen, Kernspinresonanz, SQUID, Hallsonde. Wie misst man B mit Hilfe der Induktion ? z.Bsp. über die Lorentzkraft auf einen linearen Leiter in einem Magnetfeld. Oder über die Bewegung einer Spule im Feld (Änderung des Flusses durch die eingeschlossene Fläche) Welche Rolle spielen die Relaxationszeiten bei der Kernspintomographie ? Irgendwas mit Hyperfeinaufspaltung durch Kopplung von Kern und Hülle ??? Kann man mit der Methode Temperaturen messen ? Ja, eine Resonanzfrequenz entspricht bei bekanntem Magnetfeld nach der Fourieranalyse einem Besetzungsverhältnis, woraus mit Boltzmann die Temperatur berechnet werden kann. Seite 41 Colloquium 2004 bei Sahm Skript von A.Voßkühler 8 Termin 16.12.2004: Supraleitung 8.1 Theorie Das Phänomen der Supraleitung wurde 1911 vom holländischen Physiker Heike Kamerlingh Onnes entdeckt, als er den elektrischen Widerstand von Quecksilber nahe dem absoluten Nullpunkt untersuchte. Dieses bei dieser Temperatur feste Material zeigte unterhalb der sogenannten kritischen Temperatur einen nicht mehr messbaren Widerstand. Um diesen Effekt zu erklären, machen wir uns noch mal klar, wodurch der Widerstand in Festkörpern hervorgerufen wird. Die Elektronen werden an den Ionenrümpfen, an Gitterschwingungen H.K. Onnes (Phononen) und an Gitterfehlern gestreut. Deswegen steigt bei Metallen auch der Widerstand mit der Temperatur, da diese das Gitter zu stärkeren Schwingungen anregt. Bei den sehr tiefen Temperaturen paaren sich je zwei Elektronen mit Hilfe von Phononen zu einem sogenannten Cooper-Paar, das einen energetisch tieferen Zustand hat als beide Elektronen einzeln, es tritt also eine sogenannte attraktive Originalmessung von Wechselwirkung Onnes an Hg auf. Elektronen im Supraleiter koppeln zu CooperPaaren durch Wechselwirkung mit dem Atomgitter, indem sie ein virtuelles Phonon austauschen. Cooper-Paare sind Bosonen und befinden sich alle im gleichen makroskopischen Quantenzustand. Am nebenstehenden Bild soll die Entstehung der Cooperpaare noch einmal erläutert werden, um die Supraleitung damit verstehen zu können. Cooper-Paare Jedes Elektron versetzt, wenn es in die Nähe eines Ions kommt, dieses in Schwingungen oder nimmt diese auf und ändert dabei seinen Impuls, d.h. es erzeugt oder absorbiert Phononen. Der amerikanische Physiker Cooper hat mit Hilfe der Quantenmechanik gezeigt, dass zwischen zwei Elektronen eine anziehende Wechselwirkung auftritt, wenn das vom ersten Elektron emittierte Phonon gleichzeitig vom zweiten absorbiert wird. Dieser Phononenaustausch senkt die Energie der beiden Elektronen und ergibt, solange diese Austauschkraft größer ist als die abstoßenden Coulombkräfte einen stabilen Zustand, das Cooper-Paar. Beide Elektronen haben entgegengesetzten Impuls und werden über das Gitter wie mit einer Feder zusammengehalten. (Bild: Paar auf einer durchgehenden Matratze „koppelt“ durch Gitterschwingungen...) Nach der Theorie für die Supraleiter von Bardeen, Cooper und Schrieffer (BCS-Theorie) ist aber erst unterhalb der Sprungtemperatur dieser Zustand der energetisch günstigste, darüber stören die thermischen Phononen. Durch das Paaren nehmen die Elektronen einen energetischen Zustand ein, der durch eine Energielücke von 0,1−1meV von den „normalen“ Zuständen getrennt ist. Der Trick der Supraleitung besteht nun darin, dass diese Cooper-Paare eine im Vergleich zu den Gitterabständen große Wellenlänge besitzen und daher die Ionenrümpfe wie auch die Kristallbaufehler keine Streuzentren mehr darstellen. Genau wie tieffrequenten Schallwellen kleine Hindernisse gar nicht „bemerken“ werden die Cooper-Paare auch nicht vom Gitter gestört und können daher widerstandslos Strom transportieren. Seite 42 Colloquium 2004 bei Sahm Skript von A.Voßkühler Quantenmechanisch wird dieser Effekt so erklärt, dass die Cooper-Paare als Bosonen, d.h. mit ganzzahligem Spin, der Bose- Einstein Kondensation unterliegen und in diesem Zustand über den gesamten Festkörper einen makroskopischen Quantenzustand mit festen Phasenbeziehungen untereinander einnehmen. In diesem Zustand dürfen sie keinen Impuls mit der Umgebung austauschen, also können sie auch nicht mit dem Gitter wechselwirken, was den Widerstand unmessbar macht. Jeder Supraleiter hat im Anregungsspektrum eine Energielücke, die der Paarbindungsenergie der Cooperpaare entspricht. Erst ab einer Energie die ausreicht die Paarbindung aufzubrechen, kann Strahlung absorbiert werden. 8.2 Meißner-Ochsenfeld-Effekt Der wohl populärste Effekt der Supraleitung heißt MeißnerOchsenfeld-Effekt und besteht in der Verdrängung des Magnetfeldes aus Supraleitern. Wird eine supraleitendes Material in ein nicht zu starkes Magnetfeld gebracht, dann induziert das Magnetfeld Ringströme im Supraleiter, die der Ursache entgegenwirken. Da diese aufgrund der Supraleitung widerstandslos fließen können wird nach kürzester Zeit im Material ein Gegenfeld aufgebaut, das das äußere Feld kompensiert, d.h. Meißner-Ochsenfeld das äußere Feld wird aus dem Supraleiter verdrängt. Effekt Legt man nun einen Supraleiter auf einen Magneten bei Zimmertemperatur, so gehen die Magnetfeldlinien durch den Supraleiter hindurch und es passiert nichts. Sobald aber die Sprungtemperatur unterschritten wird, werden die Magnetfeldlinien durch die induzierten Ringströme aus dem Supraleiter verdrängt, so dass dieser analog zur Abstoßung zweier entgegengesetzt gepolter Magneten abhebt. Das Charakteristische des Meißner-Ochsenfeld-Effekts ist die Tatsache, das der Effekt auch für ein konstantes Magnetfeld auftritt. Wenn allerdings das Magnetfeld zu stark ist, wird der Effekt zunichte gemacht, da dieses die Cooperpaare zerstört, bzw. stärker wird als die attraktive Wechselwirkung durch die Phononen. 8.3 Supraleiter 1. Art Magnetische Feldlinien werden in Supraleitern 1. Art bis auf eine dünne Schicht an der Oberfläche vollständig aus dem Inneren verdrängt. Das Magnetfeld nimmt an der Oberfläche des Supraleiters exponentiell ab; das charakteristische Maß der Oberflächenschicht ist die so genannte londonsche Eindringtiefe. Man bezeichnet diesen Zustand auch als Meissner-Phase. Ein Supraleiter 1. Art wird normalleitend, wenn das äußere Magnetfeld einen kritischen Wert überschreitet. Die meisten metallischen Elemente zeigen dieses Verhalten und haben in der Regel eine sehr niedrige Sprungtemperatur im Bereich weniger Kelvin. Beispiele sind Niob, Blei und Aluminium. Feldverdrängung im supraleitenden Zustand Seite 43 Colloquium 2004 bei Sahm 8.4 Skript von A.Voßkühler Supraleiter 2. Art Supraleiter 2. Art befinden sich nur bis zu einem unteren kritischen Magnetfeld in der MeissnerPhase, darüber können magnetische Feldlinien in Form so genannter Flussschläuche in das Material eindringen (Shubnikovoder Mischphase), ehe der supraleitende Zustand bei einem oberen kritischen Magnetfeld vollständig zerstört wird. Der magnetische Fluss in den Flussschläuchen beträgt immer ein ganzzahliges Vielfaches des magnetischen Flussquants. Ein Beispiel für Supraleiter 2. Art sind die so genannten Hochtemperatursupraleiter, deren kompliziertes Kristallgitter durch Kupferoxid-Ebenen bestimmt ist. Eine wichtige Gruppe sind YBaCuO (Yttrium-BariumKupferoxide). 8.5 Josephson-Effekt Ic (von Brian D. Josephson 1962 theoretisch vorhergesagt) Werden zwei Supraleiter durch eine dünne nicht-supraleitende Barriere (Isolator) getrennt und ein durch einen regelbaren Widerstand gesteuerter Strom hindurchgeschickt, so stellt sich ein Tunnelstrom Is der Größe I s = I c ⋅ sin ∆ϕ ein, wobei ∆ϕ die Phasendifferenz der supraleitenden (Cooperpaar-)Wellenfunktionen beiderseits der Barriere darstellt und I c der so genannte kritische Strom der Barriere ist. Seite 44 Colloquium 2004 bei Sahm Skript von A.Voßkühler links rechts Der Strom I s wird durch über die Barriere tunnelnde Cooper-Paare getragen. Dieser Strom fließt aufgrund der Tatsache, dass die makroskopischen supraleitenden Wellenfunktionen beider Supraleiter in der dünnen Barriere überlappen. (Gleichstrom Josephson) Die Phasendifferenz wird durch ein äußeres Magnetfeld beeinflusst (siehe Grafik) und damit ist I c abhängig vom Magnetfeld. Gleichzeitig fließt ab I c ein hochfrequenter Wechselstrom, der durch durchtretende Cooperpaare erzeugt wird. (Wechselstrom Josephson ϖ = 2eU ). Das die Phase eines Quantenzustands sich durch ein Magnetfeld ändert ist der Aharanov Boom Effekt. 8.6 Josephsonkontakt Josephsonkontakte bestehen aus zwei supraleitenden Materialen, die miteinander in sehr schwachen Kontakt gebracht werden. Dieser schwache Kontakt wird realisiert, entweder durch geometrische Barrieren (z.B. Punktkontakt/Spitzenkontakt) oder durch eine Oxidschicht oder einen nicht-supraleitenden Normalleiter. Josephsonkontakte werden eingesetzt als extrem schnelle Schaltelemente, sehr genaue Spannungsstabilisatoren oder in SQUIDS. Tunneleffekt bei unter Spannung liegenden Kontakten zwischen Leitern mit Isolatorschicht. 8.7 SQUID SQUID ist die Abkürzung für Superconducting QUantum Interference Device. Mit einem SQUID kann man sehr präzise sehr kleine Magnetfelder messen. Ein SQUID besteht aus einem supraleitenden Ring, der an einer oder zwei Stellen durch ein elektrisch isolierendes Material unterbrochen wird (Josephson- Kontakt). Diese Spalte muss jedoch so klein sein, dass die Cooper-Paare hindurchtunneln können. Es kann aber nur ein ganzzahliges Vielfaches des Flussquantums durchfließen. Wenn das durchtretende Magnetfeld sich verändert, induziert diese Änderung einen Strom im supraleitendem Ring, der die Änderung kompensiert. Sollte die Änderung jedoch größer als ein magnetisches Flussquantum anwachsen, so kann der magnetische Fluss innerhalb des Rings einen Sprung um ein Flussquantum machen, der Strom im Ring bricht dann zusammen. Anders gesagt: Da immer nur ganze Cooperpaare tunneln können, bricht der Induktionsstrom immer nur bei Vielfachen des Flussquants zusammen. WIESO GENAU ?? Seite 45 Colloquium 2004 bei Sahm Skript von A.Voßkühler Die Änderung des Stroms im Ring, vor allem den Sprung des Stroms, kann man über einem magnetischen Induktionskreis sehr präzise ermitteln. SQUIDs werden benutzt, um Kernspintomographien zu erstellen oder auch Gehirnströme zu messen. In der Geologie und der Archäologie werden SQUIDs eingesetzt, um sehr feine Änderungen des Erdmagnetfeldes an der Oberfläche zu ermitteln, damit kann man die unterirdischen Strukturen feststellen, die mit anderen Methoden nicht feststellbar sind. 8.8 Fragen Was ist Supraleitung ? s.o. Wieso gibt man eine Obergrenze beim Widerstand an ? Um die Nachweisgrenze zu verdeutlichen, bzw. die Messgenauigkeit klarzustellen. Wie misst man bei solchen Versuchen den Widerstand ? Durch eine Spule aus dem zu untersuchenden Material wird ein konstanter Strom geschickt, dessen induziertes Magnetfeld wird gemessen und daraus die Spannung berechnet. Wie misst man das Magnetfeld ? Mit einer Hallsonde. Weitere Möglichkeit ? Man hängt zwei Ringe parallel auf und schickt jeweils entgegengesetzt Stromstoß durch, die Abstoßung durch die induzierten Magnetfelder, bzw. das Drehmoment in einem homogenen Magnetfeld kann mit einem Lichtzeiger über Spiegel etc. gemessen werden. Bei Supraleitern kann man den angestoßenen Strom prinzipiell ewig laufen lassen, die Auslenkung des Zeigers wird sich nicht ändern, der Strom lässt nicht nach. (Wurde gemacht über ein Jahr lang) Was ist der Meißner Ochsenfeld Effekt ? Feldverdrängung bei Abkühlung unter die Sprungtemperatur. (Klassische Erklärung unmöglich, weil bei konstantem Feld ja keine Ringströme induziert werden) Wer trägt den Suprastrom ? Die Cooperpaare h Wie groß ist das Magnetfeld im Quant ? Flußquantisierung: Φ0 = 2e Was ist die Flußquantisierung ? Der magnetische Fluß ist bei der Supraleitung quantisiert in h Einheiten von Φ0 = , da hier die Cooperpaare die kleinste Einheit bilden. 2e Hört das Magnetfeld am Rand abrupt auf ? Nein, der Übergang ist stetig, es gibt die sogenannte Londonsche Eindringtiefe λ , die temperaturabhängig ist und kurz unterhalb der Sprungtemperatur rapide abnimmt und dann einen konstanten Wert annimmt. Wie sieht die Figur des Stroms am Josephsonkontakt bei zwei Kontaktstellen aus ? Wie die Interferenz am Doppelspalt, ist derselbe Hintergrund von sich verschiebenden Phasenlagen. Was ist die Londonsche Eindringtiefe ? Was ist der Unterschied zwischen Supraleitern 1. und 2. Art ? Bei wachsendem äußeren Magnetfeld im supraleitenden Zustand gibt es bei Typ I ein kritisches Magnetfeld, ab dem das Material normalleitend wird. (nur Meißnerphase im supraleitenden Zustand) Beim Typ 2. Art gibt es ein erstes kritisches äußeres Magnetfeld, ab dem das äußere Feld in Form von quantisierten Flussschläuchen (normalleitend) in das Material eindringt (Shubnikovphase) und die Supraleitung abschwächt. Seite 46 Colloquium 2004 bei Sahm Skript von A.Voßkühler Wieso können Ferromagneten keine Supraleiter sein ? Sie haben resultierenden Spin und damit magnetische Momente, die Widerstand erzeugen würden bei den induzierten Ringströmen. Gibt es eine Kraft zwischen einem stromdurchflossenen Leiter und einem Flussschlauch, d.h. beeinflussen sich die Flussschläuche untereinander ? Ja, es kommt zu einem floating der Flussschläuche durch das Material. In der Anwendung möchte man das Vermeiden und baut Störstellen ins Material ein, an denen die Flussschläuche kleben bleiben. (Pinning) Was ist der Isotopeneffekt ? Die Abhängigkeit der Sprungtemperatur von der Masse des Isotops, gilt nicht für alle Stoffe, aber z. Bsp. für Zinn. Der Grund liegt in der Entstehung des Cooper-Paares. In der BCS Theorie (1957) entsteht ein Cooper Paar durch Austausch eines virtuellen Phonons, also einer Verzerrung des Kristallgitters. Die Frequenz des Phonons ϖ hängt unter anderem 1 ) von der Masse der Atomrümpfe ab (mit N Wann wurde der erste Transistor gebaut ? 1948 von Bardeen und ?? Was ist die Londonsche Eindringtiefe und die Kohärenzlänge der Cooperpaare in Typ1 und Typ 2 Supraleitern ? Die Londonsche Eindringtiefe ist die Strecke vom Rand des Supraleiters bis zu dem Ort, an dem das eingedrungene äußere Magnetfeld (was ja einen stetigen Verlauf haben muss) auf die Hälfte abgesunken ist. Die Kohärenzlänge ist die Strecke vom Rand des Supraleiters bis zu dem Ort, an dem die Cooperpaardichte 50% ihres maximalen Wertes angenommen hat. Am Rand gibt es keine Cooperpaare, da sie ja eine gewisse Ausdehnung haben, aber nur in der supraleitenden Phase existieren können. λ Das Verhältnis κ := heißt Ginzburg-Landau Parameter und bestimmt, ob es energetisch ξ günstiger ist ab einem bestimmten äußeren Feld weitere Phasengrenzen zuzulassen, d.h. NL/SL Zonen (also Flussschläuche) und damit Typ II Supraleiter ( κ >1 ) oder ob für die Bildung zusätzlicher Phasengrenzen Energie aufgebracht werden muss ( κ <1 , Typ 1 Supraleiter). Beim Typ 1 Supraleiter ist die Kohärenzlänge größer als die Eindringtiefe und damit der Energieverlust durch das eindringende Magnetfeld größer als der Energiegewinn durch Bildung von Cooperpaaren, damit am Rand weitere Zonen nichtleitend würden, müsste Energie zugeführt werden. Typ II Supraleiter haben extrem kurze Kohärenzlängen, so dass der Energiegewinn durch Bildung von Cooperpaaren den Energieverlust durch das Magnetfeld überwiegt und die Energie in Form von Grenzflächenenergie für weitere Grenzschichten zur Verfügung steht, die sich ab einem bestimmten kritischen Feld in der Shublikovphase in Form von Flussschläuchen bilden. Was hat Onnes eigentlich untersucht ? Der Verlauf des Widerstandes von Materialien für T → 0K . Welcher Verlauf wurde erwartet ? Es bleibt ein Restwiderstand (blau), der Widerstand wird unendlich da sich die Elektronen bei solchen Temperaturen nicht mehr bewegen können (rot), der Verlauf ist(bleibt) linear und geht auf null bei 0K (schwarz). Seite 47 Colloquium 2004 bei Sahm Skript von A.Voßkühler Warum hat er Quecksilber genommen ? Das hat man damals durch Destillation in höchster Reinheit herstellen können, da man bei verunreinigtem Gold je nach Verunreinigung starke Unterschiede in der Widerstandskurve hat messen können (Grafik rechts). Wieso zerstört ein hohes Magnetfeld, bzw. hohe Stromdichten die Cooperpaare ? Es kommt dann zu hohen (Ring)strömen und die kinetische Energie der Cooperpaare überschreitet eine kritischen Wert (die Bindungsenergie der Cooperpaare) ab dem diese nicht mehr stabil sind, d.h. die Cooperpaarbindungen brechen auf. Die kritische Stromdichte wird mit abnehmender Energielücke (also zunehmender Temperatur) kleiner. Zeichnen Sie ein Zustandsdichte Energiediagramm dazu. Gezeichnet ist die Zustandsdichte der Elektronen in einem Supraleiter. Die Energielücke ∆ wächst mit sinkender Temperatur weil damit die Bindungsenergie der Cooperpaare wächst (alternative Formulierung je höher die Zahl der Cooperpaare, desto größer die Paarbindung, Kollektivphänomen) Seite 48 Colloquium 2004 bei Sahm Skript von A.Voßkühler 9 Termine 6/13.01.2005: Erzeugung und Messung tiefster Temperaturen 9.1 ideale und reale Gase In einem idealen Gas werden die Teilchen als kleine vollelastische Kugeln angesehen. Die Wechselwirkung geschieht über elastischen Stoß bei Kollision. Das Kugelvolumen wird gegenüber dem Gasvolumen vernachlässigt. Diese Gase genügen der idealen Gasgleichung: pV = ν RT ( ν : Molanzahl) Bei realen Gasen steht nicht das gesamte messbare Volumen für Bewegung zur Verfügung, da ein Teil von den Gastatomen schon besetzt ist, d.h. für ein mol gilt V → V − b . Zweitens existieren anziehende van der Waals Kräfte zwischen den Teilchen, so dass am Rand des Volumens ein geringerer Druck gemessen wird als tatsächlich vorherrscht, da hier nur die a Kräfte der innenliegenden Gasteilchen wirken. Die Druckkorrektur ist p → p + 2 . Die ideale V a Gasgleichung wird also modifiziert für ein mol zu p + 2 (V − b) = RT mit den van der Waals V Konstanten a, b. Für CO2 ist das p-V Diagramm nebenstehend. Die Grenzkurve gibt den Bereich an, indem das Gas kondensiert bei gleichbleibendem Sättigungsdampfdruck. Die van der Waals Kurven haben bei niedrigen Temperaturen eigentlich drei Nullstellen also Maximum und Minimum. Dieser Verlauf wird aber aufgrund der Kondensation nicht angenommen (statt dessen horizontaler Verlauf). Nach der Maxwellschen Konstruktion wird diese Gerade so konstruiert, dass von ihr zwei flächengleiche Stücke A+B begrenzt werden. Ab der Isotherme, die durch den kritischen Punkt (charakteristisch für das Gas) geht, bleibt das Gas auch bei sehr hohen Drücken gasförmig. Bei hohen Temperaturen bzw. großen Volumina wird der Verlauf der idealen Gasgleichung immer ähnlicher. In der rechten Skizze ist das Wasser Phasendiagramm für CO2 gezeichnet und man erkennt an der positiven flüssig Steigung der Schmelzdruckkurve, dass der Stoff eine Volumenvergrößerung beim Schmelzen erfährt. Vergleichend krit. Punkt dazu die Kurve von Wasser, dessen Volumen sich beim Schmelzen fest Tripelpunkt verkleinert. ( ) gasförmig Seite 49 Colloquium 2004 bei Sahm Skript von A.Voßkühler Es gibt weitere Anomalien, die für die Tieftemperaturphysik entscheidend sind: 3He und 4He. Die Phasendiagramme zeigen die entsprechenden Phasenübergänge wobei Helium 3 erst bei ca. 3mK supraflüssig wird und Helium 4 schon bei ca. 2 K Helium 4 9.2 Helium3 Adiabatische Expansion Adiabatisch bedeutet „ohne Wärmeaustausch mit der Umgebung“. In einem solchen Fall lautet der erste Hauptsatz ∆U = Q +W = W ⇒ dU = dW =− pdV . Das heißt, dass Arbeit W nur auf Kosten der inneren Energie U geleistet werden kann, was gleichbedeutend ist mit einer Verringerung der Temperatur. 9.3 Joule- Thompson Effekt Hiermit wird die adiabatische Expansion eines realen Gases durch eine Drosselstelle bezeichnet. Das Arbeitsgas wird von einem Volumen durch eine Drossel in ein zweites Volumen geschickt, wobei es sich aufgrund eines durch zwei Kolben konstant gehaltenen Druckunterschiedes entspannt. Dabei bleibt die Enthalpie H = U + pV konstant. Bei idealen Gasen gilt die ideale Gasgleichung und damit sind die innere Energie U und die Volumenarbeit pV nur von der Temperatur abhängig und damit ändert sich diese bei konstanter Enthalpie nicht. Bei realen Gasen gilt die van- der- Waals Gleichung und die innere Energie ist druck- und volumenabhängig. Die Temperaturdifferenz durch die Expansion bei Joule- Thompson- Effekt ist damit abhängig von der Temperatur und hat eine Nullstelle bei der sogenannten Inversionstemperatur: 2a T = . Oberhalb dieser Temperatur erwärmt sich das Gas bei Expansion, da die innere Rb Energie wächst, unterhalb derselben kühlt es ab. 9.4 Lindeverfahren erfunden 1895. Durch einen Kompressor wird Luft auf einen Druck von z. Bsp. 200 bar gebracht, die Komprimierungswärme wird durch Wasserkühlung abgeführt. Dann wird die Luft über ein Drosselventil entspannt (auf 20 bar) und dabei kühlt sie sich ab, da die Inversionstemperatur von Stickstoff bei ca. 620 K liegt. Die so abgekühlte Luft kühlt in einer Gegenstromanlage die komprimierte Luft und wird dann erneut komprimiert usw. Auf diese Weise lässt sich Luft verflüssigen (also flüssiger Stickstoff herstellen). Seite 50 Colloquium 2004 bei Sahm Skript von A.Voßkühler Flüssiges Helium erzeugt man so, dass man erst flüssigen Stickstoff herstellt (T=77K), diesen dann in einer Expansionsmaschine durch den Joule- Thompson Effekt unter die Inversionstemperatur von Helium bringt (T=47K) und dann zur Vorkühlung im Lindeverfahren (statt des Wassers) verwendet. 1. Kompression (Kompressionswärme) 2. Isobare Vorkühlung 3. Joule-Thompson Effekt: isenthalpische Expansion 4. Restgas wird zurückgeführt 5. Im Gegenstrom wird ergänzt und dadurch erwärmt 9.5 Abpumpen von 3He Über einem Helium-3 Bad wird der Heliumdampf abgesaugt, dadurch der Dampfdruck verringert und weiteres Verdampfen angeregt, was bei Isolierung des Systems zur Abkühlung des Helium Bades führt, da die Ausdehnung beim Verdampfen Volumenarbeit ist (Verdampfungsenthalpie muss zugeführt werden), die bei Isolierung der inneren Energie entnommen wird. (Temperaturen bis 0,3 K, dann ist der Dampfdruck zu gering zum Absaugen). Das Verfahren scheitert bei Helium-4, da es bei 2,2 K suprafluid wird, so dass sich ein Flüssigkeitsfilm auf dem Absaugstutzen bildet und Flüssigkeit abgesaugt wird, außerdem wird auch hier der Dampfdruck schon bei 1K zu niedrig. Seite 51 Colloquium 2004 bei Sahm 9.6 Skript von A.Voßkühler 3He-4He-Gemisch Bei tiefen Temperaturen entmischt sich ein Gemisch aus Helium 3- und Helium-4 von selbst, so dass zwei Phasen gebildet werden, oben eine Helium-3 reiche und unten eine Helium-4 reiche. (Da He-3 kleinere Dichte) Das passiert bei 0,8 K wo He-4 supraflüssig ist und insofern Helium-3 in die Helium-4 Phase widerstandslos hinein verdampfen kann (oben Quasiflüssigkeit, unten Quasigas He3). Pumpt man nun He-3 aus dem unteren Bereich ab, so kühlt die obere He-3 reiche Phase ab, da durch „Nachverdampfen“ Verdampfungsenthalpie entzogen wird. Den Vorgang beschreibt die Gleichung von Clausius Clapeyront. Damit sind Temperaturen bis zu 4mK möglich. 9.7 Pomerantchuk Effekt In der Sublimationskurve von Helium3 und Helium4 (s.o. ) gibt es ein anormales Minimum, d.h. unterhalb dieser Temperatur ist die flüssige Phase geordneter (kleinere Entropie) als die feste Phase. Dieser Effekt wird auch zur Kühlung ausgenutzt, indem Helium bis unter das Minimum abgekühlt wird (flüssig ist) und dann isotherm komprimiert wird bis zur Sublimationskurve. Wenn jetzt adiabatisch komprimiert wird kühlt sich die Probe beim Festwerden ab, da die Entropie durch Übergang in den festen Zustand wieder zunimmt und die Energie durch die adiabatische Isolierung nur aus der inneren Energie kommen kann. Damit sind Temperaturen bis 2 mK erreichbar. 9.8 adiabatische Entmagnetisierung Paramagnetische Salze habe thermisch verteilte magnetische Dipolmomente. Durch ein äußeres Feld werden die Dipole ausgerichtet und damit die Entropie verringert. Wird dieser Prozess isotherm ausgeführt (also unter Abfuhr von Wärmeenergie bei ca. 1K), dann kann bei einer nachfolgenden adiabatischen (also ohne Austausch von Wärme) Entmagnetisierung das Salz auf bis zu 1mK abgekühlt werden, da die Energie die für das „Wiedervermischen“ der Ausrichtungen benötigt wird nicht aus der Umgebung kommen kann (weil adiabatischer Prozess) , dabei bleibt die Entropie konstant. Für Temperaturen unter 1mK ist das Verfahren ungeeignet, da sich dann die Dipole von alleine spontan ohne äußeres Magnetfeld ausrichten. Seite 52 Colloquium 2004 bei Sahm 9.9 Skript von A.Voßkühler adiabatische Kernentmagnetisierung Bei sehr kleinen Dipolmomenten wie sie in Kernen auftreten (Faktor 1000 kleiner) ist die Untergrenze der mit dem Verfahren erreichbaren Temperaturen auch wesentlich kleiner (ca. 10−6 K ) . Die isotherme Kernentmagnetisierung muss aber bei Temperaturen von ca. 10−2 K stattfinden, da sonst zu hohe Magnetfelder nötig sind. Deshalb ist eine adiabatische Entmagnetisierung von paramagnetischen Salzen als Vorkühlung erforderlich. Damit wurden Kerntemperaturen von ca. 60nK erreicht. Die Abkühlung betrifft aber dann nur die Kerne und nicht die gesamte Probe. 9.10 Thermometer 9.10.1 Gasthermometer Primärthermometer, dienen zur Definition der Temperatur. In einem bekannten Volumen wird ein möglichst ideales Gas auf die zu messende Temperatur gebracht und der Druck gemessen, dann kann über die ideale Gasgleichung die Temperatur bestimmt werden. Fehlerquellen: - das Manometer befindet sich selten auf der zu untersuchenden Temperatur, so dass ein Teil des Messvolumens auf Zimmertemperatur ist. - es gibt kein ideales Gas - Messgefäß kann sein Volumen ändern - Adsorption eines Teils des Gases an der Wand des Messgefäßes 9.10.2 Dampfdruckthermometer An einem Messgefäß mit flüssigem Gas wird eine Druckmessung druchgeführt. Anhand der mit einem Gasthermometer kalibrierten Dampfdruckkurve kann die Temperatur bestimmt werden. 9.10.3 elektrische Thermometer Thermoelement liefert eine dem Temperaturunterschied proportionale Spannung (SeebeckEffekt), es ist also eine Referenztemperatur an der einen Kontaktstelle erforderlich, die andere kann jedoch für Messungen gut verwendet werden. 9.10.4 magnetische Thermometer über das Curiesche Gesetz kann nach Bestimmung der Suszeptibilität die Temperatur berechnet werden. Hier macht man Fehler, da das Curiesches Gesetz ja auch nur eine Näherung ist. 9.10.5 Kernspinthermometer Es ist erwiesen, dass Gammstrahlung bevorzugt in Spin-Achsenrichtung emittiert wird. Die Verteilung der Spinrichtungen ist aber abhängig von der Temperatur. Es wird also die Strahlungsverteilung gemessen. Bei dem Verfahren werden nur geringe radiaktive Mengen eingebaut, da es sonst durch die Radioaktivität zu einer zu großen Erwärmung käme. Seite 53 Colloquium 2004 bei Sahm 9.11 Skript von A.Voßkühler Fragen Wie was bedeutet iso... usw ? 1) isochor V = const 2) isobar p = const 3) isotherm T = const 4) adiabatisch dQ = 0 (kein Wärmeaustausch mit Umgebung) 5) isenthalpisch (Enthalpie H := U + pV H = const konstant) 6) isentrop S = const (Entropie S : Maß der Unordnung konstant) Was ist ein mol ? Die Anzahl der Teilchen in 12 g C-12 ( N A ) Was sind die Grundannahmen der kinetischen Gastheorie ? Die Gasteilchen wechslewirken nur über elastischen Stoß und das Volumen der Teilchen ist gegenüber dem Volumen des Gases vernachlässigbar. Wie erreicht man das bei realen Gasen ? Großer Abstand zum Siedepunkt. Was ist eine Anwendung des Joule-Thompson Effekts ? Das Linde-Verfahren zur Gasverflüssigung. Wie startet die Entropie beim 0K ? Asymptotisch, denn nach dem Nernstschen Gesetz ist lim dS (T ) = 0 , d.h. der absolute Nullpunkt ist der Grenzwert der absoluten Ordnung. T→p Wie funktioniert der Stirlingmotor ? 1. Isotherme Expansion unter Aufnahme von Wärmeenergie, 2. isochore Abkühlung mit Wärmetausch am Verdrängerkolben 3. isotherme Kompression unter Abfuhr der entstehenden Wärmeenergie 4. isochore Erwärmung mit Wärmeaufnahme aus Verdrängerkolben. Die beim Rundumgang erforderliche Volumenarbeit wird durch einen Motor erbracht. Was für ein Vorteil hat er gegenüber dem Lindeverfahren ? Beim Lindeverfahren ist das Arbeitsgas das Verflüssigungsgas hier kann ein anderes Arbeitsgas benutzt werden, außerdem ist keine Hochdruckkapillare erforderlich. Wie sieht die Gesamtbilanz dafür aus ? ∆U = ∆Q +∆W mit idealem Gas gilt dW =− pdV also dU = dQ − pdV Was ist der Unterschied zwischen U,V,... und Q ? U,V,... sind Zustandsgrößen die zur Beschreibung des Gases ausreichen und deren Änderung unabhängig vom Weg ist, Q ist wegabhängig. Was ist das Problem bei der Luftverflüssigung mit einem Stirlingmotor ? Das CO2 wird an der kalten Abtropffläche fest und vereist dort. Wie bekommt man den flüssigen Stickstoff, wenn man flüssige Luft hat ? fraktionierte Destillation, also verdampfen des schneller siedenden Gases (O2:85 K, N2: 77K) Was ist die Clausius Clapeyronsche Gleichung ? Sie verbindet die Verdampfungswärme mit dem Temperaturgradienten des Sättigungsdampfdrucks. dT dV = dps ⇒ lnT ∼ p ⇒ T ∼ e p ∆H = ∆U +∆ ( pV ): Verdampfungsenthalpie , T H Warum ist Helium ein guter Wärmeleiter ? Es hat kleine atomare Masse und damit bei Energie 3 1 von kT = mv 2 eine große Geschwindigkeit. 2 2 Wann wurde das erste Gasverflüssigungsverfahren erfunden ? 1877 von Franzosen Picté, Cailleté Welche Teilchen verdampfen denn beim Abpumpen zum Kühlen ? Die Atome der Flüssigkeit haben eine Boltzmann geschwindigkeitsverteilung und nur die schnellsten haben genügend Energie, um die „Austrittsarbeit“ aufzubringen. Warum kommen die Teilchen nicht von alleine aus der Flüssigkeit heraus ? Zwischen den Atomen herrschen anziehende Kräfte, die auch für die Tropfenbildung etc. verantwortlich sind, daher ist eine Austrittsarbeit erforderlich um diesen Kräften zu entkommen. Seite 54 Colloquium 2004 bei Sahm Skript von A.Voßkühler 10 Termin 20.01.2005: Moderne Mikroskopie 10.1 Lichtmikroskopie Konfokale Mikroskope haben extrem kleine Schärfentiefe und erlauben durch bewegen des Objekts eine dreidimensionale Rekonstruktion. Die Streulichtunterdrückung ist durch die Blende 2 besonders wirkungsvoll, allerdings benötigt man sehr leuchtstarke Lichtquellen. normales Mikroskop 10.2 Nahfeldmikroskopie Im Rasterverfahren wird die durch eine kleine Blende (50-100nm, nicht weniger damit noch Intensität durchtritt) fokussierte Laserstrahlung seitlich detektiert und aus der Streulichtverteilung auf die Oberflächenstruktur geschlossen. Oft Fiberfaser mit reflektierend beschichtetem Kegel. Die Beugungsbilder sind im Bereich der Fresnelschen Beugung und daher nicht trivial. Es sind mehrer Modi möglich: B) Beleuchtung durch optische Fiber und Detektion der Reflexe A) Seitliche Beleuchtung und Detektion über Blende C) Durchstrahlung und Detektion mit Blende bzw. Detektion des zurückgestreuten Lichts 10.3 Röntgenmikroskopie Röntgenlicht kann wegen Brechzahl nahe bei 1 nur sehr schlecht gebrochen werden, daher kommen für Fokussierung entweder Spiegel unter flachem Einfallswinkel (wg. Totalreflexion) oder auf die Wellenlänge abgestimmte Fresnelsche Zonenplatten (siehe Grafik) zum Einsatz. Die Zonenplatten beugen das einfallende Röntgenlicht so, dass im Brennpunkt konstruktive Interferenz entsteht, daher werden die Ringe immer dünner und das Auflösungsvermögen ist dadurch begrenzt. rn = nd f λ, d f : Abstand zum Brennpunkt Seite 55 Colloquium 2004 bei Sahm Skript von A.Voßkühler Funktionsweise: Polychromatisches Röntgenlicht wird durch eine Kondensorzonenplatte mit ausgeblendetem Nulldurchgang mit einem im Brennpunkt der auf eine bestimmte Wellenlänge abgestimmten Linse stehendem Spalt monochromatisiert. Das im Spalt stehende Objekt wird dann über eine zweite Zonenplatte auf den Detektor abgebildet. Dabei ist die Schwärzung abhängig von der Dämpfung der Strahlung im Objekt. Durch die Hintereinanderanordnung von 100 kleinen Linsen ist für harte Röntgenstrahlung auch eine der Glaslinse entsprechende Brechung möglich geworden. (2001) 10.4 Elektronenmikroskop 1931 Ernst Ruska (kleine Metallgitter), 1986 den Physik-Nobelpreis mit Binnig und Rohrer RTM Bestandteile: - Elektronenkanone: (kV - 3 MV) - Elektronenlinsen (magnetisch, elektrostatisch). Brennweite regelbar. Deshalb enthält ein Elektronenmikroskop im Gegensatz zu einem Lichtmikroskop keine austauschbaren oder verschiebbaren Linsensysteme (Objektiv, Okular). - Vakuumsystem: (Kollision mit Luftmolekülen vermeiden) - Probenhalterung - Detektoren, die die Elektronen selbst oder sekundäre Signale registrieren. Betriebsarten Transmissionselektronenmikroskopie (TEM): ermöglicht direkte Abbildung der Probe. Die Elektronen durchstrahlen das Probenmaterial, das zu diesem Zweck entsprechend dünn sein muss. Je nach Ordnungszahl der Atome, aus denen die Probe besteht, der Höhe der Beschleunigungsspannung und der gewünschten Auflösung kann die sinnvolle Probendicke von wenigen Nanometern bis zu einigen Mikrometern reichen. Durch eine Änderung des Projektiv- Linsensystems kann anstatt des Zwischenbildes auch die Fokusebene der Objektiv-Linse vergrößert abgebildet werden. Man erhält so ein Elektronenbeugungsbild mit dessen Hilfe sich die Kristallstruktur der Probe bestimmen läßt. Energie gefilterten Transmissionselektronenmikroskopie (EFTEM) wird die durch den Probendurchgang geänderte Bewegungsenergie der Elektronen ausgenützt, um chemische Aussagen über die Probe, etwa die Verteilung der Elemente, treffen zu können. Seite 56 Colloquium 2004 bei Sahm Skript von A.Voßkühler Rasterelektronenmikroskopie (REM): rasterweises Durchleuchten der Probe nach Fokussierung durch Kondensor- System, Detektion der durchtretenden Elektronen Sekundärelektronenmikroskopie (SEM) rasterweises Durchleuchten der Probe nach Fokussierung durch Kondensor- System, Detektion der austretenden (reflektierten) Elektronen Besonderheiten - Probenmaterial muss extrem dünn sein, um Durchstrahlung zu ermöglichen, Bsp. elektrolytisches Polieren (am Lochfrass schicht sehr dünn) - Nichtleitende Proben müssen zur Verhinderung einer elektrostatischen Aufladung mit einer elektrisch leitenden Schicht überzogen werden - Proben im Vakuum (kein lebendes Material) - aufwändige Vorbereitung der Proben kann zu Artefakten führen - Materialeigenschaften können durch die Nähe der Oberflächen von denen kompakter Proben abweichen - Problem: Schädigung der Proben durch den Elektronenstrahl, beispielsweise durch Erwärmung oder Wegstoßen ganzer Atome nach Kollision mit den schnellen Elektronen Elektronenlinsen radiale elektrische und magnetische Felder bewirken über Lorentzkräfte eine Ablenkung der Elektronen zur Achse hin (z.T. gedreht) elektrostatische Linse magnetische Linse elektrostatische Linse innen: Bündelung, außen: Zerstreuung, aber insgesamt Bündelung, da Elektronen innen langsamer, bei entgegengerichteter Polung genau andersherum aber auch Bündelung, da außen langsamer. Vorteil: Elektronengeschwindigkeit vorher nachher bleibt gleich, Nachteil: Nur Sammellinsen möglich. magnetische Linse Spiralbewegung führt zur Bündelung. Umsetzung als Spule oder Spule mit Eisenpanzer. Problem: Bild wird gedreht. Vorteil: Brennweite durch Strom regelbar, im Vakuum keine mechanische Regelung nötig. Bildfehler wie bei optischen Linsen (Öffnungsfehler, Farbfehler, Beugungsfehler) 10.5 Rastertunnelmikroskop (RTM/STM) 1981 Gerd Binnig Heinrich Rohrer IBM Zürich, Nobelpreis 1986 Bei diesem indirekten Abbildungsverfahren wird eine elektrisch leitende Spitze in einem Raster über das Untersuchungsobjekt gefahren. Sowohl Nadel als auch Objekt sind von Elektronenwolken umgeben. Der Abstand zwischen dem Objekt und der Spitze wird nun so gering gehalten, dass die Elektronen zwischen der Spitze und der Nadel ausgetauscht werden (Tunneleffekt im Vakuum). Unter Spannung fließt ein Tunnelstrom, der stark vom Abstand der Nadel zum Objekt abhängt. Zwei Betriebsarten: constant-height-method (CHM, die absolute Höhe der Spitze wird nicht verändert) constant current method (CCM, der Tunnelstrom wird konstant gehalten, die Spitze über Piezoröhrchen gesteuert, Steuerung der Piezos über Tunnelstrom) Seite 57 Colloquium 2004 bei Sahm Skript von A.Voßkühler weitere Anwendung: gezielte Veränderung eines Objektes durch lösen oder „ankleben“ von Atomen durch kurzzeitige Spannungen an der Nadelspitze Besonderheiten: - Problem: Aufsetzen der Spitze bei CHM, oder Entfernung zu groß - Abstand der Nadel zur Oberfläche wenige Atomdurchmesser -> ausgeklügelte Schwingungsdämpfung erforderlich. - Ändert sich der Abstand um ein zehntel Nanometer, so ändert sich der Tunnelstrom typischerweise um den Faktor Zehn - nur leitende Proben untersuchbar - Fremdatome führen zu anderer Austrittarbeit und damit zu falschen „Bergen“ 10.6 Rasterkraftmikroskop (RKM/AFM) 1986 Binnig, Quate und Gerber Mikroskop zur mechanischen Abtastung von Oberflächen auf der Nanometerskala. Dabei wird eine an einer Blattfeder befestigte Nadel (Cantilever) zeilenweise über die Oberfläche geführt. Durch die Struktur der Oberfläche wird dabei die Blattfeder verbogen. Die Auslenkung kann mit kapazitiven oder typischerweise optischen Sensoren gemessen werden. Ein Abtastlaserstrahl fällt auf den Cantilever und wird zu einem Photodetektor reflektiert. Zur exakten Bewegung der Nadel über die Probe dienen Piezostellelemente Betriebsmodi: - Kontakt Modus: Die Abtastnadel ist in direktem Kontakt mit der Probenoberfläche. Da das Pauli-Prinzip ein Überlappen der Atomorbitale in der Spitze und der Probenoberfläche verbietet, entstehen starke abstoßende Kräfte. - Nicht Kontakt Modus: Die Blattfeder, an der die Abtastnadel befestigt ist, wird zu Schwingungen angeregt und "schwebt" über der Probenoberfläche. Im Vakuum wirken zwischen Nadel und Probe nur anziehende Van-der-Waals-Kräfte. In Flüssigkeiten komplexer. - MFM (magnetic force microscopy) zur Untersuchung der lokalen Magnetstärke in der Probe ist die Abtastnadel ferromagnetisch beschichtet. Messung in zwei Durchläufen: erst Höhenprofil, dann Ablenkung durch lokale Feldstärke bei konstantem Abstand. - LFM oder FFM (lateral bzw. friction force measurement): Während des Abrasterns der Oberfläche wird das Verkippungssignal des Cantilevers aufgezeichnet. Abhängig von der Reibung zwischen Abtastnadel und Oberfläche verkippt der Cantilever unterschiedlich stark. Dadurch können Gebiete unterschiedlicher Reibung unterschieden werden und somit Aussagen über die Materialzusammensetzung in der Probenoberfläche getroffen werden. - Kraft-Abstands Kurven: Hier wird das Mikroskop benutzt um die Probe an einer Stelle zu untersuchen. Der Cantilever wird dabei einmal abgesenkt, mit definierter Kraft aufgedrückt und wieder von der Probe entfernt, dabei wird die auf die Messnadel wirkende Kraft gemessen. Rückschlüsse auf Adhäsionskräfte oder Aufbau von Molekülen (Entfaltung von Ziehharmonikamolekülen) Besonderheiten: - empfindlich gegenüber Vibrationen (passive oder aktive Dämpfung nötig) - Cantilever empfindlich gegenüber Direktschall (Schallschutzbox, Vakuum) - Interferenzerscheinungen bei stark reflektierenden Proben Seite 58 Colloquium 2004 bei Sahm 10.7 Skript von A.Voßkühler Fragen λ ≈ 0,5λ NA Numerische Apertur NA = n ⋅ sin α wobei n : Brechzahl der Immersionsflüssigkeit und α : Öffnungswinkel zum Objekt. Was wird beim Elektronenmikroskop detektiert ? Die Ladungsdichte des Objekts, da die Elektronen mit den Ladungen wechselwirken. Wie dünn muss das Material dann sein ? So, dass im Schnitt ein Elektron nur mit einem Atom wechselwirkt, da sonst Verzerrung auftritt. Wieso erreichte man am Anfang mit der Elektronenmikroskopie noch nicht so hohe Auflösungen wie die kleine de- Broglie Wellenlänge verspricht ? Der Öffnungswinkel war durch die Elektronenlinsen nicht so groß wie das bei der optischen Mikroskopie möglich war. Wie ist beim Rastertunnelmikroskop der Zusammenhang zwischen Tunnelstrom und Probenabstand ? siehe rechts. Was ist der piezoelektrische Effekt ? Wovon hängt das Auflösungsvermögen beim Mikroskop ab ? ∆xmin = 0, 61 Die Verformung piezokeramischer Stoffe unter einer äußeren Spannung bzw. das Auftreten einer Spannung unter Verformung. Es gibt den transversalen und den longitudinalen Piezoeffekt. Ausschlaggebend ist der polare Charakter der Moleküle durch deren Verformung sich die Ladungsschwerpunkte verschieben. Beispiel Quarz (SiliziumOxid) Wie unterscheidet man bei der Rastertunnelmikroskopie verschiedene Materialien ? Das Problem ist, dass der Tunnelstrom materialabhängig ist wegen der verschiedenen Austrittsarbeiten. Man verändert an einer Stelle gezielt den Abstand, die Steigung der Strom/Abstand Grafik ist materialspezifisch. (Besseres Verfahren: aufmodulieren einer Schwingung) In welcher Größenordnung liegt der Tunnelstrom in etwa ? Picoampère Was ist die Einschränkung der Rastertunnelmikroskopie ? Beschränkung auf leitfähige Materialien. Wie wird beim Rasterkraftmikroskop die Auslenkung des Cantilevers gemessen ? Ein Laser wird auf dem Arm des Cantilevers reflektiert und trifft auf eine 4-Feld Fläche. Der Laser wird so gesteuert, dass er immer die Mitte trifft, die Steuerungskorrektur entspricht dann der Bewegung des Cantilevers. Welche Moden kennen sie beim RKM ? Kontaktmodus wie eben beschrieben und Tappingmodus, bei dem sich die Resonanzfrequenz des Cantilevers durch Veränderung der Dämpfung bei Annäherung ändert. Seite 59 Colloquium 2004 bei Sahm Skript von A.Voßkühler Wenn die Spitze aufsetzt hat man ein Problem, da sich die Atome der Spitze umgruppieren können. Was verstehen sie unter aufsetzen ? Annährung auf Einflussbereich der van der Waals Kräfte (Lenard-Jones Potential links ∼ 10−12 , rechts ∼ 106 ) Was ist der Vorteil von RKM gegenüber RTM ? man kann auch nichtleitende Materialien bzw. wässrige, biologische Proben untersuchen. Bei der SNOM, wie dicht geht man da an die Oberfläche ? 50-100nm Ab wann spricht man vom optischen Nahfeld, also Fresnelbeugung ? Wenn der Abstand in den Bereich der Wellenlänge kommt. Wieso kann man im Nahfeld so hoch auflösen ? Hier gilt nicht mehr die Formel für das λ . Auflösungsvermögen g = NA Bei so kleinen Öffnungen des Lichtleiters im Bereich der Wellenlänge tritt doch Totalreflexion auf, wieso treten dann trotzdem Photonen aus ? Das durchtretende Licht kommt von einer evaneszenten Welle die quer zur Austrittsrichtung liegt. Seite 60 Colloquium 2004 bei Sahm 11 Skript von A.Voßkühler Termin 27.01.2005: Radioaktivität kommt von (lat. radiare, strahlen) Unter Radioaktivität oder Radioaktivem Zerfall versteht man die spontane Umwandlung instabiler Atomkerne unter Energieabgabe. Die freiwerdende Energie wird in Form ionisierender Strahlung abgegeben. Bei der Kernumwandlung kann sich die Kernladungszahl ändern, oder nur die Massenzahl. Daneben gibt es Übergänge, bei denen sich nur der Anregungszustand des Kerns ändert (Übergang zwischen verschiedenen Isomeren des selben Isotops). Die Stärke der Radioaktivität wird durch den physikalischen Begriff der „Aktivität” beschrieben und in der Einheit Becquerel angegeben. Radioaktiver Zerfall ist kein deterministischer Prozess. Der Zerfallszeitpunkt ist absolut zufällig. Allerdings ist für jedes Nuklid die Zerfallswahrscheinlichkeit ein fester Wert, der durch die Halbwertszeit angegeben wird. (ns bis Milliarden Jahre). Ein Atomkern ist dann stabil und kann nicht weiter von sich aus zerfallen, wenn es keinen radioaktiven Zerfall gibt, der zu einem energetisch niedrigeren Zustand führt. Ab einer gewissen Zahl an Nukleonen werden alle Atomkerne instabil, weil die Kernkräfte sie nicht zusammen halten können. Unter Neutronbeschuss können stabile Atomkerne in andere Atomkerne umgewandelt werden, die instabil sind. Die Bindungsenergie, die die Nukleonen beieinander hält, ist bei Eisen am größten (BetheWeizäcker- Formel). Deshalb ist bei Kernen leichter als Eisen ein Energiegewinn nur durch Kernfusion, bei den schwereren Kernen nur durch Spaltung möglich. Seite 61 Colloquium 2004 bei Sahm Skript von A.Voßkühler Es gibt 5 Einflüsse auf die Bindungsenergie der Nukleonen im Kern, die in der Bethe Weizsäckerformel auftreten: Bindungsenergie= Volumen – Oberflächen – Coulomb – Asymmetrie +- Paarungs-Energie (N − Z )2 Z2 δ − c + cP δ = +1, 0, −1 für gg , gu, uu Kerne A 3 A A A A: Nukleonen Z: Protonen N: Neutronen Die Volumenenergie beschreibt die anziehenden Kernkräfte zwischen benachbarten Nukleonen (1), der um den Anteil der durch die Nukleonen an der Oberfläche des Kerns E = cV A − cO 3 A2 − cC verringert werden muss (Oberfläche ∼ 3 A2 ) (2). Die Coulombenergie beschreibt die Abstossung bei wachsender Protonenzahl Z, ist umgekehrt proportional zum Kernradius ( r ∼ 3 A ) und verringert die Bindungsenergie (3). Neutronen und Protonen können im gleichen Energiezustand existieren, nicht aber zwei Protonen (Pauli-Prinzip für Fermionen), so dass eine Gleichverteilung energetisch am günstigsten wäre (wenn man die Coulombabstoßung ignoriert) Der Überhang der einen oder anderen Sorte führt damit zum Asymmetrieenergieanteil, der bei großen Kernen weniger wichtig ist ( ∼ A−1 ) (4) Der Anteil der Paarungsenergie berücksichtigt die Spinabsättigung der gg Kerne (resultierender Spin ist null, also niedrigerer Energiezustand) und die Instabilität der uu Kerne (wegen resultierender Kernspins) (5) 11.1 Zerfallsmodi Im Atomkern wirken im Wesentlichen zwei Wechselwirkungen. Die Starke Wechselwirkung, auch „Kernkraft” genannt, bewirkt die Bindung der Protonen und Neutronen aneinander und die Elektromagnetische Wechselwirkung, welche eine gegenseitige Abstoßung der Protonen bewirkt. Welcher Zerfall bei welchem Element auftaucht kann in der Nuklidkarte abgelesen werden: Seite 62 Colloquium 2004 bei Sahm Skript von A.Voßkühler schwarz: blau: rot: gelb: grün: 11.1.1 stabil β − Zerfall β + Zerfall oder K-Einfang α Zerfall Spontane Spaltung Alphazerfall Ist der Atomkern sehr schwer, enthält also viele Protonen und Neutronen, kommt es zum Alphazerfall. Die starke Wechselwirkung kann den Mutterkern dann nicht mehr zusammen halten, dabei wird die freiwerdende Energie in Form von Heliumkernen emittiert. Der Restkern, auch Rückstoßkern oder Tochterkern genannt, verringert bei diesem Vorgang seine Nukleonenzahl des Kerns um vier, und die Kernladungszahl um zwei. Die Strahlung hat in Luft eine Reichweite von wenigen Zentimetern, besitzt aber eine extrem schädliche biologische weil ionisierende Wirkung. 11.1.2 Betazerfall p → n + e+ + ν β + Zerfall n → p + e− + ν β − Zerfall p + e− → n + ν K - Einfang Wenn ein ungünstiges Verhältnis von Neutronen zu Protonen besteht, tritt normalerweise Betazerfall ein. Dabei wird ein Neutron des Kerns in ein Proton umgewandelt und ein hochenergetisches Elektron, sowie ein Elektron-Antineutrino emittiert. Die Nukleonenzahl des Kerns ändert sich dabei nicht, seine Ordnungszahl erhöht sich um eins. Durch einige Meter Luft oder eine dünne Metallschicht lässt sich die β-Strahlung abschirmen. Beim β + -Zerfall wird ein Proton des Kerns in ein Neutron umgewandelt und ein hochenergetisches Positron, sowie ein Elektron-Neutrino emittiert. Die Nukleonenzahl des Kerns ändert sich dabei nicht, seine Ordnungszahl verringert sich um eins. 11.1.3 Gammazerfall Ein γ-Zerfall ist möglich, wenn der Atomkern in energetisch angeregten Zustand vorliegt. Die unterschiedlichen Anregungszustände des selben Nuklids nennt man Isomere. Der Übergang in energetisch niedrigere Isomere kann durch Emission hochfrequenter Elektromagnetischer Strahlung erfolgen und wird als γ-Zerfall bezeichnet. Je nach Energie kann die γ-Strahlung dicke Bleiplatten durchdringen. Seite 63 Colloquium 2004 bei Sahm 11.1.4 Skript von A.Voßkühler Elektroneneinfang Eine andere Möglichkeit zur Umwandlung eines Protons in ein Neutron besteht darin, ein Elektron aus der Atomhülle in den Kern „zu ziehen”, dem sogenannten Elektroneneinfang (KEinfang). Das Proton des Kerns wird in ein Neutron umgewandelt und ein Elektronneutrino emittiert. Bei diesem Umwandlungsmechansimus ist der Kern den selben Änderungen unterworfen wie beim β + -Zerfall, die Nukleonenzahl bleibt unverändert, die Ordnungszahl verringert sich um eins. Der Elektroneneinfang konkurriert daher mit dem β + -Zerfall, und wird auch als eine Variante des Betazerfalls angesehen. Da das eingefangene Elektron meist aus der innersten Elektronenschale stammt, wird in dieser ein Platz frei und Elektronen aus den äußeren Schalen rücken nach, wobei charakteristische Röntgenstrahlung emittiert wird. 11.1.5 Innere Konversion Die freiwerdende Energie beim Übergang eines Atomkerns in ein energetisch niedrigeres Isomer kann auch an ein Elektron der Atomhülle abgegeben werden. Diesen Vorgang nennt man Innere Konversion. Konversionselektronen sind im Gegensatz zu β-Teilchen monoenergetisch. 11.1.6 Spontane Nukleonenemission Bei instabilen Kernen kann es zu Spontaner Nukleonenemission also Protonenemission oder Neutronenemission kommen. Instabile Kerne können sich auch durch direkte Emission einzelner Neutronen oder Protonen in energetisch günstigere Kerne umwandeln. Atomkerne mit sehr hohem Protonenüberschuss können ein Proton abstoßen. Und Atomkerne mit hohem Neutronenüberschuss können aufgrund der schwachen Wechselwirkung Neutronen abstoßen. 11.1.7 Weitere Die spontane Kernspaltung ist ein weiterer radioaktiver Umwandlungsprozess der bei instabilen Kernen auftritt. Der Atomkern zerfällt in zwei oder mehrere Bruchstücke. Beispielsweise: 252Cf -> 142Ba + 106Mo + 4 1n Clusterzerfall: Statt einzelner Nukleonen oder Heliumkerne werden in sehr seltenen Fällen auch ganze Atomkerne anderer Nukleonenzahl emittiert. Zwei-Protonen-Zerfall: Bei extremem Protonenüberschuss (wie bei zum Beispiel Eisen-45) kann der Zwei-Protonen-Zerfall auftreten, bei dem sogar 2 Protonen gleichzeitig abgestrahlt werden. 11.2 Geschichte 1896 entdeckte Antoine Henri Becquerel, dass Uran enthaltende Stoffe eine Strahlung aussenden. Diese vermag es, undurchsichtige Stoffe zu durchdringen. Dies stellte er fest, als er in Papier gehüllte fotografische Platten geschwärzt wieder vorfand. (Pechblende) . Die wesentlich beteiligten Personen, die auf dem Gebiet der weiteren Aufklärung der natürlichen Radioaktivität forschten, waren Marie Curie, Pierre Curie und Ernest Rutherford (erst Neuseeland dann Kanada) 11.3 Strahlenbelastung und biologische Wirkung Die Strahlenbelastung für Lebewesen wird als effektive Dosis mit der Einheit Sievert gemessen. Dabei wird die unterschiedliche Schädlichkeit von α-,β- und γ-Strahlen sowie die unterschiedliche Empfindlichkeit einzelner Gewebe berücksichtigt. Jeder Mensch ist natürlicher Strahlenbelastung ausgesetzt. Ursache ist etwa zur Hälfte Radon und seine Zerfallsprodukte, das in Gestein und Mauerwerk vorkommt. Wichtige andere natürliche Strahlenquellen sind Kalium-40, Kosmische Strahlung und terrestrische Strahlung. In Deutschland beträgt die natürliche Strahlenbelastung etwa 2,4 mSv pro Jahr. Die künstliche Strahlenbelastung von im Durchschnitt 1,5 mSv im Jahr stammt fast ausschließlich aus der Medizin. Seite 64 Colloquium 2004 bei Sahm Skript von A.Voßkühler Alle Formen der Radioaktivität können für Lebewesen gesundheitsschädlich sein. Die Kurzzeitfolge einer zu hohen Dosis Radioaktivität wird Strahlenkrankheit genannt. Sie äußert sich durch ein geschwächtes Immunsystem und Verbrennungen. Die Strahlenkrankheit tritt etwa ab einer kurzfristigen Belastung von 0,25 Sv auf. 4 Sv sind in der Regel tödlich. Die Langzeitfolgen der Radioaktivität sind Mutationen am Erbgut und Krebs. 11.4 Medizinische Anwendung In der Nuklearmedizin findet man primär die Szintigraphie. Hierbei wird eine geringe Menge eines radioaktiven Stoffes in den Körper injiziert (meist γ-Strahler). Dieser strahlt dann aus dem Körper heraus, was eine Untersuchung ermöglicht. Die Strahlen werden von einem µ-Detektor aufgefangen und mittels eines Computertomographen bildlich dargestellt. Dabei kann aus mehreren abgetasteten zweidimensionalen Bildern auch ein dreidimensionales Bild errechnet werden. Für jedes Organ gibt es spezielle radioaktive Verbindungen. So injiziert man zum Beispiel radioaktives Iod, das sich in der Schilddrüse anlagert, um sie untersuchen zu können. (Aufgrund der Strahlenbelastung wird diese Methode nur noch zur Tumorbekämpfung angewandt). Mittels moderner Technik ist es sogar möglich Krebszellen zu bekämpfen. Hierfür wird Bor in den Körper injiziert, das sich an den schnell wachsenden Tumoren anlagert, und dann mit Neutronen beschossen. Dadurch wird das Bor radioaktiv und zerstört die Krebszellen, an die es sich angelagert hatte. Weiterhin gibt es die externe Strahlenbehandlung, bei der mit Techniken der Telecurie- oder Telegammatherapie die Tumore im Körperinneren bestrahlt werden. Ein weiteres Einsatzfeld ist die Radionuklidbehandlung zur Schmerzlinderung bei Knochenmetastasen. Hier wird in krankhaften Knochenbereichen der Metastase ein Radionuklid angereichert, was eine schmerzlindernde Wirkung hat. Jedoch haben diese Methoden auch ein gewisses Risiko, da teilweise auch gesundes Gewebe zerstört wird, was zu einer Immunschwächung oder Funktionsstörung des Knochenmarkes führen kann. 11.5 Fragen Was ist der Massendefekt ? Die Differenz von der Summe der Einzelmassen der Nukleonen und der Masse des zusammengefügten Kerns entspricht einer Energie nach ∆E = ∆mc 2 . Er ist bei Helium besonders groß (ca. 28 MeV) Wie kann man Isotope unterscheiden ? Mit einem Massenspektrometer (1910). Ionisierte Atome werden im elektrischen Feld je nach kinetischer Energie (Lorentz F = Z ⋅ E ) und anschließend im magnetischen Feld je nach ihrem Impuls (Lorentz F = Z ⋅ v ×B ) verschieden stark abgelenkt. Da Energie und Impuls unterschiedlich von Masse und Geschwindigkeit abhängen, werden die Massen getrennt. Wie haben die Curies die Alphastrahlung vermessen ? Mit Kondensatoren. Seite 65 Colloquium 2004 bei Sahm Skript von A.Voßkühler Was hat Rutherford entdeckt beim Experimentieren mit Alphateilchen ? Bei Streuversuchen von Alphateilchen an Atomkernen kam der allergrößte Teil durch die Probe hindurch (das Atom ist quasi leer bis auf winzigen Kern) Detektion über Zählen von Szintillationen mit Lupe. 1 . (Rutherfordstreuformel) Heutzutage Die Zählrate ist näherungsweise proportional zu sin 4 θ weiß man, dass Abweichungen von der reinen Coulombwechselwirkung im Bereich für größere Winkel wichtig werden, Kernkräfte werden relevant für direkte Stöße, da sich die Wechselwirkungsbereiche überlappen. Was muss man bei Detektion mit Photomaterial beachten ? Dass das fotoempfindliche Material linear arbeitet. Was wollte Rutherford mit seinem Versuch ? Das Atommodell überprüfen, bei dem die Ladungen gleichmäßig über den Atomdurchmesser verteilt sind. Wie misst man die Energie der Alphateilchen, wie weiß man überhaupt, dass es solche sind ? ! v2 Über die Lorentzkraft bei Ablenkung im Magnetfeld: FL = qvB = m = FZentripetal ⇒ v ⇒ Ekin und r Ablenkung im elektrischen Feld hinterher (Wiensches Geschwindigkeitsfilter) Daraus ergibt sich q . m q Ist für Alphateilchen und Deuterium gleich ? Nein, wegen des Massendefekts. m Was hat die höhere Bindungsenergie ? Helium (~7MeV/Nukleon) Wie ist die Energieverteilung der Alphateilchen ? Abhängig von den Energiespektren der Alphaquellen. Oft verbunden mit Gammastrahlung der isomeren Übergänge. Seite 66