12 2 3 3 Anwendungen der Binomialverteilung mit Lösungen

Werbung
3.3. Anwendungen der Binomialverteilung
Bei Anwendungen prüfen wir zunächst, ob die Zufallsvariable X binomialverteilt ist, d.h., ob eine Kette von n
unabhängigen Durchführungen eines Bernoulli-Experiments vorliegt. Ist dies der Fall, können wir dann die
gesuchte Wahrscheinlichkeit mit Hilfe der Binomialverteilung bestimmen.
⎛n⎞
Den Term P ( X = k ) = ⎜⎜ ⎟⎟ ⋅ p k ⋅ (1 − p) n − k ; k = 0,1,..., n bezeichnet man auch die Formel von
⎝k ⎠
Bernoulli.
Für die Benutzung von Tabellenwerken über die Binomialverteilung gelten folgende Regeln:
-
F ( n; p; k ) = Fn; p ( k ) = B ( n; p; 0) + B ( n; p;1) + ... + B ( n; p; k )
-
P ( X ≤ k ) = Fn; p ( k )
-
P (k1 ≤ X ≤ k 2 ) = Fn; p ( k 2 ) − Fn; p ( k1 − 1)
-
P ( X > k ) = 1 − Fn; p ( k ) ; P ( X ≥ k ) = 1 − Fn; p ( k − 1)
-
P ( X = k ) = 1 − Fn; p ( k ) − Fn; p ( k − 1)
Übungen:
1. Ein Unternehmer erhält regelmäßig Lieferungen einer bestimmten Ware, von welcher der Hersteller
behauptet, dass der Ausschussanteil höchstens 1% beträgt. Zur Kontrolle entnimmt der Unternehmer
jeder Lieferung eine Stichprobe von 50 Stück. X zähle die Anzahl der unbrauchbaren Stücke in der
Stichprobe. Ermittle P ( X ≤ k ) für k = 0, 1, 2, 3, 4, 5. Welchen „Prüfplan“ für die laufend
wiederkehrenden Kontrollen könnte man auf Grund dieser Ergebnisse aufstellen?
2. Jemand kauft eine Packung mit 15 Blumenzwiebeln, für die eine Keimgarantie von 90% gegeben
wird. Mit welcher Wahrscheinlichkeit keimen
a) mindestens 12 Zwiebeln
b) mindestens 14 Zwiebeln c) alle 15 Zwiebeln?
3. Ein Multiple-Choice-Test bestehe aus 15 Fragen; jeder Frage sind 5 Antworten beigegeben, von
denen genau eine richtig ist. Der Test gilt als bestanden, wenn mindestens ein Drittel der Fragen
richtig beantwortet ist. Mit welcher Wahrscheinlichkeit besteht man den Test auch durch bloßes
Raten?
4. (Abitur 1998) In einer Fernsehshow werden Spiele mit 7 Kandidaten durchgeführt.
a) Da erfahrungsgemäß ein eingeladener Kandidat mit einer Wahrscheinlichkeit von 5% nicht zur
Sendung erscheint, werden insgesamt 9 Personen eingeladen.
aa) Mit welcher Wahrscheinlichkeit sind bei der Sendung mindestens 7 Kandidaten anwesend?
b) Bei der Begrüßung sitzen die 7 Kandidaten, 4 Frauen und 3 Männer, in einer Reihe. Wie viele
Sitzanordnungen gibt es, wenn hinsichtlich der Personen unterschieden wird und
ba) die beiden Randplätze von Männern besetzt werden sollen,
bb) sich in der Reihe Männer und Frauen stets abwechseln sollen?
Herunterladen
Explore flashcards