Arch. Geflügelk. 1993, 57 (2), 89- 91, ISSN 0003-9098. © Verlag Eugen Ulmer GmbH & Co. , Stuttgart Animal model for RNA virus induced tu mors: RSV induced tu mors in congenic chicken lines * Tiermodell für RNA Virus induzierte Tumoren: RSV induzierte Tumoren in kongenen Hühnerlinien K. Hala Manuskript eingegangen am 1. Juli 1992 Both R A and D A viruses are able to transform animal and human cells and to induce tumors. As a counter part for RNA induced human diseases, the Raus sarcoma virus (RSV) with its different types of altered proviruses and inbred chickens as a model animal are used (PLACHY et al. 1979, HALA et al. 1981, PLACHY 1984). Two levels of genetic resistance to the tumors induced by RSV in chickens have been found. The first level is the resistance of the chicken cells to infection by the virus, which is determined by a series of recessive loci. This "first defence line" is nearly absolute without any relationship to the major histocompatibility complex (MHC). The second level of genetic resistance is associated with MHC. Also non-MHC genes and other factors (e.g. age of the hast) can influence the fate of RSV-induced tumors (for rev. see COLLINS and ZsrGRAY, 1984). RSV transform fibroblasts in vitro and injected into appropriate chicken induce tumor. Depending on the strain of recipient inoculated, these tumors were found to either grow, or regress. Progession and regression, as weil as being influenced by a number of factors, are under the control of one or more genes associated with the MHC (COLLINS et al., 1977, ScHIERMAN et al., 1977, PLACHY et al., 1979). The mechanism of regression is immunological, dependent largely upon T-cell mediated immunity. The most appropriate candidate for the supposed gene is a MHC gene, regulating immune response. The chicken MHC is composed of at least three regions F, Land G, which code for the corresponding F, Land G antigens or antigenic complexes (PrNK et al., 1977). By analogy with the human and murine MHC, these three products, together with complement components, form four different dasses of MHC antigens. Class l - This dass is represented by the F antigen, which is present on the majority of somatic cells and on all peripheral blood lymphocytes (PBL) and erythrocytes. The * Vortragsveranstaltung aus Anlaß der Verabschiedung von Dr. W. Hartmann Institute for General and Experimental Pathology, Medical School, University of Innsbruck, Austria. Archi v für Geflügelkunde 2/ 1993 anti gen is composed of two polypeptide chains with molecular weights in the reduced form of 40- 43 kD and 11 - 12 kD. The polymorphic heavy chain is a membrane bound glycoprotein and is non covalently associated with the invariant smaller polypeptide - chicken ß2-microglobulin. Class II - The dass II antigen is named L, which was originally defined by biochemical methods and is composed of two non-covalently associated polypeptide chains corresponding to molecular weights of28 and 32 kD. B-L antigen expression is normally restricted to B lymphocytes, macrophages, dendritic cells and other antigen-presenting cells, activated T lymphocytes and glial cells. Class III - The third dass of the MHC antigens in other species are the complement components. In the chicken no such genetically defined complement components have yet been detected although there is the evidence from an association between the serum haemolytic complement level and the MHC. Class IV - The G antigen is so far unique to the chicken. Under reduced conditions the B-G antigen is monomer (approx. 40- 50 kD), under non-reducing conditions these molecules are covalently linked as homodimers or homotrimers. This antigen is not associated with any molecules resembling ß2-microglobulin and is present on red blood cells, thrombocytes and certain thymic cells (SALOMONSEN et al., 1991). Recent advances in molecular genetics of the chicken MHC have been reviewed elsewhere (Gu!LLEMOT et al., 1989). The most prominent feature of the chicken MHC is its compactness already suggested by a dassical genetic analysis and also manifested at the DNA level. This compactness is due to the dose proximity of dass 1 and dass II genes and to the fact that both contain very short introns. For our experiments with RSV-induced tumors, chickens of the two inbred lines, CB (MHC haplotype ß1 2/ß12) and CC (ß4/ß4), homozygous for transplantation and erythrocyte antigens were used. Congenic CB and CC lines differ from each other not only at the B (name of chicken MHC) haplotype, but also in their ability to regress Raus sarcomas (PLACHY et al., 1979). The tumors induced BY Prague strain of RSV subgroup C are progressing in CC chickens, in majority of CB chickens the tumors are regressing. The tumor cells in regressing sarcomas were found to express dass II antigens, while tumor cells from progressing sarcomas were negative. This suggests that the induction of 90 HALA, Anima! model for RN A viru s induced tumors T able 1. Functional ana lys is of chicken MHC Ft1nktio11elle Analyse von Hiihner MHC Tiermodell für R N A Virus induzierte Tumoren: RS V induzierte Tumoren in kongenen H iihnerlinien. K. Hal a MHC regions B-G B-F/L Ad ju vant activity Regul ati on of immune response Cooperation of B-T cells Marek's disease resistance Reg ression of RS V-induced tumors C04 :CD 8 d ass II antigen expression has a role in the initiation o r perpetu ation of regression (PowELL et al„ 19S7). The gene/s regulating regressio n o fRSV-induced tumors are fo und in MHC, and by the help o f recombinants within this complex, this gene was localized in B-L/F region (H ALA et al., 19SO). lt has to be analysed by means of molecular biology method s, w hich gene from the whole set of MHC genes is reg ulating the regression . T o understand mo re abo ut rhe mechanism of regression , we have ana lysed the subsets of PBL by the help o f monoclonal antibodies to CD4 and CDS antigens. Recent studies show that th e expression of these antigens is dosely correlated with the functi onal as pects of these cells and their ability to bind with cells that express either d ass 1 (PBL CDS+) or II (PBL CD4 +) MHC antigens specificity. Immunofl uorescence analysis by flow cytometry of PBL revealed differences in the frequency of CD4 + and CDS + cells between CB on one hand and CC on the other. The CD4 antigen was expressed on about 40% of PBL from CB and (CB x CC) F 1 animals, but fewer CD4 + cells (less than 30%) were found in CC chickens. With CDS-specific antibodies, opposite results were obta ined. Thus, the differences among the lines with regards to the ratio CD4: CDS are also significant (HALA et al. , 1991). From these results and fro m the an alysis of MHC recombinants (CB. R 1 and CC.R 1), the condusion was drawn that the level of CD4 + and CDS + and the ratio CD4: CDS are und er genetic control of the B-F/L reg ion of the chicken MHC. In anot her experiments, we found no statistically significant influence of regression or prog ression of RSV-induced tumors on the percentage of peripheral T cells and on the interleukin-2 produktion in vitro (H ALA et al., 1992). In summary, the recent rapid grow th o f chicken immunogenetics came after inbred lines and congenic lines were developed, reco mbinants identified, and the serology and biochemistry of histocompati bility antigens linked with in vivo meas ured traits, such as rejection of grafts, immune reaction to fo reig n antigens or resistance to disease (see tab. 1). In our contribution the ability of the recipient chickens with different MHC haploty pes to reg ulate the growth of RSV-induced tumors was discussed. Summary In chicken s from congenic inbred lines CB and CC that differ in the majo r histocompatibilit y complex, we o bserved significantly different CD4 + :CDS + ratio in peripheral blood lymphocytes. In CB chickens this ratio was about 3 and in CC chickens 1.5. They also differ in their response to R ous sarcom a virus induced tumors . In CB line these tumors are regressing, in CC line the tumors are progressing. Zusammenfassung In Hühnern der kongenen Inzuchtlinien CB und CC, welche sich im Haupthisto kompatibilitäts Komplex unterscheiden, konnten wir einen sign ifikanten Unterschied im Verhältnis von CD4 +:CD S+ in peripheren Blutlymphozyten beo bachten. In CB Hühnern lag dieses Verhältnis etwa bei 3 und bei CC Hühnern bei 1.5. Sie unterscheiden sich auch bezüglich ihrer Antwo rt auf durch Rou s Sarkom Viren induzierte Tumoren. In der CB Linie zeigten sich diese Tumoren regressiv , wä hrend sie in der CC Linie durchweg progressiv waren. S tich11Jörter Legehenne, Inzucht, Linie, Blutlymphozyten , Tumoren Ackno11Jledgetnent This work was supported by a grant from the Austrian Ministr y of Science and Research . R eferences COLLINS, W. M., W. E. BRILES, R. M . ZsrGRAY, W. R. D uNLOP, A . C. CoRBETT, K. K. CLARK, J . L. MARKS and T. P. McGRAIL, 1977 : The B locu s (MHC) in the chicken: association with the fa te of RSV-induced tumors . Immunogenetics, 5, 533- 543. COLLINS, W. M. and R. M. ZsrGRAY, 19S4: Genetics of th e response to Ro us sarcoma virus-induced tumors in chickens. A nim. Blood Groups Bi ochem . Genet„ 15, 159- 171 . GurLLEMOT, F„ J. F. KAUFMAN, K. SKJODT an d C. AuFFRAY, 19S9: The maj or histocompatibility complex in the chicken. Trend s Genet„ 5, 300- 304. HALA, K., J. P LACHY and V. BEN DA, 19SO : Localizatio n of the gene responsible for Rous sarcoma regression in the F region o f the MHC of chickens. 4th. Int. Congr. of Immunol. , Paris, A bstr. 9.1.04. H ALA, K„ R. BOYD and G . WrcK, 19Sl : Chicken major histocompati bility .complex and disease. Scand . J . Immuno l. 14, 607 - 616. H ALA,K„ O.VAINIO, J.PLACHY and G.BöcK , 1991: Chicken major histocompatibility complex congenic lines differ in the percentages of lymphocytes bearing CD4 and CDS antigens. Anima! Genetics, 22, 279 - 2S4. H ALA, K„ G. BöcK, R. ScoNc, J. Sc HULMANNOvA , C. H. TEMPELIS, 0. VAINIO and G. KEMMLER, 1992: Frequency of chicken CD4 + and CDS+ cells. Genetic control and effect of Rous sarcoma virus infection . Scand. J. Immunol., 30, 237 - 245 . PrNK, ]. R. L„ W. DROEGE, K. H ALA, V. C. MrGGIANO, and A. ZrEGLER, 1977: A three-locus model for the chicken major histocompatibility complex. Immunogenetics, 5, 203-216. PLACHY, J „ K. HALA, and V. BENDA, 1979: Regression of tumours induced by Rous sarcoma vi ru s in different inbred lines of chicknes. Folia Bio l. (Praha), 25, 33 5- 336. PLACHY , )., 19S4: Hierarchy of the B (M H C) haplotypes controlling resisrance to Rous sarcomas in a model of inbred lines of chickens. Folia Bio l. (Praha), 30, 412- 425. PowELL, P. C. , K. H ALA, and G . WrcK, 19S7: Aberrant expression of la- like antigens on tumour cells of regressing but not progressing Ro us sarcomas. Europ. J. lmmunol. , 17, 723 - 726. Archi v für G eflügelkunde 2/1 993 ROTH et al., Mastleistung männlicher Broiler bei unterschiedlichem Energiehaushalt SALOMONSEN, J., D. DuNON, K. SKJODT, D. THORPE, 0. V AINIO, and J . KAuFMAN, 1991: Chicken major histocompatibility complex-encoded B-G antigens are found on many cell types that are important for the immune system. Proc. N atl. Acad. Sei., 88, 1359- 1363. SCHIERMAN, L. w„ D. H . WATANABE, and R. A. McBRIDE, 1977: Genetic control of Rous sarcoma regression in Arch . Geflügelk. 1993, 57 (2), 91-95 , JSS1 0003-9098. © Verlag Eugen 91 chickens: linkage with the major histocompatibilit y complex. lmmunogenetics, 5, 325 - 332. Ansch ri ft des Verfasse rs: Dr. K. Hala, Institut für Allgemeine und Ex pcrimcmcll c Path o log ie der Uni ve rsität Innsbruck , Fritz-Pregl-St r. 7, A-6020 Innsbruck lmer GmbH & Co„ Stuttgart Mastleistung männlicher Broiler bei unterschiedlichem Energiegehalt und Energie/Protein-Verhältnis des Futters in der verlängerten Mast Performance of male broilers fed with different energy content and protein energy ratio in the diet during the prolonged finishe_r phase F. X. Roth , M. Kirchgessner und W. Windisch Manuskript eingegangen am 1. Juni 1992 Einleitung Bisher liegen nur wenige Angaben zum ährstoffbedarf moderner schwerer Broilerherkünfte bei Verlängerung der konventionellen Broilerkurzmast vor. Neuere hierzu durchgeführte exakte Stoffwechselexpe rimente empfehlen für die verlängerte Mast ein Rohprotein /Energie-Verhält nis der Ration von 16 g/MJ ME (MAURUS et al„ 1987, 1988a, b, c; KIRCHGESSNER et al., 1989; ROTH et al„ 1989; Rrsn c et al., 1990), was deutlich unter den in der Broilerkurzmast empfohlenen Werten liegt (18 g MJ ME; VOGT, 1990). Da die Wachstumsintens ität der Tiere am Ende der praxisüblichen Broilerkurzmast ihr Maximum normalerweise überschritten hat, dürfte für die verlängerte Mast auch im Energiegehalt des Futters eine Redu zierung mög lich sein. In den genannten Stoffwechselexpe rimenten wurden die Tiere allerdings restriktiv gefüttert, so daß die für Geflügel typische Anpassung des Futterverzehrs an den Energiegehalt der Diät nicht mit berücksichtigt werden konnte. Es sollte deshalb untersucht werden, wie sich bei ad libitum Fütterung im Anschluß an eine kon ventionelle Broilerkurzmast eine Verringerung der Energiekonzentr ation des Futters bei einem Protein/ Energie-Verhältn is um 16 g/MJ ME auf die Mastleistung in der verlängerten Broilermast auswirkt. Material und Methoden 360 männliche Eintagsküken der Herkunft Lohmann (Cuxhaven) mit einer mittleren Lebendmasse von 43 ± 0,4 g Institut für E rnährungsphysiolo gie der Technischen Universität München-Weihens tephan, W-8050 Freising 12 Archi v für Geflügelkunde 2/ 1993 wurden in zwei dreietagigen Mastbatterien mit insgesamt 36 Käfigen (je 10 Tiere, 80 x 80 cm) aufgestallt. Die Beleuchtungsdauer betrug durchgehend 20 h/d und die Luftfeuchtigkeit 55 % - 60%. Die Stalltemperatur w urde von anfänglich 32 °C kontinuierlich bis auf 21 °C zu Versuchsende verringert. Den Tieren stand ein pelletiertes Alleinfutter und Wasse r ad libitum zur Verfü gung. In den ersten 42 T agen der Mast erhielten die Tiere einheitlich ein Futter mit 12,5 MJ ME/ kg und einem Protein/Energie-Ver hältnis von 18,0 g/MJ ME (T abelle 1, Variante 1). A nschließend wurden jeweils sechs Käfige einer von sechs Diäten zugeordnet, die sich in der E nerg ied ichte (zwei Stufen) und im Rohprotein/ Energie-Verhältn is (drei Stufen) unterschieden (Tabelle 1). Die Modifizierung der Energiedichte des Futters erfolgte hauptsächlich durch Austausch einer Fettmischung gegen H aferschälk leie und die Variation im Eiweiß/ Energie-Verhältn is durch Austausch von Sojaextraktionssc hrot und Getreide gegen Maisquellstärke. A m 42 . Masttag sowie am Ende der drei nachfolgenden Wochen (T ag 49, 56 und 63) wurde die mittlere Lebendmasse und die Futteraufnahme der Tiere eines jeden Käfigs ermittelt und daraus die Zunahmen und die Futterverwertung (g Futterverzehr/g Zunahmen) berechnet . Die entsprechenden Ergebnisse sind in den nachfolgenden T abellen als Mittelwert der Behandlungsgrup pen zusammen mit der Standardabweich ung der Einzelwerte dargestellt. Zur statistischen A uswertung wurde ein kreuzklassifiziertes Modell mit den Faktoren Energiedichte (zwei Stufen), Eiweiß/Energie-V erhältnis (drei Stufen) und der entsprechenden Interaktion unterstellt und ein multipler Mittelwertvergleich durchgeführt (Fis her-Test). Signifikant verschiedene Mittelwerte (p < Q,05) sind durch unterschiedliche Hochbuchstaben gekennzeichnet.