RSV induced tu mors in congenic chicken lines

Werbung
Arch. Geflügelk. 1993, 57 (2), 89- 91, ISSN 0003-9098. © Verlag Eugen Ulmer GmbH & Co. , Stuttgart
Animal model for RNA virus induced tu mors:
RSV induced tu mors in congenic chicken lines *
Tiermodell für RNA Virus induzierte Tumoren: RSV induzierte Tumoren
in kongenen Hühnerlinien
K. Hala
Manuskript eingegangen am 1. Juli 1992
Both R A and D A viruses are able to transform animal
and human cells and to induce tumors. As a counter part
for RNA induced human diseases, the Raus sarcoma virus
(RSV) with its different types of altered proviruses and
inbred chickens as a model animal are used (PLACHY et al.
1979, HALA et al. 1981, PLACHY 1984).
Two levels of genetic resistance to the tumors induced
by RSV in chickens have been found. The first level is the
resistance of the chicken cells to infection by the virus,
which is determined by a series of recessive loci. This "first
defence line" is nearly absolute without any relationship to
the major histocompatibility complex (MHC). The second
level of genetic resistance is associated with MHC. Also
non-MHC genes and other factors (e.g. age of the hast) can
influence the fate of RSV-induced tumors (for rev. see
COLLINS and ZsrGRAY, 1984).
RSV transform fibroblasts in vitro and injected into
appropriate chicken induce tumor. Depending on the strain
of recipient inoculated, these tumors were found to either
grow, or regress. Progession and regression, as weil as being
influenced by a number of factors, are under the control of
one or more genes associated with the MHC (COLLINS et al.,
1977, ScHIERMAN et al., 1977, PLACHY et al., 1979). The
mechanism of regression is immunological, dependent largely upon T-cell mediated immunity. The most appropriate
candidate for the supposed gene is a MHC gene, regulating
immune response.
The chicken MHC is composed of at least three regions
F, Land G, which code for the corresponding F, Land G
antigens or antigenic complexes (PrNK et al., 1977). By
analogy with the human and murine MHC, these three
products, together with complement components, form four
different dasses of MHC antigens.
Class l - This dass is represented by the F antigen,
which is present on the majority of somatic cells and on all
peripheral blood lymphocytes (PBL) and erythrocytes. The
*
Vortragsveranstaltung aus Anlaß der Verabschiedung von
Dr. W. Hartmann
Institute for General and Experimental Pathology, Medical School,
University of Innsbruck, Austria.
Archi v für Geflügelkunde 2/ 1993
anti gen is composed of two polypeptide chains with molecular weights in the reduced form of 40- 43 kD and 11 - 12 kD.
The polymorphic heavy chain is a membrane bound glycoprotein and is non covalently associated with the invariant
smaller polypeptide - chicken ß2-microglobulin.
Class II - The dass II antigen is named L, which was
originally defined by biochemical methods and is composed
of two non-covalently associated polypeptide chains corresponding to molecular weights of28 and 32 kD. B-L antigen
expression is normally restricted to B lymphocytes, macrophages, dendritic cells and other antigen-presenting cells,
activated T lymphocytes and glial cells.
Class III - The third dass of the MHC antigens in other
species are the complement components. In the chicken no
such genetically defined complement components have yet
been detected although there is the evidence from an
association between the serum haemolytic complement level
and the MHC.
Class IV - The G antigen is so far unique to the chicken.
Under reduced conditions the B-G antigen is monomer
(approx. 40- 50 kD), under non-reducing conditions these
molecules are covalently linked as homodimers or homotrimers. This antigen is not associated with any molecules
resembling ß2-microglobulin and is present on red blood
cells, thrombocytes and certain thymic cells (SALOMONSEN
et al., 1991).
Recent advances in molecular genetics of the chicken
MHC have been reviewed elsewhere (Gu!LLEMOT et al.,
1989). The most prominent feature of the chicken MHC is
its compactness already suggested by a dassical genetic
analysis and also manifested at the DNA level. This compactness is due to the dose proximity of dass 1 and dass II
genes and to the fact that both contain very short introns.
For our experiments with RSV-induced tumors, chickens
of the two inbred lines, CB (MHC haplotype ß1 2/ß12) and
CC (ß4/ß4), homozygous for transplantation and erythrocyte
antigens were used. Congenic CB and CC lines differ from
each other not only at the B (name of chicken MHC)
haplotype, but also in their ability to regress Raus sarcomas
(PLACHY et al., 1979). The tumors induced BY Prague strain
of RSV subgroup C are progressing in CC chickens, in
majority of CB chickens the tumors are regressing. The
tumor cells in regressing sarcomas were found to express
dass II antigens, while tumor cells from progressing sarcomas were negative. This suggests that the induction of
90
HALA, Anima! model for RN A viru s induced tumors
T able 1. Functional ana lys is of chicken MHC
Ft1nktio11elle Analyse von Hiihner MHC
Tiermodell für R N A Virus induzierte Tumoren: RS V induzierte
Tumoren in kongenen H iihnerlinien.
K. Hal a
MHC regions
B-G
B-F/L
Ad ju vant activity
Regul ati on of immune response
Cooperation of B-T cells
Marek's disease resistance
Reg ression of RS V-induced tumors
C04 :CD 8
d ass II antigen expression has a role in the initiation o r
perpetu ation of regression (PowELL et al„ 19S7).
The gene/s regulating regressio n o fRSV-induced tumors
are fo und in MHC, and by the help o f recombinants within
this complex, this gene was localized in B-L/F region (H ALA
et al., 19SO). lt has to be analysed by means of molecular
biology method s, w hich gene from the whole set of MHC
genes is reg ulating the regression .
T o understand mo re abo ut rhe mechanism of regression ,
we have ana lysed the subsets of PBL by the help o f
monoclonal antibodies to CD4 and CDS antigens. Recent
studies show that th e expression of these antigens is dosely
correlated with the functi onal as pects of these cells and their
ability to bind with cells that express either d ass 1 (PBL
CDS+) or II (PBL CD4 +) MHC antigens specificity.
Immunofl uorescence analysis by flow cytometry of PBL
revealed differences in the frequency of CD4 + and CDS +
cells between CB on one hand and CC on the other. The
CD4 antigen was expressed on about 40% of PBL from CB
and (CB x CC) F 1 animals, but fewer CD4 + cells (less than
30%) were found in CC chickens. With CDS-specific
antibodies, opposite results were obta ined. Thus, the differences among the lines with regards to the ratio CD4: CDS
are also significant (HALA et al. , 1991). From these results
and fro m the an alysis of MHC recombinants (CB. R 1 and
CC.R 1), the condusion was drawn that the level of CD4 +
and CDS + and the ratio CD4: CDS are und er genetic control
of the B-F/L reg ion of the chicken MHC. In anot her
experiments, we found no statistically significant influence
of regression or prog ression of RSV-induced tumors on the
percentage of peripheral T cells and on the interleukin-2
produktion in vitro (H ALA et al., 1992).
In summary, the recent rapid grow th o f chicken immunogenetics came after inbred lines and congenic lines were
developed, reco mbinants identified, and the serology and
biochemistry of histocompati bility antigens linked with in
vivo meas ured traits, such as rejection of grafts, immune
reaction to fo reig n antigens or resistance to disease (see
tab. 1). In our contribution the ability of the recipient
chickens with different MHC haploty pes to reg ulate the
growth of RSV-induced tumors was discussed.
Summary
In chicken s from congenic inbred lines CB and CC that
differ in the majo r histocompatibilit y complex, we o bserved
significantly different CD4 + :CDS + ratio in peripheral
blood lymphocytes. In CB chickens this ratio was about 3
and in CC chickens 1.5. They also differ in their response
to R ous sarcom a virus induced tumors . In CB line these
tumors are regressing, in CC line the tumors are progressing.
Zusammenfassung
In Hühnern der kongenen Inzuchtlinien CB und CC, welche
sich im Haupthisto kompatibilitäts Komplex unterscheiden,
konnten wir einen sign ifikanten Unterschied im Verhältnis
von CD4 +:CD S+ in peripheren Blutlymphozyten beo bachten. In CB Hühnern lag dieses Verhältnis etwa bei 3 und
bei CC Hühnern bei 1.5. Sie unterscheiden sich auch
bezüglich ihrer Antwo rt auf durch Rou s Sarkom Viren
induzierte Tumoren. In der CB Linie zeigten sich diese
Tumoren regressiv , wä hrend sie in der CC Linie durchweg
progressiv waren.
S tich11Jörter
Legehenne, Inzucht, Linie, Blutlymphozyten , Tumoren
Ackno11Jledgetnent
This work was supported by a grant from the Austrian
Ministr y of Science and Research .
R eferences
COLLINS, W. M., W. E. BRILES, R. M . ZsrGRAY, W. R. D uNLOP, A . C. CoRBETT, K. K. CLARK, J . L. MARKS and T. P.
McGRAIL, 1977 : The B locu s (MHC) in the chicken:
association with the fa te of RSV-induced tumors . Immunogenetics, 5, 533- 543.
COLLINS, W. M. and R. M. ZsrGRAY, 19S4: Genetics of
th e response to Ro us sarcoma virus-induced tumors in
chickens. A nim. Blood Groups Bi ochem . Genet„ 15,
159- 171 .
GurLLEMOT, F„ J. F. KAUFMAN, K. SKJODT an d C. AuFFRAY, 19S9: The maj or histocompatibility complex in the
chicken. Trend s Genet„ 5, 300- 304.
HALA, K., J. P LACHY and V. BEN DA, 19SO : Localizatio n of
the gene responsible for Rous sarcoma regression in the
F region o f the MHC of chickens. 4th. Int. Congr. of
Immunol. , Paris, A bstr. 9.1.04.
H ALA, K„ R. BOYD and G . WrcK, 19Sl : Chicken major
histocompati bility .complex and disease. Scand . J . Immuno l. 14, 607 - 616.
H ALA,K„ O.VAINIO, J.PLACHY and G.BöcK , 1991:
Chicken major histocompatibility complex congenic lines
differ in the percentages of lymphocytes bearing CD4 and
CDS antigens. Anima! Genetics, 22, 279 - 2S4.
H ALA, K„ G. BöcK, R. ScoNc, J. Sc HULMANNOvA , C. H.
TEMPELIS, 0. VAINIO and G. KEMMLER, 1992: Frequency
of chicken CD4 + and CDS+ cells. Genetic control and
effect of Rous sarcoma virus infection . Scand. J. Immunol., 30, 237 - 245 .
PrNK, ]. R. L„ W. DROEGE, K. H ALA, V. C. MrGGIANO, and
A. ZrEGLER, 1977: A three-locus model for the chicken
major histocompatibility complex. Immunogenetics, 5,
203-216.
PLACHY, J „ K. HALA, and V. BENDA, 1979: Regression of
tumours induced by Rous sarcoma vi ru s in different
inbred lines of chicknes. Folia Bio l. (Praha), 25, 33 5- 336.
PLACHY , )., 19S4: Hierarchy of the B (M H C) haplotypes
controlling resisrance to Rous sarcomas in a model of
inbred lines of chickens. Folia Bio l. (Praha), 30, 412- 425.
PowELL, P. C. , K. H ALA, and G . WrcK, 19S7: Aberrant
expression of la- like antigens on tumour cells of regressing
but not progressing Ro us sarcomas. Europ. J. lmmunol. ,
17, 723 - 726.
Archi v für G eflügelkunde 2/1 993
ROTH
et al., Mastleistung männlicher Broiler bei unterschiedlichem Energiehaushalt
SALOMONSEN, J., D. DuNON, K. SKJODT, D. THORPE,
0. V AINIO, and J . KAuFMAN, 1991: Chicken major histocompatibility complex-encoded B-G antigens are found
on many cell types that are important for the immune
system. Proc. N atl. Acad. Sei., 88, 1359- 1363.
SCHIERMAN, L. w„ D. H . WATANABE, and R. A. McBRIDE,
1977: Genetic control of Rous sarcoma regression in
Arch . Geflügelk. 1993, 57 (2), 91-95 , JSS1 0003-9098.
©
Verlag Eugen
91
chickens: linkage with the major histocompatibilit y complex. lmmunogenetics, 5, 325 - 332.
Ansch ri ft des Verfasse rs: Dr. K. Hala, Institut für Allgemeine und Ex pcrimcmcll c
Path o log ie der Uni ve rsität Innsbruck , Fritz-Pregl-St r. 7, A-6020 Innsbruck
lmer GmbH & Co„ Stuttgart
Mastleistung männlicher Broiler bei unterschiedlichem Energiegehalt
und Energie/Protein-Verhältnis des Futters in der verlängerten Mast
Performance of male broilers fed with different energy content and protein energy ratio in the diet during
the prolonged finishe_r phase
F. X. Roth , M. Kirchgessner und W. Windisch
Manuskript eingegangen am 1. Juni 1992
Einleitung
Bisher liegen nur wenige Angaben zum ährstoffbedarf
moderner schwerer Broilerherkünfte bei Verlängerung der
konventionellen Broilerkurzmast vor. Neuere hierzu durchgeführte exakte Stoffwechselexpe rimente empfehlen für die
verlängerte Mast ein Rohprotein /Energie-Verhält nis der
Ration von 16 g/MJ ME (MAURUS et al„ 1987, 1988a, b, c;
KIRCHGESSNER et al., 1989; ROTH et al„ 1989; Rrsn c et al.,
1990), was deutlich unter den in der Broilerkurzmast
empfohlenen Werten liegt (18 g MJ ME; VOGT, 1990). Da
die Wachstumsintens ität der Tiere am Ende der praxisüblichen Broilerkurzmast ihr Maximum normalerweise überschritten hat, dürfte für die verlängerte Mast auch im
Energiegehalt des Futters eine Redu zierung mög lich sein.
In den genannten Stoffwechselexpe rimenten wurden die
Tiere allerdings restriktiv gefüttert, so daß die für Geflügel
typische Anpassung des Futterverzehrs an den Energiegehalt
der Diät nicht mit berücksichtigt werden konnte. Es sollte
deshalb untersucht werden, wie sich bei ad libitum Fütterung
im Anschluß an eine kon ventionelle Broilerkurzmast eine
Verringerung der Energiekonzentr ation des Futters bei
einem Protein/ Energie-Verhältn is um 16 g/MJ ME auf die
Mastleistung in der verlängerten Broilermast auswirkt.
Material und Methoden
360 männliche Eintagsküken der Herkunft Lohmann (Cuxhaven) mit einer mittleren Lebendmasse von 43 ± 0,4 g
Institut für E rnährungsphysiolo gie der Technischen Universität
München-Weihens tephan, W-8050 Freising 12
Archi v für Geflügelkunde 2/ 1993
wurden in zwei dreietagigen Mastbatterien mit insgesamt
36 Käfigen (je 10 Tiere, 80 x 80 cm) aufgestallt. Die Beleuchtungsdauer betrug durchgehend 20 h/d und die Luftfeuchtigkeit 55 % - 60%. Die Stalltemperatur w urde von anfänglich 32 °C kontinuierlich bis auf 21 °C zu Versuchsende
verringert. Den Tieren stand ein pelletiertes Alleinfutter und
Wasse r ad libitum zur Verfü gung.
In den ersten 42 T agen der Mast erhielten die Tiere
einheitlich ein Futter mit 12,5 MJ ME/ kg und einem Protein/Energie-Ver hältnis von 18,0 g/MJ ME (T abelle 1, Variante 1). A nschließend wurden jeweils sechs Käfige einer
von sechs Diäten zugeordnet, die sich in der E nerg ied ichte
(zwei Stufen) und im Rohprotein/ Energie-Verhältn is (drei
Stufen) unterschieden (Tabelle 1). Die Modifizierung der
Energiedichte des Futters erfolgte hauptsächlich durch
Austausch einer Fettmischung gegen H aferschälk leie und
die Variation im Eiweiß/ Energie-Verhältn is durch Austausch von Sojaextraktionssc hrot und Getreide gegen Maisquellstärke.
A m 42 . Masttag sowie am Ende der drei nachfolgenden
Wochen (T ag 49, 56 und 63) wurde die mittlere Lebendmasse und die Futteraufnahme der Tiere eines jeden Käfigs
ermittelt und daraus die Zunahmen und die Futterverwertung (g Futterverzehr/g Zunahmen) berechnet . Die entsprechenden Ergebnisse sind in den nachfolgenden T abellen
als Mittelwert der Behandlungsgrup pen zusammen mit der
Standardabweich ung der Einzelwerte dargestellt.
Zur statistischen A uswertung wurde ein kreuzklassifiziertes Modell mit den Faktoren Energiedichte (zwei Stufen),
Eiweiß/Energie-V erhältnis (drei Stufen) und der entsprechenden Interaktion unterstellt und ein multipler Mittelwertvergleich durchgeführt (Fis her-Test). Signifikant verschiedene Mittelwerte (p < Q,05) sind durch unterschiedliche Hochbuchstaben gekennzeichnet.
Herunterladen