4. Erhaltungssätze 4.1 Erhaltung der Masse Bei chem. Reaktionen gilt: Prinzip von der Erhaltung der Masse: In einem abgeschlossenen System bleibt die Gesamtmasse immer gleich. Ein Prinzip gilt bis eine Beobachtung widerspricht. Es gibt physikalische Vorgänge, bei denen das obige Prinzip nicht gilt. Kernfusion: Masse wird in Energie umgewandelt. Erhaltungssätze 4.2 Energieerhaltungssatz 4.2.1 Arbeit Arbeit: Der Begriff “ Arbeit ” ist im Alltag anders verwendet als in der Physik. Der physikalische Begriff muss eindeutige Ergebnisse bringen. Heben eines Körpers: Längs des Weges h wird die Last F = mg gehoben. Arbeit W = mgh Erhaltungssätze Schiebt man den Körper auf einer schiefen Ebene (oder rollt ihn), ist weniger Kraftaufwand nötig. Arbeit W = Fs · s Erhaltungssätze Rechenbeispiel: h = 1,5 m s = 3,6 m FG = 1000 N Heben: W = F·h W = 1000·1,5 = 1500 J Schiefe Ebene: Fs : F = h : s h Fs F s Fs 1000 W Fs s 1000 1,5 3,6 1,5 3.6 1500J 3,6 Beide Male gleich. (Was an Kraft gewonnen wird, geht an Weg verloren.) Erhaltungssätze Definition für Arbeit: W = Fs.s Arbeit = Kraft in Wegrichtung mal Weg WF s F W F s cos( (F, s)) W = F.s Einheit: 1 Joule = 1Nm s Erhaltungssätze Ein gehobener Körper kann unter Verlust seiner Höhe wieder Arbeit verrichten. Die ihm zugeführte Energie geht nicht verloren, er kann sie wieder abgeben (Energieübertragung). Der gehobene Körper hat potentielle Energie Epot = mgh Erhaltungssätze Bemerkung Die potentielle Energie ist relativ bezogen auf das jeweilige Bezugssystem. z.B. ein Kreidehalter auf dem Tisch: m = 0,0278 kg Abstand Fußboden – Lehrerpult: h = 0,9 m Abstand Lehrerpult – Decke: h = 2,3 m Potentielle Energie: In Bezug auf den Fußboden: Epot = 0,0278·9,81 · 0,9 = 0,245 Joule In Bezug auf den Tisch: Epot = 0 In Bezug auf die Decke: Epot = – 0,63 Joule - Das „ “ bedeutet einen gebundenen Zustand. Erhaltungssätze 4.2.2 Beschleunigungsarbeit, Bewegungsenergie Auf einen Körper wirkt eine konstante Kraft. → Gleichmäßig beschleunigte Bewegung a 2 s t 2 W = F· s v = a·t a = m·a·s = m·a t 2 m (at) 2 2 2 Beschleunigungsarbeit: Wkin mv 2 2 mv ² 2 Ein Körper mit der Geschwindigkeit v hat die kinetische Energie Ekin Erhaltungssätze mv ² 2 4.2.3 Freier Fall, energetisch betrachtet s = g/2 t² Annahme: Körper befindet sich momentan in der Höhe h: 2 m(gt) g mv 2 E EKin Epot mgh mg(H t 2 ) 2 2 2 H h Daraus ersieht man: mg 2t 2 mg 2t 2 mgH mgH 2 2 E = Ekin + Epot = konstant mv 2 E mgh 2 In einem abgeschlossenen System bleibt die Gesamtenergie gleich. Erhaltungssätze Beispiel: Welche Maximalhöhe erreicht ein lotrecht geworfener Stein mit der Anfangsgeschwindigkeit 20 m/s ? Energie unten: Eu = mv ² 0 2 Energie oben: Eo = 0 + mgh Ansatz: Energie unten = Energie oben mv ² mgh :m 2 v² 2 v² h 2g gh → h = 20,3 m Erhaltungssätze Beispiel 2: Ausflussgeschwindigkeit: v=? h v 2gh Erhaltungssätze 4.2.4 Arbeit beim Spannen einer Feder x F Erhaltungssätze 4.2.4 Arbeit beim Spannen einer Feder x F Erhaltungssätze 4.2.4 Arbeit beim Spannen einer Feder F = k·x Arbeit W = F·s Die Kraft ändert sich hier (nimmt zu). k xx k x 2 W 2 2 Die Verformung ist umkehrbar, d. h. die gespannte Feder kann Arbeit verrichten. Erhaltungssätze k x2 Arbeit zum Spannen einer Feder: W 2 2 Energie der verformten Lage: E k x (stellt eine potentielle p 2 Energie dar) Erhaltungssätze Erhaltungssätze 4.2.5 Energieerhaltungssatz Beispiel: Ein Körper mit der Anfangsgeschwindigkeit v bewegt sich auf einer horizontalen Unterlage. Reibung wird berücksichtigt. Energie am Anfang: Energie am Ende: EA mv ² mgh 2 Widerspruch EE = 0 + mgh Die kinetische Energie wird in innere Energie umgewandelt. → Erwärmung des Körpers. Allgemeine Formulierung des Energieerhaltungssatzes: E = Ekin + Epot + U = konstant U ... innere Energie In einem abgeschlossenen System bleibt die Gesamtenergie konstant. Die einzelnen Energieformen können sich in die anderen umwandeln. Erhaltungssätze Erhaltungssätze Erhaltungssätze Erhaltungssätze Beispiel aus der Verkehrsphysik: Wie kann die Verletzungsgefahr minimiert werden ? mv ² Fs 2 F mv ² 2s F ... Abbremskraft s ... Abbremsweg Ziel: F klein halten ! Möglichkeiten: Langsamer fahren, Erhöhen des Abbremsweges Erhaltungssätze Überlege nebenstehende Grafik! Erhaltungssätze 4.2.6 Leistung Bei der Arbeit spielt die Zeit keine Rolle. Um verschiedene Arbeiten vergleichen zu können, führen wir den Begriff der Leistung ein. Arbeit Leistung benötigte Zeit Einheit 1 Watt = 1 J/s W P t (1 W) Alte Leistungseinheit: 1 PS = Leistung, die benötigt wird, um 75 kg in einer Sekunde einen Meter zu heben. 1 PS = 0,7355 kW oder ¾ kW Erhaltungssätze Dauerleistung eines Menschen: Berechne die Leistung eines Menschen, der in 3/4 h auf den Pfänder wandert! m = 58 kg, h = 644 m, t = 45 min = 2700 s W = 366,423 kJ P = 135,71 W Erhaltungssätze Von Watt abgeleitete Einheit: 1 kWh ... 1 Kilowattstunde = Einheit für die Arbeit 1000 Wh = 1000 W·3600 s = 3600000 Ws = 3,6 MJ Führe Aufgabe A3 Seite 64 aus! Erhaltungssätze 4.3 Impuls und Impulserhaltung Wir betrachten Systeme, bei denen mehrere Körper (wir behandeln hier nur 2-Körper-Probleme) aufeinander durch Kräfte einwirken. Beispiele: Skateboard + Fahrer 2 Billardkugeln Boot + Mensch Mit der Energie allein lässt sich das nicht beschreiben. (Energie ist ein Skalar!!) Auch die Richtung ist wichtig! Erhaltungssätze Wir führen dazu eine weitere Größe ein: Der Impuls: p m.v Er ist ein Vektor. Einheit: [p] = [m.v] = 1 kgms-1 = 1 Ns Beispiel: Berechne den Impuls eines Güterzuges (m=800 t, v=80km/h) Lösung: p = 800000·80/3,6 = 1,78·107 kgms-1 Erhaltungssätze Versuch: Ergebnis: Nur 1 Kugel wird weggestoßen. Bei 2 anstoßenden Kugeln werden 2 weggestoßen. …. Der Impuls wird auf die letzte Kugel übertragen. Erhaltungssätze Warum fliegt bei 2 Kugeln nicht eine, diese dafür schneller weg? Der Energiesatz stimmt bei einer Kugel: mv'2 2 mv 2 2 Würde nur eine Kugel bei 2 stoßenden wegfliegen, müsste diese den Impuls mv' = 2mv haben → v' = 2v Danach hätte die Kugel aber die Energie '2 mv E 2 4mv 2 2 2mv 2 was ein Widerspruch zum Energiesatz ist. (Perpetuum mobile). Erhaltungssätze 4.3.1 Der Impulserhaltungssatz In einem abgeschlossenen System bleibt der Gesamtimpuls erhalten. P m1v1 m2v2 m3v3 ... mnvn Überprüfe dies anhand der Schülerversuche M4.6 Beispiel: Mann im Boot, beide zunächst ruhend. Mann springt aus dem Boot. mB = 100 kg; mM = 75 kg; vM = 1 m/s Berechne die Geschwindigkeit des Bootes nach dem Absprung! Anfang: P=0 Nachher: P = mB ·vB + mM·vM Erhaltungssätze vB = (- 75/100) . 1 = -0,75m/s Impulssatz p m1v1 m2v 2 ... const. Erhaltungssätze Aufgabe zum Impuls Lösung: -0,54m/s Aufgabe 1: Eine Surferin (m = 50 kg) springt von einem Surfbrett (m = 9 kg) ins Wasser. Das Brett schießt dabei mit 3 m/s nach hinten weg. Wie groß war die Horizontalgeschwindigkeit der Surferin beim Sprung ins Wasser? Erhaltungssätze 4.3.2 Der Impulssatz im nicht abgeschlossenen System Betrachten wir einen frei fallenden Körper nicht im abgeschlossenen System Erde-Körper. Auf ihn wirkt die Kraft: F = m·g, Sein Impuls beträgt: F·t P = m·v = m·(g·t) = m·g ·t = bzw. v = g·t P = F.t P F t Dies gilt ganz allgemein. P mv m. v m.a F t t t Erhaltungssätze P F t In Worten: In einem nicht abgeschlossenen System ist die zeitliche Änderung des Gesamtimpulses gleich der gesamten von außen angreifenden Kraft. Beispiel: Mit einem Hammer wird ein Nagel eingeschlagen. Dazu ist es notwendig, dass man dem Hammer eine gewisse Geschwindigkeit erteilt - nur das Darauflegen des Hammers reicht nicht. m = 500g. v = 5m/s Δ t = 0,01s F = m.(v-0)/Δt F = 0,5·5/0,01 = 250 N Sein Gewicht beträgt nur 5N. Erhaltungssätze 4.3.3 Stöße Einteilung der Stöße: Elastische Stöße Keine Änderung – Unelastische Stöße Änderung der inneren Energie Kommt es zu Formveränderungen der Körper, so hat sich ein Teil der kinetischen Energie in innere Energie umgewandelt. ( Arbeit zum Verformen wurde verrichtet.) Aus Gründen der Einfachheit betrachten wir nur gerade Stöße von Massenpunkten. Erhaltungssätze 4.3.3.1 Gerade Stöße Vor dem Stoß: m v2 v 1 1 m2 Nach dem Stoß: v'1 v'2 m1 m 2 m1, m2 … Massen der Körper v1, v2, … Geschwindigkeiten vor dem Stoß v1' , v '2 … Geschwindigkeiten nach dem Stoß Erhaltungssätze Vor dem Stoß: m v2 v 1 1 m2 Nach dem Stoß: v'1 Impulserhaltung: Energieerhaltung: v'2 m1 m 2 m1v1 m2v 2 m1v1' m2v '2 m1v12 2 m2 v 22 2 U Erhaltungssätze '2 m1v1 2 ' 2 m2 v 2 2 U' Gerader elastischer Stoß Die innere Energie ändert sich nicht: U = U’ Umformen der beiden Gleichungen und auflösen nach v1' , v '2 liefert: v1' 2m2 v 2 (m1 m2 )v1 m1 m2 v'2 Diskutiere folgende Fälle: • • • • Die Massen sind gleich. Die Masse m2 >> m1. v2 = 0 und die beiden Massen sind gleich. m2 ist eine ruhende schwere Wand Erhaltungssätze 2m1v1 (m2 m1)v 2 m1 m2 v1' 2m2v 2 (m1 m2 )v1 m1 m2 v'2 2m1v1 (m2 m1)v 2 m1 m2 Lösungen: (1) m1 = m2 : v1' 2mv 2 v2 mm v'2 v1 Die Geschwindigkeiten werden ausgetauscht. (2) Die Masse m2 >> m1 : v1' 2m2v 2 m2v1 2v 2 v1 m2 v'2 v2 (3) v2 = 0 und die beiden Massen sind gleich. (4) m2 ist eine ruhende schwere Wand: Erhaltungssätze v1' v1' v1 0 v'2 v1 v'2 0 Unfairer Massenvergleich Erhaltungssätze Gerader unelastischer Stoß Beim idealen unelastischen Stoß gilt: Die beiden Stoßpartner bewegen sich nach dem Stoß mit derselben Geschwindigkeit. ' v2 ' v1 v ' Impulssatz: m1v1 m2v 2 (m1 m2 )v ' Energiesatz: m1v12 2 m2v 22 2 U (m1 m2 )v 2 '2 U' Erhaltungssätze m1v1 m2v 2 v m1 m2 ' Aufgaben zum Impuls (Lösung: 7,94 m/s ΔU = 46,6 kJ Bus: 11,4 km/h ) Aufgabe 2: Ein Kleinbus (m = 2650 kg) fährt mit 40 km/h von hinten auf einen vor einer roten Ampel stehenden Kleinwagen (m = 1050 kg) auf. Der Stoß wird als völlig unelastisch betrachtet. Mit welcher Geschwindigkeit bewegen sich die beiden Wracks nach dem Zusammenstoß? Ein wie großer Teil der kinetischen Energie des Kleinbusses wurde bei dem Zusammenstoß in innere Energie umgewandelt? Welche Geschwindigkeitsänderung erfuhr der Kleinbus bei dem Zusammenstoß? Wie groß war die des Kleinwagens? Erhaltungssätze 4.3.3.2 Schiefer unelastischer Stoß Stroboskopaufnahme eines schiefen unelastischen Stoßes. Unelastischer Stoß auf eine Wand. Das Auto fährt längs der Wand weiter Erhaltungssätze vp v vn vp Die zur Wand parallele Komponente vp bleibt bei vernachlässigbarer Reibung unverändert. Die zur Wand normale Komponente und ihre Bewegungsenergie müssen aufgezehrt werden. (→innere Energie). Anwendung: Leitplanken am Straßenrand sollen Auto nicht zurückwerfen. Erhaltungssätze Schispringer Erhaltungssätze • Diskutiere die für den Aufsprung des Schispringers wesentlichen Aspekte! • Welche Art von Stoß liegt vor? • Warum muss der Aufsprung im Steilhang erfolgen? • Welchen Bruchteil der Bewegungsenergie muss der Springer bei einem Aufsprungwinkel von α = 20° auffangen? Erhaltungssätze vp bleibt gleich, vn ist die Aufprallgeschwindigkeit normal auf die Schanze. Diese muss er mit seinem Körper auffangen. vn v sin Bewegungsenergie, die er bei 20° auffangen muss: Ekin20 m v n20 2 Ekin20 Ekin 2 m v n20 2 2 2 v v sin 20 2 2 n 20 sin 20 2 2 2 mv v v 2 sin2 20 0,117 11,7% 2 Erhaltungssätze Aufgaben zum Impuls (Lösung: 0,28 m/s Richtung Tor ) Aufgabe 3: Elfmeterschießen: Der Tormann (m = 70 kg) fängt den mit 90 km/h anfliegenden Ball (m = 0,8 kg) im Sprung. Welche Auswirkung hat das (physikalisch gesehen) auf die Bewegung des Tormanns? Sie können mit den Gleichungen des unelastischen Stoßes rechnen. Erhaltungssätze Aufgaben zum Impuls Lösung: Ball -24,4 m/s; Tormann: 0,56 m/s Ri Tor Aufgabe 4: Elfmeterschießen: Der mit 90 km/h fliegende Ball (m = 0,8 kg) springt von den Fäusten des Tormanns (m = 70 kg) zurück ins Spielfeld. Welche Auswirkung hat das (physikalisch gesehen) auf die Bewegung des Tormanns? Sie können mit den Gleichungen des elastischen Stoßes rechnen. Erhaltungssätze Erhaltungssätze