MPG-official form - Max Planck Institute for Chemical Ecology

Werbung
24. Februar 2015
Nr.3/2015 (137)
Sperrfrist: Bis Donnerstag, 26. Februar 2015, 20:00 Uhr
MEZ (14:00 Uhr US Eastern Time)
Kartoffelkäfer mit RNA-Interferenz bekämpfen
Mit Hilfe von RNA-Interferenz lassen sich Kartoffelpflanzen gegen ihren größten
Fraßfeind wappnen
Kartoffelkäfer sind weltweit gefürchtete Landwirtschaftsschädlinge. Da sie in den
meisten Anbaugebieten keine natürlichen Feinde haben, werden sie in der Regel mit
Pestiziden bekämpft. Allerdings haben die Insekten Resistenzen gegen nahezu alle
Wirkstoffe entwickelt. Wissenschaftler der Max-Planck-Institute für Molekulare
Pflanzenphysiologie in Potsdam-Golm und chemische Ökologie in Jena konnten nun
zeigen, dass Kartoffelpflanzen durch RNA-Interferenz (RNAi) vor den Käfern geschützt
werden können. Dazu veränderten sie die Pflanzen so, dass diese doppelsträngige
RNA-Moleküle (dsRNAs) in ihren Chloroplasten herstellen, die gegen Gene des
Kartoffelkäfers gerichtet sind. (Science, Februar 2015).
Links: Der Kartoffelkäfer (Leptinotarsa decemlineata): Jede seiner Larven
frisst im Durchschnitt 40 bis 50 cm2 Blattmaterial. Ein Befall mit
Kartoffelkäfern kann zu Ernteverlusten von bis zu 50 Prozent führen,
wenn er nicht rechtzeitig erkannt und bekämpft wird. Rechts:
Fütterungsexperiment mit abgetrennten Kartoffelblättern: Dargestellt sind
Wildtyp-Blätter im Vergleich mit Blättern einer Pflanze, bei der die DNA
der Chloroplasten verändert wurde. Auf diesen Blättern, die täglich durch
neue ersetzt wurden, hatten Kartoffelkäferlarven im ersten Larvenstadium
an drei aufeinanderfolgenden Tagen jeweils 24 Stunden lang gefressen.
Fotos: Sher Afzal Khan, Max-Planck-Institut für chemische Ökologie
RNA-Interferenz (RNAi) ist ein natürlicher Prozess der Genregulation. Pflanzen, Pilze
und Insekten schützt die RNAi aber auch vor bestimmten Viren. Bei einer Infektion
schleusen die Erreger ihre Erbsubstanz in Form von doppelsträngiger RNA (dsRNA) in
die Zellen ihres Wirts ein, um sich dort zu vermehren. Bei der Vervielfältigung der
viralen RNA in der Zelle wird diese durch das RNAi-System erkannt und in kleinere
Stücke zerlegt. Die Bruchstücke, sogenannte siRNAs (small interfering RNAs), nutzt die
Zelle für die Erkennung und Zerstörung der fremden RNA.
Dieser Mechanismus lässt sich auch künstlich nutzen, indem man dsRNAs in eine Zelle
einbringt, die genau zur Boten-RNA (mRNA) eines Zielgens passt. Wählt man als Ziel
ein lebenswichtiges Gen eines Schädlings, so wird aus der dsRNA ein sehr präzises
und wirkungsvolles Insektizid. Die dsRNAs gelangen über das Verdauungssystem in die
Zellen des Insekts und können dort die Produktion des entsprechenden Proteins
verringern oder sogar vollständig blockieren.
In der Vergangenheit haben Wissenschaftler bereits Pflanzen so verändert, dass sie
dsRNAs gegen bestimmte Insekten produzierten. „Dies hat die Pflanzen aber nicht
vollständig geschützt “, erklärt Ralph Bock vom Max-Planck-Institut für Molekulare
Pflanzenphysiologie. „Schuld daran ist das pflanzeneigene RNAi-System, das die
Ansammlung größerer Mengen fremder dsRNA verhindert. Als mögliche Lösung dieses
Problems erschien uns die Produktion von dsRNA in den Chloroplasten.“ Diese
Zellorganellen stammen von ursprünglich frei lebenden Cyanobakterien ab, einer
Gruppe von Einzellern, die kein RNAi-System besitzen.
Die Forscher um Ralph Bock entschieden sich deshalb dafür, sogenannte
transplastomische Pflanzen herzustellen. Das sind Pflanzen, bei denen nicht das
Kerngenom, sondern das Genom der Chloroplasten gentechnisch verändert wird.
Als Zielorganismus für die dsRNA wählten die Wissenschaftler den Kartoffelkäfer aus.
Die gestreiften Käfer wurden Ende des 19. Jahrhundert von Amerika nach Europa
eingeschleppt und können große Schäden in der Landwirtschaft verursachen. Heute
sind sie weltweit verbreitet. Neben Kartoffelblättern fressen die Käfer und ihre Larven
auch die Blätter anderer Nachtschattengewächse, wie zum Beispiel Tomate, Paprika
oder Tabak. „Mit Hilfe der Chloroplastentransformation ist es uns gelungen
Kartoffelpflanzen herzustellen, die große Mengen langer dsRNAs stabil in den
Chloroplasten anreichern“, so Ralph Bock.
Die Wissenschaftler überprüften die Wirksamkeit von dsRNA als Insektizid am MaxPlanck-Institut für chemische Ökologie in Jena. Sie ermittelten die Sterblichkeit von
Larven des Kartoffelkäfers, die neun Tage mit den Blättern unterschiedlicher
Kartoffelpflanzen gefüttert wurden. Getestet wurden dabei auch dsRNAs gegen zwei
verschiedene Gene des Kartoffelkäfers.
„Fressen Larven transplastomische Kartoffelblätter, deren dsRNA gegen das Aktin-Gen
des Käfers gerichtet ist, sterben sie innerhalb von fünf Tagen zu 100 Prozent“, erklärt
Sher Afzal Khan aus Jena.
Das Aktin-Gen codiert die Information für ein
Strukturprotein, das für die Stabilität der Zellen unverzichtbar ist. Im Gegensatz dazu
sterben die Larven nur selten, wenn sie Kartoffelpflanzen fressen, deren Zellkern
gentechnisch verändert wurde. Sie wachsen dann lediglich langsamer.
Die aktuellen Ergebnisse zeigen, dass der Wechsel von der Transformation des
Kerngenoms zur Transformation des Chloroplastengenoms die bisher bestehenden
Hürden beim Einsatz von RNAi im Pflanzenschutz überwindet. Da Insekten zunehmend
Resistenzen gegenüber chemischen Pestiziden und auch biologischen Mitteln wie BtToxinen entwickeln, stellt die RNAi-Technologie eine zukunftsweisende Strategie in der
Schädlingsbekämpfung dar. Die Methode ermöglicht gezielten Schutz ohne
Chemikalien und ohne die Produktion fremder Proteine in der Pflanze. [KD/AO]
Originalveröffentlichung:
Zhang, J., Khan, S. A., Heckel, D. G., Bock, R. (2015). Full crop protection from an
insect pest by expression of long double-stranded RNAs in plastids. Science. DOI:
10.1126/science.1261680
http://dx.doi.org/10.1126/science.1261680
Weitere Informationen:
Prof. Dr. Ralph Bock, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am
Mühlenberg 1, 14476 Potsdam, Tel. 0331 567-8211, E-Mail [email protected]
Prof. Dr. David G. Heckel, Max-Planck-Institut für chemische Ökologie, Hans-KnöllStraße 8, 07745 Jena, Tel. 03641 57-1500, E-Mail [email protected]
Kontakt und Bildanfragen
Dr. Kathleen Dahncke, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am
Mühlenberg 1, 14476 Potsdam, Tel. 0331 567-8275, E-Mail [email protected]
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8,
07743 Jena, +49 3641 57-2110, [email protected]
Download von hochaufgelösten Fotos über www.ice.mpg.de/ext/735.html
Herunterladen